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Studying Gene and Gene-Environment Effects of Uncommon
and Common Variants on Continuous Traits: A Marker-Set
Approach Using Gene-Trait Similarity Regression

Jung-Ying Tzeng,1,2,* Daowen Zhang,1 Monnat Pongpanich,2 Chris Smith,2 Mark I. McCarthy,3

Michèle M. Sale,4 Bradford B. Worrall,5 Fang-Chi Hsu,6 Duncan C. Thomas,7 and Patrick F. Sullivan8

Genomic association analyses of complex traits demand statistical tools that are capable of detecting small effects of common and rare

variants and modeling complex interaction effects and yet are computationally feasible. In this work, we introduce a similarity-based

regression method for assessing the main genetic and interaction effects of a group of markers on quantitative traits. The method

uses genetic similarity to aggregate information from multiple polymorphic sites and integrates adaptive weights that depend on allele

frequencies to accomodate common and uncommon variants. Collapsing information at the similarity level instead of the genotype

level avoids canceling signals that have the opposite etiological effects and is applicable to any class of genetic variants without the

need for dichotomizing the allele types. To assess gene-trait associations, we regress trait similarities for pairs of unrelated individuals

on their genetic similarities and assess association by using a score test whose limiting distribution is derived in this work. The proposed

regression framework allows for covariates, has the capacity to model both main and interaction effects, can be applied to a mixture of

different polymorphism types, and is computationally efficient. These features make it an ideal tool for evaluating associations between

phenotype and marker sets defined by linkage disequilibrium (LD) blocks, genes, or pathways in whole-genome analysis.
Introduction

Marker-set analysis refers to the joint evaluation of a group

of markers for genetic association. These markers might

be of various polymorphism types (e.g., a mixture of SNP,

insertion-deletion variants [INDEL], block substitutions,

copy-number variants, or inversion variants) but share

certain common genomic features, such as participating

in the same pathway, being in high linkage disequilibrium

(LD), or being located within the same gene or conserved

functional region. Marker-set analysis has drawn great

attention in recent genome-wide and sequence-based

association studies. It assesses the joint associationofpoten-

tially correlated and interacting loci. It amplifies the detect-

ability of the causal signalsby aggregating small effects from

multiple individual loci. Furthermore, because sequences

and functions of genes are highly consistent across popula-

tions and species, a marker-set analysis increases the inter-

pretability and replicability of the association findings. For

whole-genome scans, it also offers a naturalway of reducing

the total number of tests and hence improves power by

reducing the multiple-testing burden. For sequence-based

studies,marker-set analysis accumulates informationacross

multiple rare mutations and has a greatly enhanced power

to detect rare variants that are hard for researchers to

identify by traditional analysis methods.

A variety of methods are available for detecting marker-

set association, ranging from minimum p value or Fisher’s
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combined methods1,2 for single-marker tests to multi-

marker tests with a genotype- or haplotype-based scoring.

Many recent methods fall in between the two extremes.

These methods collapse information from all markers in

the set and achieve a better balance between information

and degrees of freedom. Depending on how the individual

marker information is combined, we can roughly classify

these approaches into four categories. Methods in the

first category use the weighted sum of genotypes across

markers, for example the LD-based weighting method,3

the weighted Fourier transform,4 and the PCA-based

methods.5,6 Recently, special versions of the weighted-

sum methods based on allele frequencies were proposed

to target rare variants.7–10 Methods of the second type

model the genetic similarity of pairs of individuals and

are also referred to as U-statistics approaches.11–19 Methods

of the third type are variance-component (VC) methods,

which treat individual genetic effects as random effects

and test for the corresponding VC to detect the global effect

of a gene. Methods of this type include the SNP random-

effects model,20,21 haplotype random-effects model,22 and

kernel-based methods.23–25 The fourth category includes

other approaches that do not fit into the above categories,

such as the c-alpha test,26 the group additive regression

model,27 Tukey’s model,28 and entropy-based methods.29

Although most marker-set methods have concentrated

on detecting genetic main effects, here we focus on

methods for studying gene-environment (G 3 E)
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interactions. Identifying genetic variants with heteroge-

neous effects under different environmental exposures

is crucial for understanding individualized medicine,

studying pharmacogenetics, characterizing underlying

biological mechanisms, and uncovering unexplained

heritability.30,31 Marker-set analysis provides an ideal

framework for the study of G 3 E interactions. The marker

set, either defined by genes, pathways, or functions,

provides a biologically sensible unit for the G component,

and the loci in a set can be assessed jointly for whether

their effects are modified under different environmental

exposures. In addition, the potential power gain brought

by the marker-set analysis—either through aggregating

genetic signals or by reducing multiple-testing penalty—

can alleviate the data-hungry nature of detecting G 3 E

interactions. Typically, a G 3 E test would require sample

sizes at least four times larger than a main effect test for

detecting an effect of comparable magnitude.30–33 Further-

more, many G3 E studies are based on conceptual models

for candidate pathways, in which a set of genes are selected

and studied together.31,34 Marker-set analysis offers a suit-

able tool for the evaluation of the overall effect of the postu-

lated pathways when assessing G 3 E interactions.

The marker-set G 3 E method we present focuses on

quantitative traits and uses pairwise genetic similarity as

a tool to aggregate marker information (i.e., the second

category in the above method categorization). Our

approach differs from those in the literature on gene/

pathway level analysis in the following aspects. First, we

introduce a framework for incorporating interaction effects

in similarity-based methods. To be useful for G 3 E studies

with either confirmatory or exploratory aims, we develop

a series of tests to suit different purposes, including a test

for detecting G 3 E interactions, a test for detecting

marginal main effects, and a joint test for detecting the

overall association induced either by genetic main effects

or by G 3 E interactions. The joint test serves as a good

tool when little is known a priori about the genetic hetero-

geneity across exposure strata and provides power across

a wide range of the unknown underlying true structures.

Second, the proposed method can collapse information

from amixture of different types of variants and is designed

to detect common and uncommon variants. Both are desir-

able features when more classes of DNA variants are avail-

able. Finally, we illustrate how similarity-based collapsing

methods can be equivalent to VC methods (i.e., category

3 in the method categorization), which are found to have

better main-effect performance than several other marker-

set approaches.24,35–37 Through simulation, we show the

validity of the test and investigate the power of the pro-

posed approach under a wide range of scenarios. We illus-

trate the utility of the proposed method by using the

samples from the Vitamin Intervention for Stroke Preven-

tion (VISP) trial. In this study, candidate genes across the

genome were selected for the evaluation of the gene and

gene-age interaction effects on the change in fasting homo-

cysteine (Hcy) level following a 2 hr methionine load test.
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Material and Methods

Gene-Trait Similarity Regression for G

and G 3 E Effects
We use the following notations. For individual i ði ¼ 1; 2;.;nÞ; let
Yi be the continuous trait, Xi be the K31 covariate vector

excluding the intercept term and standardized to mean ¼ 0 and

variance ¼ 1, and Gm;i be the allele-count vector of marker m for

person i; with the length equal to the number of distinct alleles

at marker m (denoted by [m), m ¼ 1;2;/;M. For example,

Gm;i ¼ ½2;0� if person i has genotype 11 at SNP m and ¼ ½1;1� if
person i has genotype 10. To fix the idea, we consider K ¼ 1, but

the method described here also applies to K > 1:

For each pair of individuals i and j, we measure the trait simi-

larity Zij and genetic similarity Sij of the targeted marker set. We

then regress the trait similarity on the genetic similarity and

detect gene-trait association by testing for the significance of rele-

vant regression coefficients. The trait similarity Zij is quantified

through trait covariance by taking the product of the trait resid-

uals of subjects i and j. Let mi be the subject-specific mean of trait

value adjusted for the covariate information; then we set

Zij ¼ ðYi � miÞðYj � mjÞ; where mi ¼ g0 þXig and ðg0;gÞ is the

covariate effects including the intercept. The genetic similarity

Sij is measured by the average of the weighted allele matching

score (weighted matching score for short) between subjects i

and j across the M markers. It takes the form of Sij ¼
1=M3

PM
m¼1G

T
m;iWmGm;j, in which Wm is an [m3[m matrix

that specifies the weighting scheme. As an illustration,

consider a SNP and the weight Wm ¼ I232. Then SAA;AA ¼ 4,

SAA;Aa ¼ 2, and SAA;aa ¼ 0. When quantifying genetic similarity,

one can use weights based on allele frequencies, the degree of

evolutionary conservation, or the functionality of the variations

to better target genetic variants of certain features (e.g., rare, func-

tional).15,25,38 For example, to upweight similarities contributed

by rare variants, we define the frequency of allele a at marker m

as qa;m and set Wm ¼ diagf1=qa;mg or diagf1= ffiffiffiffiffiffiffiffiffi
qa;m

p g to upweight

the similarity in rare alleles.23,24

The proposed gene-trait similarity regression model has the

following form:

E
�
Zijj X;H

� ¼ b3 Sij þ d3 Sij 3XiXj; isj: (Equation 1)

Because baseline and covariate effects have been adjusted for

Zij; the regression has a zero intercept and does not have the cova-

riate term XiXj. This contention will become more obvious from

the viewpoint of variance components in the following para-

graph. Equation 1 incorporates information about genetic main

effects and gene-environment interactions and hence allows the

possibility of a genetic effect to be modified by an environmental

exposure. Under Equation 1, one can evaluate the overall genetic

association by performing a joint test of genetic main effects and

gene-environment interactions for H0 : b ¼ d ¼ 0. To assess gene-

environment interactions only, one can perform a G 3 E test by

examining H0 : d ¼ 0. Finally, one can evaluate the marginal

main effects by examining the main effect term and testing for

H0 : b ¼ 0 under the constraint of d ¼ 0. We refer to this test as

the G test. The G test can be used as a subsequent test when a

G 3 E test fails to reject H0, or it can be used as an alternative

way to detect the overall genetic association. Because interactive

factors can often exhibit a marginal effect even when the interac-

tion terms are not modeled,39,40 the G test is often used to perform

genome screening in common practice. Compared to the joint
2, 2011



test, the G test uses fewer degrees of freedom and hence is more

powerful when there are no gene-environment interactions or

when the interaction effects are big, but it might be less powerful

when the genetic effect is restricted to the exposure group.41

The test statistics for G 3 E, G, and joint tests can be derived

through the equivalence between the similarity regression models

and the haplotype random-effects model.17 Consider a working

haplotype random-effects model:

Yi ¼ g0 þXigþ HT
i bþXiH

T
i lþ ei; (Equation 2)

where ei � Nð0; sÞ,Hi is the L31 haplotype vector, L is the number

of distinct haplotypes observed in the population, bL 3 1 � N

ð0; tRÞ;lL31 � Nð0;fRÞ; and R is an L3L matrix in which the

ðh; kÞ th entry is equal to the similarity between haplotypes h

and k, quantified by the weighted matching score. Under the

working mixed model (Equation 2), the trait covariance between

individuals i and j ðisjÞ is

cov
�
Yi;Yjj X;H

� ¼ HT
i covðbÞHj þXiH

T
i covðlÞHjXj

¼ t3HT
i RHj þ f3XiXj 3HT

i RHj

¼ t3 Sij þ f3XiXj 3 Sij

(Equation 3)

The last line follows from the fact that HT
i RHj ¼ 1=M3PM

m¼1G
T
m;iWmGm;j

17. Comparing Equations 1 and 3, we have

b ¼ t and d ¼ f: That is, the regression coefficients in the simi-

larity regression are the variance components in the mixed model

(Equation 2). Therefore, following similar derivations in Tzeng

and Zhang22 and Zhang and Lin,42 we obtain the score test statis-

tics for G 3 E test, G test, and the joint test as follows:

TG3E ¼ YTP1DSDP1Yj f¼0;t¼bt ;s¼bs ;
TG ¼ YTP0SP0Yj f¼0;t¼0;s¼ ~s ;

and

Tjoint ¼ YTP0ðSþDSDÞP0Yj f¼0;t¼0;s¼ ~s :

In the above equations, YT
n31 ¼ ðY1;/;YnÞ, Dn3n ¼ diagfXig;

and S ¼ fSijg where Sij ¼ HT
i RHj; matrix Pt ¼ V�1

t �
V�1

t XðXTV�1
t XÞ�1XTV�1

t ;t ¼ 0;1; where V0 ¼ sI;V1 ¼ tSþ sI:

The quantities ðbt; bsÞ are the REML estimates for ðt; sÞ obtained

under H0 : f ¼ 0, and ~s is the REML estimate for s under

H0 : f ¼ t ¼ 0. These estimates are given in Appendix A. As shown

in Appendix B, these test statistics follow a weighted c2 distribu-

tion, and the p values can be calculated with the three-moment

approximation.43,44

There are a few remarks regarding the similarity-based marker-

set methods. The similarity regression aggregates marker informa-

tion through a sum of genotype similarity across markers instead

of a sum of genotypes. Compared to genotype sums, aggregating

information through similarity can prevent signals of opposite

directions from being canceled. In addition, because Gm;i takes

integer or dosage counts and can be of any length, this approach

can work with typed and imputed genotype calls and is applicable

to a mixture of different types of variants without having to

dichotomize the variants.
Simulation Studies
We performed simulations based on HapMap 3 data to assess the

performance of the proposed tests. We obtained a haplotype

population consisting of 234 phased haplotypes from chromo-

some 21 of the CEU (Utah residents with ancestry from northern
The Americ
and western Europe) samples in HapMap 3. To obtain a variety of

risk allele frequencies and LD patterns of a marker set, we defined

amarker set as a 10 SNP region, and used a nonoverlapping sliding

window on chromosome 21 to obtain 1734 regions. Given

a marker-set region, we generated haplotypes for 500 individuals

by randomly sampling 500 pairs of haplotypes with replacement

from the 234 haplotypes under a Hardy-Weinberg equilibrium

assumption. Because the rarest allele frequency we can obtain

is 1=234z0:004, we used a relatively small sample size (n ¼ 500)

to assure genetic heterogeneity attributable to rare mutations.

Given a 10 SNP region, the 5th and the 10th SNPs were set to be

the risk loci, and their genotypes for individual i are denoted by G1i

and G2i˛f0;1;2g; respectively. We generatedXi � Nð0;1Þ: Then on

the basis of the genetic and covariate information of individual i,

the trait value Yi was sampled from a normal distribution with

mean ¼ g0 þ g1Xi þ gG1
G1i þ gG2

G2i þ gGE1
XiG1i þ gGE2

XiG2i and

variance ¼ v2; where g0 and g1 were set to be 1, and v2 was deter-

mined so that the heritability was around 0.1 to 0.2. For type I

error rate analysis, we set ðgG1
;gG2

;gGE1
;gGE2 Þ ¼ ð0;0;0;0Þ for all

three tests and also ð0:2;0:2;0;0Þ forG3 E test. For power analysis,

we set ðgG1
;gG2

;gGE1
;gGE2

Þ ¼ ð0:25;0:25;0:3;0:3Þ: These values

were chosen so that the power of the joint tests is not too close

to 1, whereas the power of G3E and G tests is not too close to

the nominal level of 0.0005.

Each region was analyzed with the proposed similarity regres-

sion with three weighting schemes considered in the litera-

ture:23,24 (1)Wm ¼ diagf1=qmg(referred to as SIM1), (2) Wm ¼
diagf1= ffiffiffiffiffiffi

qm
p g(referred to as SIM2), and (3) Wm ¼ diagf1g(referred

to as SIM0). The results were compared to two benchmark

methods, the single-SNP minimum-p-value method (referred to

as SNP) and the multi-SNP haplotype-based method (referred to

as HAP). In all analyses, the two risk loci were excluded, and the

phase information was removed. For the minimum p value

method, we used the minimum of the p values from the G 3 E,

G and joint tests for the eight SNPs, and the significance threshold

was determined with the multiple-testing correction method of

Moskvina and Schmidt.45 This method estimates the effective

number of independent tests for correlated SNPs at a given overall

type I error rate and calculates the significance level for the indi-

vidual tests accordingly. For the haplotype-based analysis, we

used the widely used R package haplo.stats to carry out standard

haplotype regression analysis. Specifically, we used haplo.glm46

for the G 3 E test and haplo.score47 for the G test. We did not

perform the joint test at the haplotype level because it is not

supported by this program. Haplotypes with frequencies less

than the program default threshold (i.e., 0.01) were pooled into

the baseline haplotype.
Results

Simulation Studies

To evaluate type I error rates, we randomly selected six of

1734 regions on chromosome 21 to represent six different

scenarios: two levels of disease allele frequencies (q ¼ 0.1

and 0.3) combined with three levels of LD pattern (high,

medium, and low). The LD pattern was summarized

with the average of the 16 R2 values, where each value

is the LD between an observed marker (eight in total)

and a risk locus (two in total). A larger LD value reflects

stronger correlation between the observed markers and
an Journal of Human Genetics 89, 277–288, August 12, 2011 279
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Figure 1. Type I Error Rates of the
Proposed Methods
The type I error rates are shown on the
scale of 102, 103, and 104 for nominal
level a ¼ 0:05, 0.005, and 0.0005, respec-
tively. The regions are randomly selected
from chromosome 21 to represent six
different scenarios listed on the x axis:
two levels of disease allele frequencies
(q ¼ 0:1 and 0.3) combined with three
levels of LD pattern (high, medium, and
low). A high-LD value reflects stronger
correlation between the observed markers
and the two unobserved risk loci. The
panel titles indicate the value of
ðgG1;gG2;gGE1;gGE2Þ, that is the effect
sizes of the main genetic effects and gene-
environment interactions at the two risk
loci used in generating simulated data.
Each of the type I error rates is calculated
on the basis of 50,000 replications
for ðgG1

;gG2
;gGE1

;gGE2
Þ ¼ ð0;0;0;0Þ and

20,000 replications for ð0:2;0:2;0;0Þ. The
type I error rates for HAP-G at a ¼ 0:0005
are given below as some are beyond the
plotting range: (0.00454, 0.00266, 0.0023,
0.00158, 0.00794, and 0.00072).
the unobserved risk loci, hence the value reflects the

informativeness of the observed markers for the risk

loci. Each of the type I error rates was calculated on the

basis of 50,000 replications for ðgG1
;gG2

;gGE1 ;gGE2Þ ¼
ð0;0; 0;0Þ for all tests and 20,000 replications for

ð0:2;0:2;0;0Þ for G 3 E test. The results (Figure 1) indicate

that the type I error rates were around the nominal

levels considered (i.e., a ¼ 0:05, 0:005, and 0:0005) for

all methods in most scenarios. The exceptions tend to

occur in the haplotype G 3 E tests, where the type I errors

can be inflated because of the presence of rare haplotypes.

Inflation at larger a levels can often be eliminated by

using a slightly higher threshold (e.g., 0.02, as opposed

to the default value of 0.01) that pools uncommon haplo-

types into the baseline group. To avoid any potential

impact that modifying the default threshold might

induce, we still used the threshold value of 0.01 in our

power analysis.

The power was evaluated for each of the 1734 regions on

the basis of 100 replications at the nominal level of 0.0005.

The results are shown in Figure 2 (G 3 E test), Figure 3 (G

test), and Figure 4 (joint test). The 1734 regions were

grouped into 12 categories, combinations of the four

scenarios of allele frequencies and the three LD patterns.

The risk allele frequencies from rare to common are catego-

rized as follows: (A) both allele frequencies are less than

0.05, (B) sums of allele frequencies that are less than 0.3

but excluding those in (A), (C) sums of allele frequencies

that are between 0.3 and 0.6, and (D) sums of allele

frequencies that are greater than 0.6. The clustering of

LD patterns is based on the following thresholds: an

average R2 > 0:6 for high, an average R2˛ð0:25;0:6Þ for

medium, and an average R2 < 0:25 for low.
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A similar pattern was observed across Figures 2–4, hence

we concentrate on explaining Figure 2. In regions that

exhibit low LD (LD-L), all three methods lacked power and

had roughly equal performance. The exception is in (A),

where the SIM1 method performed worse than the other

two. The situation that all three methods had similarly

low power is not surprising because LD-L represents regions

that contained markers with little information about the

two risk loci. The lone exception in LD-L (A) can be ex-

plained by the fact that the SIM1 method is best applied

in scenarios where a large number of markers have at least

medium-level LD with the risk loci, but in LD-L (A), such a

scenario only occurred in 13% of the regions. On the other

hand, in 60% of the regions, the majority of the markers

had no LD with the risk loci, but either one single marker

was in perfect LD with one of the risk loci, or two markers

were in very high LD with each of the risk loci. The former

cases tend to favor the SNP methods, whereas the latter

tend to favor the HAP methods (and the remaining 27%

were regions where all markers had extremely low LD with

the risk loci). In the scenarios of LD-L with (B), (C), and

(D), we did not observe such a large proportion of extreme

cases, and this resulted in a more comparable performance

of the three methods. Finally, compared to regions with

LD-L, in the regions with medium LD (LD-M), we observed

a uniform increase of power in all three methods, and SIM1

has a slightly greater power. The power gain was more

pronounced for high-LD regions (LD-H), where SIM1

showed more power than the other two methods.

To understand the impact of different weighting

schemes in the similarity regression, we repeated the

same analysis with SIM1, SIM2, and SIM0 (Figure 5).

Because the overall patterns were similar across different
2, 2011
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Figure 2. Boxplot of Power of G 3 E Test from the 1734 Regions on Chromosome 21
The3 sign indicates the average power. The power at a region is calculated on the basis of 100 replications at a nominal level of 0.0005.
The results are grouped into 12 categories on the basis of frequencies of the risk alleles and LD patterns. The risk allele frequencies from
rare to common are categorized as (A) both allele frequencies < 0:05; (B) sums of allele frequencies < 0:3 but excluding (A); (C) sums of
allele frequencies between 0.3 and 0.6; and (D) sums of allele frequencies > 0:6. The clustering of LD patterns is done according to the
following thresholds: average R2 > 0:6 for high (LD-H), average R2˛ð0:25;0:6Þ for medium (LD-M), and average R2 < 0:25 for low (LD-L).
tests, we present the results from the G 3 E and G tests.

Figure 5 presents the box plots of power for the same

regions as shown previously, except that panels (C) and

(D) in Figures 2–4 were grouped together to represent

common-variant scenarios. We also marked the corre-

sponding average power of SNP (solid line) and HAP

(dotted line) for comparison. We observed the following

features: (1) SIM0 and SIM2 had very similar power in

almost all situations; (2) when risk alleles are common

(i.e., [C] and [F]), SIM2 and SIM0 had similar or slightly

better power than SIM1, although the difference was not

very obvious; and (3) when the risk alleles are uncommon

or rare, SIM1 started to gain some traction in improving

power. The power improvement became more substantial

for rarer alleles. For example, in situations with a moderate

LD level, SIM1 had higher power than SNP and HAP,

whereas SIM2 and SIM0 did not.

Application to Real Data

We applied the similarity regression on samples collected

from the VISP trial. VISP was a multicenter, double-blind,

randomized, controlled clinical trial that aimed to study

the effect of vitamins on preventing recurrent stroke. The

VISP trial was conducted under institutional review board

approval at the Wake Forest University School of Medicine

and at each of the clinic sites and adhered to the tenets of
The Americ
the Declaration of Helsinki. Written informed consent was

obtained from all patients participating in the study. The

trial enrolled patients who were 35 or older with a nondis-

abling cerebral infarction [MIM 601367] within 120 days

of randomization and Hcy levels in the top quartile for

the U.S. population. Subjects were randomly assigned to

receive daily doses of either a high-dose formulation (con-

taining 25 mg vitamin B6, 0.4 mg vitamin B12, and 2.5 mg

folic acid) or a low-dose formulation (containing 200 mg

vitamin B6, 6 mg vitamin B12, and 20 mg folic acid). The

patients were followed up for a maximum of 2 years, and

the average follow-up time was 1.7 years. About 2100 of

the VISP participants provided DNA samples, and geno-

type information was collected from candidate genes

selected across the genome that are involved in homocys-

teine metabolism, stroke risk, and atherosclerosis [MIM

209010]. After quality control, the dataset consists of

1944 subjects and genotypes of 1393 SNPs collected from

215 candidate genes. More details on the VISP trial and

VISP genetic study can be found in Toole et al.48 and Hsu

et al.,49 respectively.

Our analysis here focused on the genetic influence on

the Hcy level obtained from a 2 hr methionine load test

measured at baseline. It has been suggested that Hcy level

can be used to predict risk of recurrent stroke and symp-

tomatic coronary heart disease, and genetic variations
an Journal of Human Genetics 89, 277–288, August 12, 2011 281
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Figure 3. Boxplot of Power of G Test from the 1734 Regions on Chromosome 21
The 3 sign indicates the average power. The power at a region is calculated on the basis of 100 replications at a nominal level 0.0005.
The results are grouped into 12 categories on the basis of frequencies of the risk alleles and LD patterns. The risk allele frequencies from
rare to common are categorized as (A) both allele frequencies < 0:05; (B) sums of allele frequencies < 0:3 but excluding (A); (C) sums of
allele frequencies between 0.3 and 0.6; and (D) sums of allele frequencies > 0:6. The clustering of LD patterns is done according to the
following thresholds: average R2 > 0:6 for high (LD-H), average R2˛ð0:25;0:6Þ for medium (LD-M), and average R2 < 0:25 for low (LD-L).
might be attributed to mild to moderate hyperhomocysti-

nemia [MIM 603174]. Given that the Hcy level tends to

increase with age, we also investigated the potential

gene-age interaction effects on Hcy. We conducted gene-

based analyses; we used the proposed SIM1 method to

assess the significant level of each gene and compared it

to the available benchmark, SNP, and/or HAP methods.

As in the original study,49 we adjusted for age, sex, and

race in each analysis. The Bonferroni threshold for p value

is 0:05=215 ¼ 2:33310�4:

Wefirst used the joint test toperformagene-based scan to

evaluate the gene and gene-age effects on the change in

postmethionine load Hcy level (i.e., postmethionine load

test Hcy � baseline fasting Hcy). If a gene is rejected by

a joint test, the G 3 E and G tests can be used to further

refine the sources of identified signals. The joint test is a

suitable screening tool for scenarios in which the under-

lying gene-age interaction mechanism is little known32,41

because it assesses the genetic main effect and gene-age

interactions simultaneously. The p values of the testing

results for each gene (sorted by gene names) are shown in

Figure 6. For joint tests, one gene was found to be

significant (CBS [MIM 613381]), and both SIM1 and SNP

tests yield significant p values. The p value of the SIM1 joint

is 2:46310�5, and the follow-up analysis reveals that the

signal is caused by the genetic main effect instead of gene-
282 The American Journal of Human Genetics 89, 277–288, August 1
age interactions: the p value of SIM G 3 E is 0:614, and

the p value of SIM G is 1:99310�6. The SNP joint test has

the adjusted minimum p value (adjusted for the 10 typed

SNPs inCBS) of 2:06310�5. The adjustedminimump value

is obtained by 1� ð1� raw p valueÞke f f where ke f f ¼ 7:59

is the effective number of independent tests estimatedwith

the method of Moskvina and Schmidt45 after accounting

for the LD in CBS. The adjusted minimum p value for the

SNP G 3 E test is 0.700, and for SNP G test it is

9:42310�6. Finally, the HAP G 3 E test yielded a p value

of 0:362, and HAP G test yielded a significant p value of

1:02310�5. Variants inCBShavepreviously beenassociated

with postmethionine load Hcy levels and change in Hcy

levels.49–52 A common 68 bp insertion at the intron

7-exon 8 boundary of CBS and the 31 bp variable number

of tandem repeats (VNTR) might be genetic determinants

of postmethionine load Hcy levels. Because postmethio-

nine load Hcy levels are found to have an increased risk

for cardiovascular disease, CBS could be also considered

a risk factor for cardiovascular disease.
Discussion

Association analyses at the gene, pathway, and exon

levels (here by marker-set analysis) hold great promise in
2, 2011
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Figure 4. Boxplot of Power of Joint Test from the 1734 Regions on Chromosome 21
The3 sign indicates the average power. The power at a region is calculated on the basis of 100 replications at a nominal level 0.0005. The
results are grouped into 12 categories on the basis of frequencies of the risk alleles and LD patterns. The risk allele frequencies from rare to
common are categorized as (A) both allele frequencies < 0:05; (B) sums of allele frequencies < 0:3 but excluding (A); (C) sums of allele
frequencies between 0.3 and 0.6; and (D) sums of allele frequencies > 0:6. The clustering of LD patterns is done according to the
following thresholds: average R2 > 0:6 for high (LD-H), average R2˛ð0:25;0:6Þ for medium (LD-M), and average R2 < 0:25 for low
(LD-L).
evaluating modest etiological effects of genes with data

from genome-wide association studies (GWAS) or next-

generation sequencing. However, currently available

methods tend to target either rare or common variants

but not both, assume same-direction effects for loci within

a marker set, use a testing framework that cannot accom-

modate covariates, or do not have the capacity to assess

interaction effects. In this article, we propose a flexible,

powerful and computationally efficient method to con-

duct marker-set analysis for assessing gene and gene-

environment interactions on quantitative traits. The pro-

posed method is constructed via a similarity regression

framework under which we regress trait similarity on

genetic similarity. The framework incorporates interaction

effects, can adjust for covariates, and is applicable to both

observed and imputed dosage genotypes. We develop a

series of statistical tests that can be used for genetic

marginal main effects, G 3 E interactions, or the joint

effect of the two. We demonstrated that a similarity regres-

sion is equivalent to a haplotype random-effects model.

The equivalence enabled us to analytically derive the

asymptotic distributions of the test statistics and provide

a permutation-free procedure to assess significance. The
The Americ
software implementing the proposed methods is available

at the authors’ website (see Web Resources).

The proposed method uses genetic similarity to aggre-

gate information across markers and integrates adaptive

weights dependent on allele frequencies to accommodate

common and uncommon variants. Collapsing informa-

tion at the similarity level instead of the genotype level

avoids canceling signals with opposite etiological effects

and is applicable to any class of genetic variants without

having to dichotomize the allele types. As demonstrated

in the simulation, incorporating frequency weights gives

the method satisfactory power for detecting both common

and uncommon variants. The simulation results also

reveal that its performance is sensitive to the signal-

to-noise ratio (e.g., LD) among all loci included in the

marker-set analysis. The higher the ratio is, the greater

the power gain for the proposed methods. As discussed

in the next paragraph, it is possible to increase the

signal-to-noise ratio to maximize the chance of power

gain, such as by using functional, biological or LD informa-

tion to downweight the contribution from noise markers.

In practice, the underlying LD levels are not known and

will vary from regions to regions, it is less likely to choose
an Journal of Human Genetics 89, 277–288, August 12, 2011 283
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Figure 5. Boxplot of Power of G 3 E Test and G Test with Different Weights—SIM1, SIM2, and SIM0—from the 1734 Regions on
Chromosome 21
The 3 sign indicates the average power of the method shown on the x axis. The solid and dotted lines indicate the average power of
SNP test and HAP test, respectively. The power at a region is calculated on the basis of 100 replications at a nominal level 0.0005.
The results are grouped into nine categories on the basis of frequencies of the risk alleles and LD patterns. The risk allele frequencies
from rare to common are categorized: (A and D) both allele frequencies < 0:05; (B and E) sums of allele frequencies < 0:3 but excluding
(A) and (D); (C and F) sums of allele frequencies > 0:3. The clustering of LD patterns is done according to the following thresholds:
average R2 > 0:6 for high (LD-H), average R2˛ð0:25;0:6Þ for medium (LD-M), and average R2 < 0:25 for low (LD-L).
one best performing method in advance. In addition, in

GWAS, the low-LD scenario would occur less frequently

by design, and in sequencing studies the number of risk

loci in a set should be higher than what we considered in

the simulation. Given these considerations, the proposed

method can serve as a sensible and robust tool for

evaluating association of complex traits in whole-genome

marker-set analyses.

The inclusion of nonfunctional loci (i.e., nonrisk

markers that are not in LD with the risk loci) is a major

factor influencing the performance of all marker-set

approaches. Intelligently incorporating LD information

and biological knowledge into the collapsing process,

and downweighting the contribution of nonfunctional

markers will be a useful solution. In our framework, bio-

logical and functional information, as pioneered and

comprehensively reviewed in Price et al.10 and Schaid38

can be naturally incorporated through the weight matrix,

Wm: One unique feature of our weighting framework is

that it allows functional weights at the allele-specific

level (as opposed to locus-specific level), such as the
284 The American Journal of Human Genetics 89, 277–288, August 1
impact of a specific mutation sequence on protein func-

tions, structures, or stability. We are exploring mecha-

nisms to include genomic knowledge on the basis of

functionality, biological pathways, and system biological

networks.

One key requirement for the proposed method to have

power for both common and uncommon variants is that

the similarity level be weighted by allele frequency at

order k (i.e., q�k). Although the principle is to upweight

similarities that are contributed by rare variants, there

are no clear rules for what the specific form of the weights

should be as a function of the allele frequencies. Kwee

et al.23 considered both k ¼ 1 and k ¼ 1=2 when calcu-

lating the IBS kernel and concluded that the former might

be too strong and the latter is more suitable in their

setting. Wu et al.24 therefore used k ¼ 1=2 in their work.

When aggregating information of multiple loci through

weighted genotype sum, Madsen and Browning8 consid-

ered their weights in the order of k ¼ 1=2 from the bino-

mial standard deviation (SD) viewpoint. Here, we evalu-

ated these different choices of k under our framework
2, 2011
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Figure 6. p Values with Negative Log 10 Transformation for the VISP Trial Analysis
The x axis shows the gene IDs sorted by the alphabetic order of the gene names, and gene ID 39 is CBS. The red line indicates results
for SIM1, þ for SNP method, and 3 for HAP method. The results for the SNP methods are based on the adjusted minimum p values
that adjust for the multiple SNPs in a gene. The adjusted minimum p value is obtained by 1� ð1� raw p valueÞkeff , where keff is the
effective number of independent tests estimated with the method of Moskvina and Schmidt45 after accounting the LD among SNPs
in a gene. A few genes are not plotted on the graph for the HAP methods because of convergence failure at these locations. This failure
is mostly attributed to excessive number of SNPs in the gene.
(i.e., SIM1 ½k ¼ 1�; SIM2 ½k ¼ 1=2�, and SIM0 ½k ¼ 0�:). We

found that SIM2 might be too mild and tends to yield

similar results as the unweighted SIM0. One main differ-

ence between our weighting framework and others is

that we assign weights for every allele, whereas others

only assign weights for minor alleles. To illustrate the

impact of the difference, consider the similarity score

between a heterozygous pair. Our weights yield a score

of q
�1=2
minor þ q

�1=2
major, whereas those weights placed only on

minor alleles yield a bigger score of q
�1=2
minor32 and give

a stronger weighting effect.

Simulation results also suggest that larger values of k can

greatly boost power for detecting rare variants, but it also

risks losing power when the risk variant is common. We

focused on SIM1 on the basis of its superior power for

rare variants and comparable power for common variants.

It is possible that the optimal weights would lie some-

where between k ¼ 1 and k ¼ 1=2, and we are investigating

further how to identify an optimal order. Alternatively,

one can use centered genotype scoring to account for

sharing of rarer alleles.53 To center the allele count vector

Gm;i, we define G�
m;i ¼ Gm;i � Gm, where Gm is the vector
The Americ
of population allele frequency for marker m. Then the

similarity score S�ij is obtained by 1=M3
PM

m¼1G
�T
m;iG

�
m;j.

The centering strategy bypasses the need of allele-

frequency-dependent weights and hence avoids the choice

of an order k. Studies to understand the pros and cons of

centering versus weighting strategies are underway.
Appendix A: Expectation-Maximization Algorithm

for the REML Estimates of t and s When Testing

for G 3 E H0: f ¼ 0

Let u ¼ KTY be a set of n� d linearly independent

contrasts of Y with KKT ¼ I � XðXTXÞ�1XT and KTK ¼
In3n. Then the conditional distribution of u given b; de-

noted by f ðuj bÞ, is normal with mean KTHb and variance

sI and does not depend on the fixed effect g: Therefore,

the REML estimations of t and s can be based on its

marginal distribution f ðuÞ ¼ R
f ðuj bÞf ðbÞdb: This moti-

vated an expectation-maximization algorithm based on

observed data u and missing data b. The complete-data

log likelihood is given by
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log f ðu; b; t; sÞ ¼ log f ðuj b; t; sÞ þ log f ðb; t; sÞ

¼ �n� d

2
log s� 1

2s

�
u� KTHb

�T�
u� KTHb

�

�L

2
logt � 1

2
logjRj � 1

2t
bTR�1b:

In the expectation step (E-step), we compute Qðt; s;
bt ðtÞ; bsðtÞÞ, the conditional expected value of log f ðu; b; t; sÞ
given the observed data u assuming ðt; sÞ ¼ ðbtðtÞ; bsðtÞÞ,
where btðtÞ and bsðtÞ

are the estimates at the tth iteration.

Q
�
t; s; bt ðtÞ

; bsðtÞ�
hE

h
log f ðu; b; t; sÞj u; bt ðtÞ; bsðtÞi

¼ � n� d

2
log s� 1

2s
E
h�
u� KTHb

�T�
u� KTHb

���u; bt ðtÞ; bsðtÞi

�L

2
logt � 1

2
log jRj � 1

2t
E
h
bTR�1bj u; bt ðtÞ; bsðtÞi

:

In the maximization step (M-step), we solve for vQ=vt ¼
0 and vQ=vs ¼ 0 and obtain

bt ðtþ1Þ ¼ 1

L
E
h
bTR�1bj u; bt ðtÞ; bsðtÞi ¼ 1

L
~bR�1~b

�1 þ tr
�
R�1fW�

;

and

bsðtþ1Þ ¼ 1

n� d
E
h�
u� KTHb

�T�
u� KTHb

���u; bt ðtÞ; bsðtÞi

¼
�
Y �H~b

�T

A
�
Y �H~b

�
þ tr

�
HTAHfW�

:

In the above equations, A ¼ KKT ¼ I � XðXTXÞ�1XT ,

~bhEðbj u; ; bt ðtÞ; bsðtÞÞ ¼ tRHTP1Y; and fWhvarðbju; bt ðtÞ;
bsðtÞÞ ¼ tR� t2RHTPHR. The conditional moments of b

given u are obtained directly from the normality of the

joint distribution of ðu; bÞ: The calculation of the project

matrix P1 requires inverting the n3n nonsparse matrix

V1; which can be computational burdensome. To speed

up the computation, we rewrite

V1 ¼ tSþ sI ¼ s
n
I þ t

s
S
o
¼ s

n
I þ t

s
ELET

o
;

where S ¼ ELET , the eigenvalue decomposition ofmatrix S.

Then by the fact that ðI þ B1B2Þ�1 ¼ I � B1ðI þ B2B1Þ�1B2,

we can rewrite V�1
1 ¼ 1=sfI � t=sEL½I þ ETt=sEL��1ETg ¼

1=sfI � tEL½sI þ tETEL��1ETg; in which the calculation

involves only an inversion of an L3Lmatrix.
Appendix B: Derivation of the Score Test Statistics

and Their Asymptotic Distribution

For quantitative traits that follow a normal distribution

directly or after appropriate transformations, model (Equa-

tion 2) reduces to the following linear mixedmodel (LMM)

in matrix notation
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Y ¼ 1g0 þ XgþHbþDHlþ ε; with b � Nð0; tRÞ;
l � Nð0;fRÞ; and ε � Nð0; sIÞ
(Equation 4)

where YT ¼ ½Y1;/;Yn�; 1 is an n31 vector of 1s, XT ¼
½X1;/;Xn�;D ¼ diagfXig, and ε

T
n31 ¼ ½e1;/; en�: Because

our primary interest is to test the variance components f

and t, we consider the restricted maximum likelihood

(REML) log-likelihood function of variance compo-

nents ðt;f; sÞ :[REMLðt;f;YÞ ¼ �flogjV j þ logjXTV�1Xjþ
YTPYg=2; where V is the marginal variance of Y and

V ¼ fSþ tSþ sI, where S ¼ HRHT and S ¼ DSD; P ¼
V�1 � V�1XðXTV�1XÞ�1XTV�1 is the projection matrix

for the LMM (4).

Let Ufðf; t; sÞ and Utðf; t; sÞ denote the score functions

based on the REML function for f and t; respectively.

Simple algebra54 shows that under H0 : f ¼ 0;

Uf

�
0; bt ; bs� ¼ v[REMLðt;f; sÞ

vf

����
f¼0;t¼bt ;s¼bs

¼ 1

2

�
YTP1SP1Y � trðP1SÞ

	
; (Equation 5)

and under H0 : t ¼ 0 (and with the constrain of f ¼ 0),

Ut

�
0;0; bs� ¼ v[REMLðt;f; sÞ

vt

����
f¼0;t¼0;s¼~s

¼ 1

2

�
YTP0SP0Y � trðP0SÞ

	
: (Equation 6)

In the above equations, ð~t; ~sÞ are the REML estimates

of ðt; sÞ under H0 : f ¼ 0 as given in Appendix A, and ~s

the REML estimate of s when t ¼ f ¼ 0. Recall that

Pt ¼ V�1
t � V�1

t XðXTV�1
t XÞ�1XTV�1

t where t˛f0;1g; and

V1 ¼ tSþ sI and V0 ¼ sI.

Null Distribution of the Score Statistics

for G 3 E Test and G Test

As shown in Tzeng and Zhang,22 the score statistics under

H0 arenot asymptotically normal because thedesignmatrix

H for the random effects b is not block diagonal and the

dimension of b is fixed. We thus use the first terms of the

score statistics as the testing statistics and obtain TG3E ¼
YTP1SP1Y=2 and TG ¼ YTP0SP0Y=2: Below we derive

the asymptotic null distribution of TG3E; and similar

steps can be used to obtain the distribution for TG: If

m ¼ 1g0 � Xg; and Z ¼ V
�1=2
1 ðY� mÞ, then Z follows a stan-

dard multivariate normal distribution. We rewrite

TG3E ¼ ZTð1=2V1=2
1 P1SP1V

1=2
1 ÞZhZTCG3EZ, which is true

becausemTP1 ¼ 0by the fact ofP1 being aprojectionmatrix.

Define ei and hi, the eigenvector and eigenvalue of matrix

CG3E, respectively. Then TG3E ¼ Pc
i¼1hiðeTi ZÞ2h

PL
i¼1hi

~Z
2

i ;

with ~Z
2

i follows a 1 degree-of-freedom chi-square distribu-

tion. In reality, ðt; sÞ is evaluated at their restricted

maximum likelihood estimates ðbt ; bsÞ. Following Tzeng

and Zhang,22 the distribution of TG3E can be approximated

by the distribution of
Pc

i¼1
bhic

2
i1, where bhi’s are the nonzero
2, 2011



eigenvalues of matrix CG3Ej
t¼bt ;s¼bs . The distribution of

TG3E can be approximated by the three-moment approxi-

mation method of.43 The level- a significance threshold is

estimated by k1 þ ðca � h0Þ3 ffiffiffiffiffiffiffiffiffiffiffi
k2=h0p

, where kj ¼
P

i h
j
i ;h

0 ¼
k32=k

2
3 and ca is the a th quantile of c2

h0 (i.e., chi-square

distribution with h0 degrees of freedom). Alternatively,

one can report the p value of the observed statistic TG3E

by P < c2
h0 > c�, where c� ¼ ðTG3E � k1Þ3

ffiffiffiffiffiffiffiffiffiffiffi
h0=k2

p þ h0.
By the same manner, the distribution of TG can also be

approximated by the three-moment approximation as

above, except that the eigenvalues his are obtained from

matrix CG ¼ 1=2V
1=2
0 P0SP0V

1=2
0 j

s¼~
s
.

Null Distribution of the Score Statistics for Joint Test

The test statistic for the joint hypothesis H0 : f ¼ t ¼ 0 is

Tjoint ¼ TG þ T
ð0Þ
G3E, where TG is defined as before and

T
ð0Þ
G3E ¼ 1=2YTP0

P
P0Y, i.e., TG3E evaluated at f ¼ t ¼ 0

and s ¼ ~s: A direct (unweighted) sum is used here because

X has been prestandardized to mean ¼ 0 and variance ¼ 1,

and hence TG and TG3E are on the same scale. We found

that the performance of the unweighted sum is very

similar to that of the weighted sum, Twt
joint ¼ wG3TGþ

wG3E3T
ð0Þ
G3E, where the weights wi ¼ EðTiÞ=varðTiÞ. By

a similar derivation as in the G 3 E test, it can be shown

that the null distribution of Tjoint also has a weighted

chi-square distribution and can be approximated by the

three-moment approximation. The procedure is the

same as what mentioned for the G 3 E test, except

that the eigenvalues should be obtained from the matrix

Cjoint ¼ 1=2V
1=2
0 P0ðSþ SÞP0V1=2

0 j
s¼~

s
.
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