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Meta-Analysis of Genome-wide Association Studies
with Overlapping Subjects

Dan-Yu Lin1,* and Patrick F. Sullivan2

Data from multiple genome-wide association studies are often analyzed together for the purposes of combining information from several

studies of the same disease or comparing results across different disorders. We provide a valid and efficient approach to such meta-anal-

ysis, allowing for overlapping study subjects. The available data may contain individual participant records or only meta-analytic

summary results. Simulation studies demonstrate that failure to account for overlapping subjects can greatly inflate type I error when

combining results from multiple studies of the same disease and can drastically reduce power when comparing results across different

disorders. In addition, the proposed approach can be substantially more powerful than the simple approach of splitting the overlapping

subjects among studies, especially for comparing results across different disorders. The advantages of the new approach are illustrated

with empirical data from two sets of genome-wide association studies.
Introduction

In the relatively brief but highly informative history of

genome-wide association studies (GWAS),1 meta-analysis

(of individual participant data or summary results) has

proven to be a crucial step. In many instances, the results

of individual studies were unremarkable, and statistically

compelling findings only emerged after aggressive data

sharing. An excellent model is the discovery of risk loci

for type 2 diabetes (MIM 125853).2–5 Recognizing the

need and benefits of data sharing, GWAS investigators

have formed a large number of consortia and networks.

Several papers have addressed statistical issues in the

meta-analysis of GWAS data.6–9

One important issue in GWAS meta-analysis that has

received little attention is the overlap of study subjects,

i.e., the appearance of the same subjects in multiple

studies. The GWAS requirement for historically large

samples—and its considerable expense—makes it desirable

for individual studies to share control samples. This can

occur by design, as with the Wellcome Trust Case Control

Consortium (WTCCC),10 which genotyped ~2000 cases

from each of seven diseases and ~3000 shared controls

and thus essentially consisted of seven case-control studies

with the same collection of controls. It can also occur

when there is a paucity of available controls. For example,

many psychiatric GWAS conducted in the United States

have used controls ascertained and sampled by P.V. Gej-

man,11 which are commonly referred to as the NIMH

Gejman controls. The problem of overlapping controls

will become more prominent as an increasing number of

case-control studies are taking advantage of publicly avail-

able genotype data for large sets of population-based

controls, such as the WTCCC and Gejman controls. There

are also studies with overlapping cases, although such

overlap tends to be less severe.
862 The American Journal of Human Genetics 85, 862–872, Decemb
A simple approach to dealing with the problem of over-

lapping subjects is to split them among the studies such

that each subject contributes only one record to meta-

analysis. Unfortunately, this seemingly sensible approach

has several drawbacks. First, there is a potential loss of

efficiency, especially in cross-disorder comparisons (i.e.,

comparing results across different disorders). Second,

there is generally no unique way to split the overlapping

subjects, and the results of meta-analysis may depend

appreciably on how the overlapping subjects are split.

Third, splitting the overlapping subjects may exacerbate

the bias caused by genotyping errors, as elaborated below.

Fourth, splitting requires access to individual participant

data, which may not be feasible in meta-analysis of

summary results.

A more satisfactory approach is to use all of the records

from all of the studies. This approach maximizes statistical

efficiency, produces unique analysis results, and tends to

be less affected by genotyping errors than the approach

of splitting the overlapping subjects. (If an equal number

of cases and controls are randomized to each genotyping

plate, then the genotyping errors will tend to cancel out

between the case and control groups. Splitting control

samples will create unequal numbers of cases and controls

on the plates such that the genotyping errors will not

cancel out between the case and control groups if the

directions or the magnitudes of the errors vary among

the plates.) However, it is necessary to account for the

fact that the observations from the overlapping subjects

are not independent among studies. Failure to do so will

inflate type I error when combining information from

multiple studies of the same disease and reduce power

when comparing results across different disorders, as will

be demonstrated in this article.

In this article, we show how to properly adjust for the

correlated observations of the overlapping subjects when
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all records are used in meta-analysis. The available data

may consist of individual participant data (i.e., original

phenotype, genotype, and covariate data) or meta-analytic

summary results (i.e., parameter estimates and variance

estimates). (Meta-analysis of individual participant data

has been referred to as mega-analysis and joint analysis.)

We demonstrate through simulation studies that the pro-

posed approach preserves type I error and can be substan-

tially more powerful than the approach of splitting the

overlapping subjects, especially in cross-disorder compari-

sons. For meta-analysis of a single disorder, careful splitting

of control samples yields statistical power similar to the

proposed approach but still suffers from the bias caused

by genotyping errors and the inherent variability of results.

We evaluate various approaches with empirical data from

the WTCCC study10 and the Genetic Association Informa-

tion Network (GAIN)11 and Clinical Antipsychotic Trials in

Intervention Effectiveness (CATIE)12 schizophrenia (MIM

181500) studies.

Material and Methods

Meta-Analysis of Individual Participant Data
Let Y denote the disease status (1 ¼ disease, 0 ¼ no disease) and

X denote a set of explanatory variables. The explanatory variables

represent the genotype score (or scores) of one or several SNPs and

may also include covariates. Under the commonly used additive

mode of inheritance, the genotype score is the number of minor

alleles; under the dominant (or recessive) model, the genotype

score indicates, by the values 1 versus 0, whether or not the subject

has at least one minor allele (or two minor alleles). (All numerical

results reported in this article are based on the additive model.) For

an untyped SNP, the unknown genotype score may be replaced by

the imputed genotype score. The covariates may include environ-

mental factors and the principal components used to adjust for

population stratification. It is natural to assume the following

logistic regression model:

PrðY ¼ 1 jXÞ ¼ eaþbTX

1þ eaþbTX
; (Equation 1)

where a is the intercept and b is a set of regression parameters on

the log odds ratio scale.

All meta-analysis problems can be formulated through Equation

1. If we are interested in combining data from two case-control

studies so as to make inference on a common genetic effect

(without adjusting for covariates), then we simply set X ¼
(G, S)T, where G is the genotype score and S indicates, by the values

1 versus 0, whether the subject is from the first study; the regres-

sion parameter associated with G is the log odds ratio for the

common genetic effect, whereas the regression parameter associ-

ated with S reflects the difference of the case-control ratios

between the two studies. If we wish to compare the genetic effects

between the two studies, then we define X ¼ (G, S, G*S)T, and the

regression parameter associated with G*S is the difference of the

log odds ratios between the two studies. It is straightforward to

extend the formulation to more than two studies and to incorpo-

rate covariates into Equation 1.

Suppose that there is a total of n study subjects, counting the

subjects as many times as they appear in the studies. For
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i ¼ 1, ., n, let Yi and Xi denote the values of Y and X on the ith

subject. Let q denote the collection of a and b. The ‘‘likelihood’’

for q takes the form

LðqÞ ¼
Yn

i¼1

eYiðaþbTXiÞ

1þ eaþbTXi
:

The corresponding ‘‘score function’’ and ‘‘information matrix’’ are

UðqÞ ¼
Xn

i¼1

 
Yi �

eaþbTXi

1þ eaþbTXi

!�
1
Xi

�
,

and

IðqÞ ¼
Xn

i¼1

eaþbTXi�
1þ eaþbTXi

�2

�
1
Xi

XT
i

XiX
T
i

�
,

respectively. The ‘‘maximum likelihood estimator’’ q̂ is the maxi-

mizer of L(q) or equivalently the solution to the estimating equa-

tion U(q) ¼ 0.

We use the quotation marks for the likelihood and related quan-

tities because L(q) is not the correct likelihood when study subjects

overlap. Although q̂ is not a genuine maximum likelihood esti-

mator, we show in the Appendix that q̂ is a valid estimator of q

and that its variance can be estimated properly from the data.

Specifically, q̂ is approximately normal with mean q and vari-

ance-covariance matrix

V
�
q̂
�
¼ I�1

�
q̂
��

I
�
q̂
�
þD

�
q̂
��

I�1
�
q̂
�
, (Equation 2)

where

DðqÞ ¼
Xn

i¼1

Xn

j¼1

dijUiðqÞUjðqÞT,

Ui(q) is the ith summand in U(q), and dij takes the value 1 if i s j but

the ith and jth subjects are the same subject and takes the value

0 otherwise. If there are no overlapping subjects, then D(q) ¼ 0,

so Vðq̂Þ reduces to I�1ðq̂Þ, which is the usual variance-covariance

estimator of the maximum likelihood estimator.

We will refer to the approach described above as ‘‘sharing

subjects,’’ in that all overlapping subjects are included in the

meta-analysis as many times as they appeared in the studies.

This is in contrast to the approach of ‘‘splitting subjects,’’ in which

the overlapping subjects are divided among the studies such that

every subject is used only once in the meta-analysis. We will refer

to Vðq̂Þ and I�1ðq̂Þ as the robust and naive variance-covariance esti-

mators, respectively, in that the former properly accounts for the

correlation of the observations from the same subject whereas

the latter does not. Clearly, V(q) ¼ I�1(q) þ I�1(q)D(q)I�1(q), so

I�1(q)D(q)I�1(q) is the extra variance due to overlap.

Meta-Analysis of Summary Results
Suppose that there are K studies with potentially overlapping

subjects. For k ¼ 1, ., K, let ĥk be the estimator of a common

genetic effect h from the kth study and let Vk be the corresponding

variance estimator. For meta-analysis of K independent studies

with such summary results, the well-known inverse-variance esti-

mator of h is

ĥ ¼
XK

k¼1

wkĥk, (Equation 3)

where wk ¼ V�1
k =

PK
k¼1 V�1

k ; the variance of ĥ is estimated byPK
k¼1 w2

k Vk. When study subjects overlap, the optimal weights
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are no longer proportional to the inverse variances, and the vari-

ance of ĥ is no longer
PK

k¼1 w2
k Vk. It can be shown that the optimal

weights are

½w1, . wK� ¼ eTU�1=eTU�1e, (Equation 4)

where e is a K 3 1 vector of 1’s and U is the (estimated) covariance

matrix of ðĥ1;.; ĥKÞ.13 Regardless of what the wks are, the variance

of ĥ takes the form

Var
�
ĥ
�
¼
XK

k¼1

w2
k Vk þ 2

XK

k¼1

XK

l¼kþ1

wkwlCov
�
ĥk,ĥl

�
, (Equation 5)

where Cov denotes covariance. For cross-disorder comparisons,

the difference between the genetic effects of the kth and lth studies

is simply estimated by ĥk � ĥl, and the corresponding variance is

Var
�
ĥk � ĥl

�
¼ Vk þ Vl � 2Cov

�
ĥk,ĥl

�
: (Equation 6)

It is evident from Equation 5 and Equation 6 that failure to

account for overlapping subjects will underestimate the true vari-

ation when making inference on a common genetic effect and will

overestimate the true variation when comparing genetic effects

across studies. We will refer to Equation 5 and Equation 6 as robust

variance estimators in that they properly account for the correla-

tions of the overlapping subjects.

To carry out the aforementioned analyses, we need to estimate

the covariances or correlations of the ĥks. We derive in the

Appendix a simple correlation formula for case-control studies:

Corr
�
ĥk,ĥl

�
z

�
nkl0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk1nl1

nk0nl0

r
þ nkl1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk0nl0

nk1nl1

r 
� ffiffiffiffiffiffiffiffiffi
nknl

p
, (Equation 7)

where nk1, nk0, and nk (or nl1, nl0, and nl) are, respectively, the

number of cases, the number of controls, and the total number

of subjects in the kth (or lth) study and nkl0 and nkl1 are, respec-

tively, the numbers of controls and cases that overlap between

the kth and lth studies. This formula also applies to the score tests.

The approximation is accurate if the case-control status is inde-

pendent of all explanatory variables in the model, which is true

under the null hypothesis of no genetic association when no cova-

riates are included in the analysis. The approximation may be

inaccurate in the presence of strong genetic and/or covariate

effects.

Results

Simulation Studies

We conducted simulation studies to compare the perfor-

mance of the robust and naive variance estimators when

sharing the overlapping subjects in the meta-analysis of

individual participant data and to assess the efficiency

loss of splitting the overlapping subjects. The first set of

simulation studies was focused on combining results

from multiple studies of the same disease. We simulated

n1 cases and n0 controls from model 1 (i.e., the model given

in Equation 1), in which X is the number of minor alleles

of the test SNP. We created two studies with n1/2 cases

each, or with 3n1/4 cases in one study and n1/4 cases in

the other. We considered various combinations of n1 and

n0. For each configuration, we generated 10 million data

sets. Each simulated data set was analyzed in two ways:
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sharing all of the n0 controls between the two studies,

and splitting the control samples between the two studies

in a 1:1, 3:1, or 1:3 ratio. In either approach, we fit model 1

in which X consists of the genotype score (i.e., the number

of minor alleles) and the study indicator, and we tested the

null hypothesis that b ¼ 0. The results reported below

pertain to the choices of a ¼ �3, b ¼ 0 or 0.3, minor allele

frequency (MAF) of 0.3, and nominal significance levels of

10�4 and 10�7 under b ¼ 0 and b ¼ 0.3, respectively. The

results are similar for other choices of a, MAF, and nominal

significance levels. Note that b ¼ 0 and 0.3 correspond to

odds ratios of 1 and ~1.35.

The type I error rates of the joint association tests when

the control samples are shared between the two studies

are shown in Table 1 under the heading ‘‘Original Data.’’

Because the robust variance estimator accurately reflects

the true variation of the odds ratio estimator (data not

shown), the corresponding association test has proper

type I error. (The slight conservativeness is a general

phenomenon for Wald tests at extreme nominal signifi-

cance levels and not a unique feature of the proposed

method.) By contrast, the naive variance estimator seri-

ously underestimates the true variation (data not shown),

so the corresponding association test has grossly inflated

type I error, especially under the first and fifth scenarios.

The reason that the inflation of the type I error for the naive

method decreases as the number of controls increases is

because it can be shown from Equation 2 that the extra

variance due to overlap is inversely proportional to n0.

The powers of the joint association tests under b ¼ 0.3

when the control samples are shared versus split between

the two studies are shown in Table 2 under the heading

‘‘Original Data.’’ (When the control samples are shared,

the robust variance estimator is used.) When the control

samples are split in the same ratio as the numbers of cases

between the two studies, the two approaches have virtually

the same power. When the control samples are split in

Table 1. Type I Error Rates (3104) of Association Tests at the
Nominal Significance Level of 10�4 When Control Samples Are
Shared in the Combined Analysis of Two Case-Control Studies

No. of Cases Original Data Summary Results

Study 1 Study 2
No. of
Controls Robusta Naiveb Robusta Naiveb

1000 1000 1000 0.96 14.9 0.97 14.8

1000 1000 2000 0.95 7.4 0.96 7.4

1000 1000 3000 0.93 5.0 0.95 5.0

1000 1000 4000 0.96 3.7 0.96 3.7

1500 500 1000 0.97 11.3 0.96 11.2

1500 500 2000 0.97 5.5 0.96 5.5

1500 500 3000 0.95 3.8 0.94 3.8

1500 500 4000 0.96 2.9 0.97 2.9

a Robust variance estimator used.
b Naive variance estimator used.
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Table 2. Powers of Association Tests at the Nominal Significance Level of 10�7 When Control Samples Are Shared or Split in the Combined
Analysis of Two Case-Control Studies

Original Data Summary Results

No. of Cases Splitting Controls

Study 1 Study 2 No. of Controls Sharing Controlsa 1:1 3:1 1:3 Sharing Controlsa

1000 1000 1000 0.34 0.34 0.28 0.28 0.31

1000 1000 2000 0.73 0.73 0.66 0.66 0.71

1000 1000 3000 0.88 0.88 0.83 0.83 0.87

1000 1000 4000 0.93 0.93 0.90 0.90 0.93

1500 500 1000 0.32 0.28 0.33 0.15 0.31

1500 500 2000 0.72 0.66 0.73 0.43 0.72

1500 500 3000 0.87 0.83 0.88 0.63 0.87

1500 500 4000 0.93 0.90 0.93 0.75 0.93

a Robust variance estimator used.
a different ratio, however, sharing is considerably more

powerful than splitting.

The next set of simulation studies was concerned with

the comparison of odds ratios between different studies

(i.e., cross-disorder comparison). We simulated two case-

control studies with a set of common controls, the cases

in the two studies representing two different disorders.

The log odds ratios for the two studies were b1 and b2,

and we were interested in testing the null hypothesis

that b1 ¼ b2. Other than potentially unequal odds ratios

between the two studies, the simulation parameters were

the same as in the first set of simulation studies. We set

b1 ¼ b2 ¼ 0.3 under the null hypothesis and b1 ¼ 0 and

b2 ¼ 0.5 under the alternative hypothesis. Note that the

b value of 0.5 corresponds to an odds ratio of ~1.65. Again,

we generated 10 million data sets for each scenario and

analyzed each simulated data set by sharing or splitting

the control samples between the two studies. Whether

the control samples were shared or split, we fit model 1

in which X consists of the genotype score, the study indi-

cator, and their product. (The regression parameter associ-

ated with the product term corresponds to the difference

between the log odds ratios of the two studies.)

The type I error rates for testing the null hypothesis that

b1¼ b2 when the control samples are shared in the analysis

are displayed in Table 3 under the heading ‘‘Original Data.’’

Again, the robust variance estimator accurately reflects the

true variation (data not shown) and thus yields proper type

I error. The naive variance estimator overestimates the true

variation (data not shown), so the corresponding test is too

conservative.

The powers against the alternative hypothesis that

b1 ¼ 0 and b2 ¼ 0.5 when the control samples are shared

versus split in the analysis are presented in Table 4 under

the heading ‘‘Original Data.’’ When the control samples

are shared, the use of the robust variance estimator yields

a much more powerful test than the use of the naive vari-

ance estimator. Splitting the control samples results in
The America
substantial loss of power, especially when the total number

of controls is small.

An important technical issue in GWAS is the possible

presence of plate effects where there are important (but

undetected) biases in the genotyping of some subjects.

To assess the biases caused by splitting control samples in

the presence of plate effects, we simulated a case-control

study with 1920 cases and 1920 controls (i.e., 3840

subjects on 40 96-well plates) from model 1 with a ¼ �3

and b ¼ 0. We assumed that cases and controls were

randomly assigned such that there was an equal number

of cases and controls on each genotyping plate. We gener-

ated the genotypes for a test SNP with relatively low MAF

independently of the case-control status. For ~n cases and
~n controls, each heterozygous genotype was miscalled as

minor homozygous genotype with probability 0.1, and

each major homozygous genotype was miscalled as hetero-

zygous also with probability 0.1. (For a SNP with relatively

Table 3. Type I Error Rates (3104) at the Nominal Significance
Level of 10�4 for Testing Equal Odds Ratios When Control Samples
Are Shared Between Two Case-Control Studies

No. of Cases Original Data Summary Results

Study 1 Study 2
No. of
Controls Robusta Naiveb Robusta Naiveb

1000 1000 1000 0.95 0.001 1.65 0.001

1000 1000 2000 0.98 0.027 1.36 0.027

1000 1000 3000 0.99 0.091 1.25 0.091

1000 1000 4000 1.00 0.173 1.21 0.173

1500 500 1000 0.92 0.004 1.42 0.004

1500 500 2000 0.93 0.084 1.19 0.084

1500 500 3000 0.93 0.177 1.11 0.177

1500 500 4000 0.94 0.265 1.08 0.265

a Robust variance estimator used.
b Naive variance estimator used.
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Table 4. Powers of Detecting Unequal Odds Ratios at the Nominal Significance Level of 10�7 When Control Samples Are Shared or Split
between Two Case-Control Studies

Original Data Summary Results

No. of Cases Sharing Controls Splitting Controls Sharing Controls

Study 1 Study 2 No. of Controls Robusta Naiveb 1:1 3:1 1:3 Robusta Naiveb

1000 1000 1000 0.93 0.30 0.11 0.05 0.05 0.95 0.30

1000 1000 2000 0.94 0.67 0.36 0.23 0.24 0.95 0.67

1000 1000 3000 0.94 0.78 0.53 0.40 0.41 0.95 0.78

1000 1000 4000 0.94 0.83 0.64 0.53 0.54 0.95 0.83

1500 500 1000 0.66 0.13 0.06 0.03 0.03 0.72 0.13

1500 500 2000 0.67 0.35 0.19 0.13 0.13 0.70 0.35

1500 500 3000 0.67 0.45 0.30 0.22 0.23 0.70 0.45

1500 500 4000 0.68 0.51 0.37 0.29 0.30 0.69 0.51

a Robust variance estimator used.
b Naive variance estimator used.
low MAF, no minor homozygous genotypes may exist on

a plate, so the clustering plots tend to mistakenly assign

some heterozygous genotypes to minor homozygous

genotypes and some major homozygous genotypes to

heterozygous genotypes.) For the remaining ðn� ~nÞ cases

and ðn� ~nÞ controls, all genotypes were called correctly.

We assumed that the ~n controls with potentially miscalled

genotypes were involved in a second case-control study,

which also randomized cases and controls to each plate.

(If we share the overlapping control samples in the meta-

analysis of such studies, the balance between cases and

controls in each plate ensures that the expected genotype

frequencies are the same between the case and control

groups, which in turn ensures valid association testing. If

we split the overlapping control samples, the resulting

unequal numbers of cases and controls with genotyping

errors within each study will yield unequal genotype

frequencies between the case and control groups, which

will inflate type I error.) We simulated 10 million data

sets with ~n ¼ 96, 192, or 384 (i.e., one, two, or four plates)

and MAF ¼ 0.05 or 0.1. Table 5 shows the impact of split-

ting the overlapping control samples between the two

studies on the association testing of the first study. When

the overlapping control samples were shared in the anal-

ysis (such that no records were excluded) and the robust

variance estimator was used, the type I error rates of the

association tests were below the nominal significance

level. When the overlapping control samples were split

between the two studies such that a portion of the controls

were excluded from the first study, the type I error rates

were inflated, especially when the number of controls

excluded was large.

All of the above simulation results pertain to the use of

individual participant data. We also assessed the perfor-

mance of the methods for meta-analysis of summary

results. According to Equation 7, the correlation coeffi-

cients (between the estimated genetic effects of the two
866 The American Journal of Human Genetics 85, 862–872, Decem
studies) for the eight scenarios shown in Tables 1–4 are

0.5, 0.333, 0.25, 0.2, 0.447, 0.293, 0.218, and 0.174. Under

b ¼ 0, the empirical correlation coefficients were found to

be identical to the theoretical values up to the third

decimal point. Under b ¼ 0.3, the empirical correlation

coefficients were estimated at 0.467, 0.307, 0.229, 0.182,

0.416, 0.269, 0.199, and 0.159, all of which are slightly

below the theoretical values. Under b¼�0.3, the empirical

correlation coefficients were 0.524, 0.358, 0.273, 0.220,

0.471, 0.316, 0.239, and 0.192, all of which are slightly

above the theoretical values.

The type I error rates and powers for meta-analysis of

summary results are shown in Tables 1–4 under the

heading ‘‘Summary Results.’’ For testing a common genetic

effect, the type I error rates and powers based on summary

results are nearly identical to those of individual partici-

pant data (see Table 1 and Table 2). For testing the equality

of two odds ratios, meta-analysis of summary results based

Table 5. Type I Error Rates (3104) of Association Tests at the
Nominal Significance Level of 10�4 When Different Proportions of
the Controls with Potential Genotyping Errors Are Excluded

No. of Controls Proportion Excluded MAF ¼ 0.05 MAF ¼ 0.1

96 0 0.81 0.90

1/2 1.26 1.13

1 2.84 1.89

192 0 0.81 0.92

1/2 2.39 1.77

1 13.2 6.18

384 0 0.74 0.81

1/2 7.99 4.34

1 145.0 44.1

MAF denotes minor allele frequency.
ber 11, 2009



on the robust variance estimator had slight inflation of

type I error and was slightly more powerful than meta-

analysis of individual participant data based on the robust

variance estimator because Equation 7 overestimates the

correlation coefficients when the odds ratios are greater

than 1 (see Table 3 and Table 4). Note that the two odds

ratios were set to ~1.35 under the null hypothesis of equal

odds ratios. Meta-analysis of summary results based on the

robust variance estimator had very accurate control of type

I error when the two odds ratios were set to 1 instead of

1.35 (data not shown).

The last set of simulation studies was designed to assess

the performance of meta-analysis of summary results

when principal components are included in the model to

adjust for population stratification. We simulated and

analyzed data in the same way as before, except that the

new model included a normally distributed covariate

whose mean was the genotype score and whose variance

was 1. We found that the actual correlations fluctuated

slightly around the theoretical values determined by Equa-

tion 7 (data not shown). As shown in Table 6, the proposed

method had good control of type I error even when the

covariate effects were unusually strong.

WTCCC Data

We considered GWAS data on rheumatoid arthritis (RA

[MIM 180300]) and type 1 diabetes (T1D [MIM 222100])

from the WTCCC study.10 RA and T1D are both autoim-

mune disorders and are known to share common loci.

The database contains 1860 subjects with RA, 1963 with

T1D, and 2938 common controls. For the meta-analysis,

we viewed the data as two case-control studies, one on

RA and one on T1D, with completely overlapping controls.

The WTCCC reported eight SNPs that are significantly

associated with RA, T1D, or both.10 For each of these eight

SNPs, we performed the trend test and estimated the odds

ratio under the additive model for both RA and T1D. The

results are shown in Table 7. The first three SNPs are
The American
strongly associated with both RA and T1D, although the

odds ratios appear to be quite different between RA and

T1D for the second and third SNPs. The fourth SNP is

more strongly associated with RA than with T1D. The

results for the fifth SNP are almost identical between RA

and T1D. The last three SNPs are significantly associated

with T1D, but not with RA. We performed meta-analysis

to formalize these statements.

To combine the results on RA and T1D, we fit model 1 in

which X ¼ (G, S)T, where G is the number of minor alleles

of each SNP and S indicates, by the values 1 versus 0,

whether the subject belongs to the RA case-control study

or the T1D case-control study; the regression parameter

associated with G is the common log odds ratio for RA

and T1D. Thus, this analysis yields an estimate of

a common odds ratio for RA and T1D and an overall trend

test for the association of the SNP with the two diseases.

Table 6. Type I Error Rates (3104) of Association Tests Based on
Equations 4, 5, and 7 at the Nominal Significance Level of 10�4 in
the Presence of Population Stratification

No. of Cases

Study 1 Study 2
No. of
Controls OR* ¼ 1.35 OR* ¼ 1.65 OR* ¼ 2.23

1000 1000 1000 0.85 0.79 0.73

1000 1000 2000 0.92 0.89 0.89

1000 1000 3000 0.96 0.97 0.96

1000 1000 4000 0.94 1.00 1.04

1500 500 1000 0.88 0.86 0.82

1500 500 2000 0.94 0.93 0.93

1500 500 3000 0.96 0.97 1.01

1500 500 4000 0.95 1.01 1.05

Population stratification is represented by a normal covariate that is correlated
with the genotype score of the test locus and whose odds ratio with the disease
is denoted by OR*. OR* is the increase in the odds of disease for every unit
increase of the covariate value.
Table 7. Estimates of Odds Ratios and p Values of Trend Tests for Rheumatoid Arthritis and Type 1 Diabetes in the WTCCC Data

RA T1D

Chr SNP Est SE p Value Est SE p Value

1p13 rs6679677 1.95 0.124 8.9 3 10�26 1.89 0.117 5.1 3 10�25

6(RA) rs6457617 0.44 0.020 5.5 3 10�72 0.71 0.031 2.3 3 10�15

6(T1D) rs9272346 0.72 0.032 4.7 3 10�14 0.27 0.015 9.1 3 10�122

7q32 rs11761231 0.81 0.036 2.4 3 10�6 0.91 0.039 2.8 3 10�2

10p15 rs2104286 0.80 0.039 7.1 3 10�6 0.81 0.038 1.1 3 10�5

12q13 rs11171739 0.99 0.042 8.6 3 10�1 1.33 0.055 1.3 3 10�11

12q24 rs17696736 1.13 0.048 3.5 3 10�3 1.39 0.058 3.4 3 10�15

16p13 rs12708716 0.97 0.043 4.5 3 10�1 0.79 0.035 7.4 3 10�8

The following abbreviations are used: RA, rheumatoid arthritis; T1D, type 1 diabetes; Est, estimate of odds ratio; SE, standard error estimate. p values shown are
p values of trend test.
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Table 8. Meta-Analysis of Individual Participant Data for Rheumatoid Arthritis and Type 1 Diabetes in the WTCCC Data

Common Odds Ratio Ratio of Odds Ratios

Robusta Naiveb Robusta Naiveb

Chr SNP Est SE p Valuec SE p Valuec Est SE p Valued SE p Valued

1p13 rs6679677 1.92 0.104 2.7 3 10�33 0.085 4.6 3 10�49 1.03 0.064 6.5 3 10�1 0.091 7.5 3 10�1

6(RA) rs6457617 0.56 0.021 5.3 3 10�55 0.017 2.0 3 10�76 0.62 0.030 4.5 3 10�22 0.039 5.6 3 10�14

6(T1D) rs9272346 0.47 0.019 6.5 3 10�82 0.016 3.3 3 10�109 2.61 0.154 6.8 3 10�60 0.185 6.6 3 10�42

7q32 rs1176123 0.86 0.031 3.6 3 10�5 0.026 1.1 3 10�6 0.89 0.043 1.7 3 10�2 0.055 6.3 3 10�2

10p15 rs2104286 0.81 0.032 8.5 3 10�8 0.027 3.4 3 10�10 0.99 0.053 8.6 3 10�1 0.067 8.9 3 10�1

12q13 rs11171739 1.15 0.040 6.5 3 10�5 0.034 2.4 3 10�6 0.75 0.035 3.6 3 10�10 0.044 1.0 3 10�6

12q24 rs17696736 1.26 0.044 7.7 3 10�11 0.037 1.5 3 10�14 0.81 0.038 9.0 3 10�6 0.049 5.5 3 10�4

16p13 rs12708716 0.87 0.032 2.1 3 10�4 0.027 1.3 3 10�5 1.23 0.060 3.0 3 10�5 0.077 1.1 3 10�3

Common odds ratio represents inference on a common odds ratio; ratio of odds ratios represents comparison of two odds ratios. The following abbreviations are
used: Est, parameter estimate; SE, standard error estimate.
a Robust variance estimator used.
b Naive variance estimator used.
c p value for testing no association.
d p value for testing equal odds ratios.
The results are shown in Table 8 under the heading

‘‘Common Odds Ratio.’’ There is strong evidence of associ-

ation for 5 of the 8 SNPs. Because of completely overlap-

ping controls, the naive variance estimator substantially

underestimates the true variation and the corresponding

p values grossly exaggerate the degrees of statistical signi-

ficance.

To compare the strengths of association between RA and

T1D, we fit model 1 in which X ¼ (G, S, G*S)T; the regres-

sion parameter associated with G*S is the difference of

the log odds ratios between RA and T1D. Thus, this anal-

ysis yields an estimate of the ratio of the odds ratios

between RA and T1D and the corresponding test for the

equality of the two odds ratios. The results are shown in

Table 8 under the heading ‘‘Ratio of Odds Ratios.’’ Based

on the robust variance estimator, there is strong evidence

that the effects of SNPs 2, 3, and 6 are different between

RA and T1D, as well as moderate evidence that the effects

of SNPs 7 and 8 are different between the two diseases. For

this analysis, the use of the naive variance estimator

greatly weakens the statistical evidence.

The results in Table 8 were obtained by sharing the

controls in the meta-analysis. Figure 1 contrasts this

approach with the approach of splitting the control

samples in testing the equality of the two odds ratios. For

the latter approach, we split the control samples equally

between RA and T1D with three different random

sequences. Splitting the control samples yields consider-

ably less extreme p values than sharing the control

samples. This phenomenon is consistent with the simula-

tion results of Table 2. For some of the SNPs, the p values

vary appreciably among the three random splits.

We also conducted meta-analysis of the summary results

of Table 7 (pretending no access to individual participant

data). According to Equation 7, the correlation between
868 The American Journal of Human Genetics 85, 862–872, Decemb
the genetic effects for RA and T1D is approximately

0.394. Given this correlation estimate, we used Equations

3–6 to perform the meta-analysis of summary results.

The findings are reported in Table 9. The estimates of the

common odds ratios and the corresponding standard error

estimates are extremely close to their counterparts in
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Figure 1. p Values for Testing Equality of Odds Ratios between
Rheumatoid Arthritis and Type 1 Diabetes in the WTCCC Data
When the Control Samples Are Shared or Split in the Analysis
The robust variance estimator is used when the control samples
are shared in the analysis; three different random sequences are
used to split the control samples. RA indicates rheumatoid
arthritis; T1D indicates type 1 diabetes.
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Table 9. Meta-Analysis of Summary Results for Rheumatoid Arthritis and Type 1 Diabetes in the WTCCC Data

Common Odds Ratio Ratio of Odds Ratios

Robusta Naiveb Robusta Naiveb

Chr SNP Est SE p Valuec Est SE p Valuec Est SE p Valued SE p Valued

1p13 rs6679677 1.92 0.100 1.1 3 10�35 1.92 0.085 4.5 3 10�49 1.03 0.071 6.8 3 10�1 0.091 7.5 3 10�1

6 (RA) rs6457617 0.57 0.021 7.2 3 10�52 0.57 0.018 2.3 3 10�73 0.62 0.030 4.8 3 10�22 0.039 5.6 3 10�14

6(T1D) rs9272346 0.52 0.021 2.1 3 10�57 0.49 0.017 4.2 3 10�94 2.61 0.145 5.3 3 10�67 0.185 6.6 3 10�42

7q32 rs1176123 0.86 0.031 4.5 3 10�5 0.86 0.026 1.2 3 10�6 0.89 0.042 1.7 3 10�2 0.055 6.3 3 10�2

10p15 rs2104286 0.81 0.032 1.1 3 10�7 0.81 0.027 3.4 3 10�10 0.99 0.052 8.6 3 10�1 0.067 8.9 3 10�1

12q13 rs11171739 1.15 0.040 6.2 3 10�5 1.15 0.034 2.8 3 10�6 0.75 0.035 3.5 3 10�10 0.044 1.0 3 10�6

12q24 rs17696736 1.26 0.044 7.4 3 10�11 1.26 0.038 1.9 3 10�14 0.81 0.038 9.1 3 10�6 0.049 5.5 3 10�4

16p13 rs12708716 0.87 0.032 2.4 3 10�4 0.87 0.027 1.4 3 10�5 1.23 0.060 2.6 3 10�5 0.077 1.1 3 10�3

Common odds ratio represents inference on a common odds ratio; ratio of odds ratios represents comparison of two odds ratios. The following abbreviations are
used: Est, parameter estimate; SE, standard error estimate.
a Robust variance estimator used.
b Naive variance estimator used.
c p value for testing no association.
d p value for testing equal odds ratios.
Table 8, except for the third SNP. The estimates of the ratios

of odds ratios are identical to their counterparts of Table 8;

the corresponding standard error estimates are very close

to their counterparts of Table 8, except for the first and

third SNPs.

Schizophrenia Data

Our work was motivated by the presence of overlapping

subjects in the Psychiatric GWAS Consortium.14 There

are currently 17 schizophrenia studies in the consortium,

with a total of 9387 cases, 12,301 controls, and 588 over-

lapping subjects. For this illustration, we considered two

schizophrenia studies, the GAIN schizophrenia study11

and the CATIE study,12 and focused on the European-

ancestry samples. There are 415 cases and 407 controls in

the CATIE study and 1396 cases and 1442 controls in the

GAIN study, with 199 controls appearing in both studies.

Although the overlapping controls account for only

~10% of the controls and 5% of all study subjects, the

analysis results may depend appreciably on how the

overlapping controls are handled.

We performed joint association tests for the CATIE and

GAIN studies by sharing the 199 overlapping controls. We

also considered four ways of splitting the overlapping

control samples: (1) assigning all 199 controls to CATIE,

(2) assigning all 199 controls to GAIN, (3) randomly assign-

ing 99 controls to GAIN and 100 to CATIE, or (4) randomly

assigning 29 controls to GAIN and 170 to CATIE. Option 4

yields equal case/control ratios between the two studies and

should be the most efficient. Options 1 and 4 differ only by

29 subjects. Option 2 deviates the most from option 4 and is

thus expected to yield the least significant results.

Figure 2 displays the p values of the trend tests for seven

SNPs in a 0.4 Mb region on chromosome 7. The p values for
The American
sharing the control samples are based on the meta-analysis

of individual participant data, but those of the meta-

analysis of summary results are very similar. Even with
3
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Figure 2. p Values of Joint Association Tests When the Overlap-
ping Control Samples Are Shared or Split between the CATIE and
GAIN Studies
‘‘Sharing (robust)’’ and ‘‘sharing (naive)’’ pertain to the use of the
robust and naive variance estimators when the overlapping
control samples are shared in the meta-analysis. Under option 1,
all 199 overlapping controls are assigned to CATIE; under option
2, all 199 overlapping controls are assigned to GAIN; under option
3, a total of 99 overlapping controls are randomly assigned to
GAIN and 100 to CATIE; under option 4, a total of 29 overlapping
controls are randomly assigned to GAIN and 170 to CATIE.
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5% overlapping subjects, failure to account for correlated

observations can cause considerable inflation of statistical

significance: the p values based on the naive variance

estimates are appreciably lower than those of the robust

variance estimates. There are some noticeable differences

between splitting control samples and sharing control

samples (with the use of the robust variance estimator).

As expected, the results for options 1 and 4 are very similar,

and option 2 tends to yield the least significant results.

Discussion

There is a growing interest in the meta-analysis of GWAS

data for the purposes of combining results from multiple

studies of the same disease or comparing results across

different disorders. It is common for the same subjects to

appear in multiple studies of the same disease or related

disorders. If subject overlap is ignored, the validity and

efficiency of meta-analysis can be severely compromised.

Specifically, there will be inflation of type I error in joint

association testing and reduction of power in cross-

disorder comparisons.

We have developed a very general framework to deal

with overlapping subjects in GWAS meta-analysis. Its val-

idity and efficiency have been clearly demonstrated with

simulated and empirical data. The proposed approach is

simple to implement and is computationally feasible for

large GWAS. The relevant software is available at our

website.

Our work covers both meta-analysis of individual partic-

ipant data and meta-analysis of summary results. When

there are no overlapping subjects, the two types of anal-

ysis have the same statistical efficiency.9 In the presence

of overlapping subjects, the two types of analysis will still

produce similar results, as shown in the Results section.

Given access to individual participant data, one can

account for the correlated observations of overlapping

subjects in a very accurate manner through Equation 2.

The correlation formula for meta-analytic summary results

given in Equation 7 is asymptotically exact when there are

no genetic or covariate effects and is a reasonable approx-

imation even in the presence of strong covariate effects

but may not be accurate when there are strong genetic

effects. Thus, joint association testing of genetic effects

based on this correlation formula is valid in the absence

of covariates and approximately valid in the presence of

covariate effects; however, the cross-disorder comparison

may not have correct type I error if the odds ratios are

equal across different disorders but are far away from 1.

Thus, we recommend the use of Equation 2 when

individual participant data are available and the use of

Equation 7 when only meta-analytic summary results are

available.

It is straightforward to perform meta-analysis of

summary results. The optimal weights given in Equation

4 require special calculations. The usual weights based on
870 The American Journal of Human Genetics 85, 862–872, Decem
inverse variances can be used instead. The efficiency gains

due to the use of the optimal weights depend on the

patterns of overlap among the studies. Regardless of the

choices of the weights, it is important to account for the

correlations of overlapping subjects through Equation 5

and Equation 7; otherwise, the validity of meta-analysis

would be compromised.

Although we have focused our attention on case-control

studies, the proposed approach can be applied to other

types of studies. For a different study design, the regression

model and the ‘‘likelihood’’ and related quantities will be

different. However, the robust variance estimator given in

Equation 2 is applicable to any parametric model as long

as Ui is defined as the contribution of the ith study subject

to the ‘‘score function.’’ For a quantitative trait in a cross-

sectional study satisfying the linear regression model

Yi ¼ aþ bTXi þ 3i,

where 3i is normal with mean 0 and variance s2, the ‘‘score

function’’ for q ¼ (a, b, s2) is

UðqÞ ¼

2
666666664

1

s2
Sn

i¼1

�
Yi � a� bTXi

�
1

s2
Sn

i¼1

�
Yi � a� bTXi

�
Xi

1

2s4
Sn

i¼1

�
Yi � a� bTXi

�2� n

2s2

3
777777775
:

If the overlap of subjects occurs completely at random,

then the analog of Equation 7 is

Corr
�
ĥk,ĥl

�
znkl=

ffiffiffiffiffiffiffiffiffi
nknl

p
, (Equation 8)

where nk and nl are the numbers of subjects in the kth and

lth studies, respectively, and nkl is the number of overlap-

ping subjects between the kth and lth studies. Unlike the

situation of case-control studies, Equation 8 is accurate

regardless of whether or not there are any genetic or cova-

riate effects. When data on quantitative traits are collected

from case-control rather than cross-sectional studies, the

above formulas are approximately correct if the case-

control status is included as a covariate in the linear

regression.15

For making inference on a common odds ratio, one can

achieve statistical efficiency that is comparable to that of

the proposed approach by splitting overlapping subjects

such that the case/control ratios are the same among all

studies. For comparing odds ratios among studies, however,

splitting overlapping subjects is always less efficient than

the proposed approach. As demonstrated in Figure 1 and

Figure 2, the results of meta-analysis may depend appre-

ciably on how overlapping subjects are split. In addition,

the splitting may need to be redone if new studies are added

or cross-disorder comparisons are to be made. Furthermore,

splitting control samples requires access to individual

participant data, which are often difficult to obtain, and

tends to induce biases in the presence of plate effects.
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Overlapping subjects may be genotyped multiple times

with the same or different GWAS platforms. Some of the

NIMH Gejman controls have been genotyped four times,

and the WTCCC controls have been genotyped at least

twice. For the proposed approach, it is implicitly assumed

that each study uses its own genotype calls. For the results

shown in Figure 2, we used the genotype values from the

CATIE study for the CATIE subjects and the genotype

values from the GAIN study for the GAIN subjects. This

strategy avoids the arbitrariness in deciding which set of

genotypes to use and reduces the biases caused by (differ-

ential) measurement errors in case-control comparisons,

especially if cases and controls were randomly assigned

to genotyping plates.

Appendix

Meta-Analysis of Individual Participant Data

We adopt the notation of the main text. Because the mean

of the estimating function U(q) is 0, the corresponding esti-

mator q̂ is consistent for q. By the multivariate central limit

theorem, n�1/2U(q) is asymptotically zero-mean normal

with covariance matrix

B ¼ limn�1

(Xn

i¼1

UiðqÞUiðqÞTþ
Xn

i¼1

Xn

j¼1

dijUiðqÞUjðqÞT
)

,

where the limit is taken as n tends to N. It then follows

from the Taylor series expansion that n1=2ðq̂� qÞ is

asymptotically zero-mean normal with covariance

matrix A�1B A�1, where A ¼ limn�1IðqÞ. It is easy to

show that limn�1
Pn

i¼1 UiðqÞUiðqÞT ¼ limn�1IðqÞ. Thus,

B ¼ limn�1 IðqÞ þDðqÞgf . Hence, the asymptotic covari-

ance matrix of n1=2ðq̂� qÞ can be consistently estimated

by nI�1ðq̂ÞfIðq̂Þ þDðq̂ÞgI�1ðq̂Þ.
Although the main text of this article was focused on

logistic regression models for case-control studies, the

above derivations are very general, and the results apply

to any phenotypes and any parametric models. The

specific expressions for the Ui(q)s and I(q) are model depen-

dent.

Meta-Analysis of Summary Results

The original data consist of (Yki, Xki) (i¼ 1, ., nk;k¼ 1, ., K),

where Yki and Xki are the disease status and the set of

explanatory variables on the ith subject of the kth study.

For the kth study, we fit the following logistic regression

model:

PrðYki ¼ 1 jXkiÞ ¼
eakþbT

k
Xki

1þ eakþbT
k
Xki

,

where ak and bk are the intercept and regression parame-

ters. Denote the collection of ak and bk by qk. The

maximum likelihood estimator of qk, denoted by q̂k, is

the root of the score function
The American
UkðqkÞ ¼
Xnk

i¼1

 
Yki �

eakþbT
k
Xki

1þ eakþbT
k
Xki

!
~Xki,

where ~X consists of 1 and X. By the maximum likelihood

theory, q̂k is approximately normal with mean qk and

covariance matrix Ik
�1(qk), where

IkðqkÞ ¼
Xnk

i¼1

eakþbT
k
Xki

ð1þ eakþbT
k
XkiÞ2

~Xki
~XT

ki:

By the Taylor series expansion, q̂k � qkzI�1
k ðqkÞUkðqkÞ. Thus,

Cov
�
q̂k,q̂l

�
zI�1

k ðqkÞCovfUkðqkÞ,UlðqlÞgI�1
l ðqlÞ:

It is easy to show that

CovfUkðqkÞ,UlðqlÞgz
Xnkl

i¼1

 
Yki �

eakþbT
k
Xki

1þ eakþbT
k
Xki

!

3

 
Yli �

ealþbT
l
Xli

1þ ealþbT
l
Xli

!
~Xki

~XT
li,

where nkl denotes the number of subjects who overlap

between the kth and lth studies. (Without loss of generality,

we arrange the data such that the first nkl records pertain to

the overlapping subjects.) Assume that the disease status is

independent of all explanatory variables such that bk ¼ 0

(k ¼ 1, ., K) and that any subject who appears in more

than one study has the same disease status and same values

of the explanatory variables across studies such that Yki¼Yli

and Xki ¼ Xli for the nkl overlapping subjects. Then

IkðqkÞ ¼
nke

ak

ð1þ eakÞ2
n�1

k

Xnk

i¼1

~Xki
~XT

ki;

therefore,

IkðqkÞz
nke

ak

ð1þ eakÞ2
H,

where H is the expectation of ~X~XT. By similar arguments,

CovfUkðqkÞ,UlðqlÞgz
nkl0eakþal þ nkl1

ð1þ eakÞð1þ ealÞH:

Thus,

Cov
�
q̂k,q̂l

�
z
�

nkl0 þ
nkl1

eakþal

ð1þ eakÞð1þ ealÞ
nknl

H�1:

It follows that the correlation between the same compo-

nents of q̂k and q̂l is�
nkl0

ffiffiffiffiffiffiffiffiffiffiffi
eakþal

p
þ nkl1ffiffiffiffiffiffiffiffiffiffiffi

eakþal

p

� ffiffiffiffiffiffiffiffiffi

nknl

p
:

Note that eakþal znk1nl1=ðnk0nl0Þ.
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Web Resources

The URLs for data presented herein are as follows:

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim/ (for T1D, T2D, RA, and schizophrenia)

Software implementing the new methods, http://www.bios.unc.

edu/~lin/software/MAOS/

References

1. Hindorff, L.A., Sethupathy, P., Junkins, H.A., Ramos, E.M.,

Mehta, J.P., Collins, F.S., and Manolio, T.A. (2009). Potential

etiologic and functional implications of genome-wide associa-

tion loci for human diseases and traits. Proc. Natl. Acad. Sci.

USA 106, 9362–9367.

2. Diabetes Genetics Initiative of Broad Institute of Harvard and

MIT, Lund University, and Novartis Institutes of BioMedical

Research. (2007). Genome-wide association analysis identifies

loci for type 2 diabetes and triglyceride levels. Science 316,

1331–1336.

3. Zeggini, E., Weedon, M.N., Lindgren, C.M., Frayling, T.M.,

Elliott, K.S., Lango, H., Timpson, N.J., Perry, J.R.B., Rayner,

N.W., Freathy, R.M., et al. (2007). Replication of genome-

wide association signals in UK samples reveals risk loci for

type 2 diabetes. Science 316, 1336–1341.

4. Scott, L.J., Mohlke, K.L., Bonnycastle, L.L., Willer, C.J., Li, Y.,

Duren, W.L., Erdos, M.R., Stringham, H.M., Chines, P.S., Jack-

son, A.U., et al. (2007). A genome-wide association study of

type 2 diabetes in Finns detects multiple susceptibility vari-

ants. Science 316, 1341–1345.

5. Zeggini, E., Scott, L.J., Saxena, R., Voight, B.F., Marchini, J.L.,

Hu, T., de Bakker, P.I.W., Abecasis, G.R., Almgren, P., Andersen,
872 The American Journal of Human Genetics 85, 862–872, Decemb
G., et al. (2008). Meta-analysis of genome-wide association

data and large-scale replication identifies additional suscepti-

bility loci for type 2 diabetes. Nat. Genet. 40, 638–645.

6. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira,

M.A.R., Bender, D., Maller, J., Sklar, P., de Bakker, P.I.W.,

Daly, M.J., and Sham, P.C. (2007). PLINK: a tool set for

whole-genome association and population-based linkage

analyses. Am. J. Hum. Genet. 81, 559–575.

7. Kavvoura1, F.K., and Ioannidis, J.P. (2008). Methods for meta-

analysis in genetic association studies: a review of their poten-

tial and pitfalls. Hum.Genet. 123, 1–14.

8. de Bakker, P.I., Ferreira, M.A., Jia, X., Neale, B.M., Raychaud-

huri, S., and Voight, B.F. (2008). Practical aspects of imputa-

tion-driven meta-analysis of genome-wide association studies.

Hum. Mol. Genet. 17(R2), R122–R128.

9. Lin, D.Y., and Zeng, D. (2009). Meta-analysis of genome-wide

association studies: no efficiency gain in using individual

participant data. Genet. Epidemiol. Published online October

21, 2009. 10.1002/gepi.20435.

10. The Wellcome Trust Case Control Consortium. (2007).

Genome-wide association study of 14,000 cases of seven

common diseases and 3,000 shared controls. Nature 447,

661–678.

11. Shi, J., Levinson, D.F., Duan, J., Sanders, A.R., Zheng, Y., Pe’er,

I., Dudbridge, F., Holmans, P.A., Whittemore, A.S.,

Mowry, B.J., et al. (2009). Common variants on chromosome

6p22.1 are associated with schizophrenia. Nature 460,

753–757.

12. Sullivan, P.F., Lin, D.Y., Tzeng, J.-Y., van den Oord, E., Wanger,

M., Wright, F.A., Zou, F., Lee, S., Perkins, D., Stroup, T.S., et al.

(2009). Genomewide association for schizophrenia in the

CATIE study. Mol. Psychiatry 13, 570–584.

13. Wei, L.J., Lin, D.Y., and Weissfeld, L. (1989). Regression

analysis of multivariate incomplete failure time data by

modeling marginal distributions. J. Am. Stat. Assoc. 84,

1065–1073.

14. The Psychiatric GWAS Consortium Steering Committee.

(2009). A framework for interpreting genome-wide associa-

tion studies of psychiatric disorders. Mol. Psychiatry 14,

10–17.

15. Lin, D.Y., and Zeng, D. (2009). Proper analysis of secondary

phenotype data in case-control association studies. Genet.

Epidemiol. 33, 256–265.
er 11, 2009

http://www.ncbi.nlm.nih.gov/Omim/
http://www.ncbi.nlm.nih.gov/Omim/
http://www.bios.unc.edu/~lin/software/MAOS/
http://www.bios.unc.edu/~lin/software/MAOS/

	Meta-Analysis of Genome-wide Association Studies with Overlapping Subjects
	Introduction
	Material and Methods
	Meta-Analysis of Individual Participant Data
	Meta-Analysis of Summary Results

	Results
	Simulation Studies
	WTCCC Data
	Schizophrenia Data

	Discussion
	Appendix
	Meta-Analysis of Individual Participant Data
	Meta-Analysis of Summary Results

	AppendixMeta-Analysis of Individual Participant DataWe adopt the notation of the main text. Because the mean of the estimating function U(theta) is 0,...
	Web Resources
	References


