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Abstract

Having observed an m× n matrix X whose rows are possibly correlated, we wish to test the hypoth-
esis that the columns are independent of each other. Our motivation comes from microarray studies,
where the rows of X record expression levels for m different genes, often highly correlated, while the
columns represent n individual microarrays, presumably obtained independently. The presumption of
independence underlies all the familiar permutation, cross-validation, and bootstrap methods for mi-
croarray analysis, so it is important to know when independence fails. We develop nonparametric and
normal-theory testing methods. The row and column correlations of X interact with each other in a way
that complicates test procedures, essentially by reducing the accuracy of the relevant estimators.
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1 Introduction

The formal statistical problem considered here can be stated simply: having observed an m×n data matrix
X with possibly correlated rows, test the hypothesis that the columns are independent of each other. Rela-
tionships between the row correlations and column correlations of X, discussed in Section 2, complicate the
problem’s solution.

Why are we interested in column-wise independence? the motivation in this paper comes from microarray
studies, where X is a matrix of expression levels for m genes on n microarrays. In the “Cardio” study I
will use for illustration there are m = 20426 genes each measured on n = 63 arrays, with the microarrays
corresponding to 63 subjects, 44 healthy controls and 19 cardiovascular patients. We expect the gene
expressions to be correlated, inducing substantial correlations between the rows (Owen, 2005; Efron, 2007a;
Qiu, Brooks, Klebanov and Yakovlev, 2005a), but most of the standard analysis techniques begin with an
assumption of independence across microarrays, that is, across the columns of X. This can be a risky
assumption, as discussed next.

An immediate purpose of the Cardio study is to identify genes involved in the disease process. For gene
i we compute the two-sample t-statistic “ti” comparing sick versus healthy subjects. It will be convenient
for discussion to convert these to z-scores,

zi = Φ−1(F61(ti)) i = 1, 2, . . . ,m, (1.1)

with Φ and F61 the cumulative distribution functions (cdf) of standard normal and t61 distributions; under
the usual assumptions, zi will have a standard N(0, 1) null distribution, called here the “theoretical null.”
Unusually large values of zi or −zi are used to identify non-null genes, with the meaning of “unusual”
depending heavily on column-wise independence.

The left panel of Figure 1 shows the histogram of all 20426 zi values, which is seen to be much wider
than N(0, 1) near its center. An “empirical null” fit to the center as in Efron (2007b) was estimated to be
N(.03, 1.572). Null overdispersion has many possible causes (Efron, 2004, 2007a,b), one of which is positive
correlation across the columns of X. Such correlations reduce the effective degrees of freedom for the t-
statistic, causing (1.1) to yield overdispersed null zis, and of course changing our assessment of significance
for outlying values.

The right panel of Figure 1 seems to offer a “smoking gun” for correlation: the scattergram of expression
levels for microarrays 31 and 32 is strikingly correlated, with a sample correlation coefficient of .805. Here
X has been standardized by subtraction of its row means, so the effect is not due to so-called ecological
correlations. (X is actually “doubly standardized,” as discussed in Section 2.) Nevertheless the question
of whether or not correlation .805 is significantly positive turns out to be surprisingly close, as discussed in
Section 4, because the row-wise correlations in X drastically reduce the degrees of freedom for the scatterplot.

The permutation and normal-theory tests introduced in Sections 3–5 will make it clear that there is in
fact correlation across microarrays in the Cardio matrix, enough to explain the null overdispersion seen in
Figure 1 (though other causes are possible, as well). All the familiar permutation, cross-validation, and
bootstrap methods for microarray analysis, such as the popular SAM program of Tusher, Tibshirani and
Chu (2001), depend on column-wise independence of X. The diagnostic tests developed here can help warn
the statistician when caution is required in their use.

The paper is organized as follows: Section 2 describes the relationship between the row and column
correlations of X, showing how row-wise correlation alone can give a misleading impression of column-
wise correlation. A class of simple but useful permutation tests is discussed in Section 3. The Kronecker
matrix normal distribution is introduced in Section 4 as a parametric model allowing both row and column
correlations on X, and then used to calculate the loss of information for testing column-wise independence
due to row-wise correlation. Various normal-theory tests are discussed in Section 5, with difficulties seen for
all of them. The paper ends in Section 6 with a collection of remarks and details.

2 Row and Column Correlations

There is a close correspondence between row and column correlations, discussed next, that complicates the
question of column-wise independence. For convenient presentation we assume that the data matrix X has
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Figure 1 Left panel : histogram of m = 20426 z-values (1.1) for Cardio study; center of histogram is much wider
than N(0, 1) theoretical null. Right panel : scatterplot of microarrays 31 and 32, (xi31, xi32) for i = 1, 2, . . . ,m, after
removal of row-wise gene means; the scattergram seems to indicate substantial correlation between the two arrays.

been “demeaned” by the subtraction of row and column means, giving∑
i

xij =
∑
j

xij = 0 for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. (2.1)

Our numerical results go further and assume “double standardization”: that in addition to (2.1),∑
j

x2
ij = n and

∑
i

x2
ij = m for i = 1, . . . ,m and j = 1, . . . , n, (2.2)

i.e., that each row and column of X has mean 0 and variance 1.
The singular value decomposition of X (SVD) is

X
m×n

= U
m×K

d
K×K

V ′
K×n

, (2.3)

where K is the rank, d the diagonal matrix of ordered singular values, and U and V orthonormal matrices
of sizes m×K and n×K,

U ′U = V ′V = IK , (2.4)

IK the K ×K identity. The squares of the diagonal elements, say

e1 ≥ e2 ≥ · · · ≥ eK > 0, (ek = d2
k) (2.5)

are the eigenvalues of X ′X = V ′d2V .
The n× n matrix Ĉov of sample covariances between the columns of X is

Ĉov = X ′X/m, (2.6)

and likewise
ĉov = XX ′/n, (2.7)

for the m×m matrix of row-wise sample covariances (having more than 400, 000, 000 entries in the Cardio
example!).
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Theorem 1. If X has row and column means 0, (2.1), then the n2 entries of Ĉov have empirical mean 0
and variance c2,

c2 =
K∑
k=1

e2k/(mn)2, (2.8)

and so do the m2 entries of ĉov.

Proof. The sum of Ĉov’s entries is
1′nX

′X1n/m = 0, (2.9)

according to (2.1), while the mean of squared entries is∑n
j=1

∑n
j′=1 Ĉov

2

jj′

n2
=

tr((X′X)2)
m2n2

=
tr(V′d4V)
m2n2

= c2. (2.10)

Replacing X ′X with XX ′ yields the same results for the row covariances ĉov. �

Under double standardization (2.1)–(2.2), the covariances become sample correlations, say Ĉor and ĉor
for the columns and rows. Theorem 1 has a surprising consequence: whether or not the columns of X are
independent, the column sample correlations will have the same mean and variance as the row correlations.
In other words, substantial row-wise correlation can induce the appearance of column-wise correlation.

Figure 2 concerns the 44 healthy subjects in the Cardio study, with X now an (m,n) = (20426, 44)
doubly standardized matrix. All 442 column correlations are shown by the solid histogram, while the line
histogram is a random sample of 10, 000 row correlations. Here c2 = .2832, so according to the Theorem
both histograms have mean 0 and standard deviation .283.

The 44 diagonal elements of Ĉor protrude as a prominent spike at 1. (We can’t see the spike of 20426
diagonal elements for the row correlation matrix ĉor because they form such a small fraction of all 204262.)
It is easy to remove the diagonal 1’s from consideration. 
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Figure 2 Left panel : solid histogram the 442 column sample correlations for X the doubly standardized matrix
of healthy Cardio subjects; line histogram is sample of 10000 of the 204262 row correlations. Right panel : solid
histogram the column correlations excluding diagonal 1s; line histogram the row correlations corrected for sampling
overdispersion.
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Corollary. In the doubly standardized situation, the off-diagonal elements of the column correlation matrix
Ĉor have empirical mean and variance

µ̂ = − 1
n− 1

and α̂2 =
n

n− 1

(
c2 −

1
n− 1

)
. (2.11)

For n = 44 and c2 = .283 this gives

(µ̂, α̂2) = (−.023, .2412). (2.12)

The corresponding diagonal-removing corrections for the row correlations (replacing n by m in (2.11))
are neglible for m = 20426. However c2 overestimates the variance of the row correlations for another reason:
with only 44 points available to estimate each correlation, estimation error adds a considerable component
of variance to the ĉor histogram in the left panel, as discussed next.

Suppose now that the columns of X are in fact independent, in which case the substantial column
correlations seen in Figure 2 must actually be induced by row correlations, via Theorem 1. Let corii′
indicate the true correlation between rows i and i′ (that is, between Xij and Xi′j), and define α the total
correlation to be the root mean square of the corii′ values,

α2 =
∑
i<i′

cor2ii′
/(m

2

)
. (2.13)

where Remark 6.5 of Section 6 shows that α̂2 in (2.11) is an approximately unbiased estimate of α2, assuming
column-wise independence. For the Cardio example α̂ = .241, similar to the size of the microarray correlation
estimates in Efron (2007a), Owen (2005), and Qiu et al. (2005a). Section 4 discusses the crucial role of α in
determining the accuracy of estimates based on X.

The right panel of Figure 2 compares the histogram of the column correlation Ĉorjj′ , now excluding
cases j = j′, with the row correlation histogram corrected for sampling overdispersion via the shrinkage
factor .241/.283. As predicted by Theorem 1, the similarity is striking. A possible difference lies in the long
right tail of the Ĉor distribution (including Ĉor31,32, the case illustrated in Figure 1), whose significance is
examined in Section 4.

Standardization A matrix X is “column standardized” by individually subtracting the mean and
dividing by the standard deviation of each column, and similarly for row standardization. Table 1 shows
the effect of successive row and column standardizations on the 20426 × 44 demeaned matrix of healthy
Cardio subjects. Here “Col” is the empirical standard deviation of the 946 column-wise correlations Ĉorjj′ ,
j < j′; “Eig” is α̂ in (2.11); and “Row” is the empirical standard deviation “β̂” of a 1% sample of the row
correlations ĉorii′ , but adjusted for overdispersion,

Row2 =
n

n− 1

(
β̂2 − 1

n− 1

)
. (2.14)

Sampling error of the Row entries is about ±.0034.
The doubly standardized matrix X used for Figure 2 was obtained after five successive column-row

standardizations. This was excessive; the Figure looked almost the same after two iterations. Other mi-
croarray examples converged equally rapidly, though small counterexamples can be constructed where double
standardization isn’t possible.

Microarray analyses usually begin with some form of column-wise standardization (Bolstad, Irizarry,
�Astrand and Speed, 2003; Qiu, Klebanov and Yakovlev, 2005b), designed to negate “brightness” differences
between the n microarrays. In the same spirit, row standardization helps prevent incidental gene differences
(for example, very great or very small expression level variabilities) from obscuring the actual effects of inter-
est. Standardization tends to reduce the apparent correlations; see Remark 6.4. Without standardization,
the scatterplot in Figure 1 stretches out along the main diagonal, correlation .917, driven by genes with
unusually large or small inherent expression levels.
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Col Row Eig

demeaned 0.252 0.286 0.000
col 0.252 0.249 0.251
row 0.242 0.255 0.246
col 0.242 0.241 0.242
row 0.241 0.246 0.235
col 0.241 0.244 0.241
row 0.241 0.245 0.234
col 0.241 0.238 0.241

Col Row Eig

demeaned 0.252 0.286 0.000
row 0.241 0.283 0.279
col 0.241 0.251 0.240
row 0.240 0.247 0.241
col 0.240 0.247 0.240
row 0.241 0.240 0.235
col 0.241 0.237 0.240
row 0.241 0.233 0.233

Table 1 Successive row and column standardizations of the 20426 × 44 matrix of healthy Cardio subjects. “Col”
empirical standard deviation of dCorjj′ , j < j′; “Eig” α̂ from (2.11); “Row” from 1% sample of ccorii′ values, adjusted
for overdispersion (2.14), sampling standard error .0034.

3 Permutation Tests of Column-wise Independence

Simple permutation tests can provide strong evidence against column-wise independence, as we will see for
the Cardio data. Let ∆̂ be the familiar estimate of the n× n covariance matrix ∆ for the rows of X,

∆̂ = X ′X/m, (3.1)

also called Ĉov at (2.6); notice that it is the sample covariances between columns that estimate the entries
of the row covariance matrix ∆, as described more carefully in Section 4. Also let v1 denote ∆̂’s first
eigenvector, the first column of V in the SVD (2.3). The left panel of Figure 3 plots the components of v1
versus array number 1, 2, . . . , 44 for ∆̂ obtained from the healthy Cardio subjects’ data matrix X — doubly
standardized so ∆̂ estimates the row correlation matrix.

Suppose that the columns of the original expression matrix, before standardization, are independent and
identically distributed m-vectors (“i.i.d.”). Then it is easy to see, Remark 6.3 of Section 6, that all orderings
of the components of v1 are equally likely. This is not what Figure 3 shows, however, where the components
seem to increase from left to right, with a noticeable block of large values for arrays 27–32.

Let S(v1) be a statistic that measures structure, for instance a linear regression of v1 versus array index.
Comparing S(v1) with a set of permuted values

{S∗l = S(v∗l), l = 1, 2, . . . , L}, (3.2)

v∗l a random permutation of the components of v1, provides a quick test of the i.i.d. null hypothesis.
Permutation testing was applied to v1 for the Cardio data, using the “block” statistic

S(v1) = v′1Bv1, (3.3)

where B is the n× n matrix
B =

∑
h

βhβ
′
h. (3.4)

The sum in (3.4) is over all vectors βh of the form

βh = (0, 0, · · · , 0, 1, 1, · · · , 1, 0, 0, · · · , 0), (3.5)

with the 1s forming blocks of length between 2 and 10 inclusive. A heuristic rationale for block testing
appears below; intuitively, microarray experiments are prone to block disturbances because of the way they
are developed and read; see Callow et al. (2000). After L = 5000 permutations, only three S∗ values exceeded
the actual value S(v1), p-value .0006, yielding strong evidence against the i.i.d. null hypothesis.

The right panel of Figure 3 pertains to a microarray prostate cancer study (Singh et al., 2002) discussed
in Efron (2008): m = 6033 genes were measured on each of n = 102 men, 50 healthy controls and 52 prostate
cancer patients. The right panel plots first eigenvectors for ∆̂, (3.1), computed separately for the healthy
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Figure 3 Left panel : Components of first eigenvector of row sample correlation matrix for the 44 healthy Cardio
subjects, plotted versus array number 1, 2, . . . , 44; dashes emphasize the block of large components for arrays 27–32.
Right panel : First eigenvectors for healthy (solid line) and cancer (dashed) subjects, prostate cancer study, Singh,
Febbo, et al. (2002); there was a systematic drift in expression levels as the study progressed.

controls and the cancer patients (the two matrices being individually doubly standardized). Both vectors
increase almost linearly from left to right. Taking S(v1) as the linear regression of v1 versus array number,
permutation testing overwhelmingly rejected the i.i.d. null hypothesis, as it also did using the block test
(3.3)–(3.5).

The prostate study appears as a favorable example of microarray technology in Efron (2008): the total
correlation estimate α̂, (2.11), is quite small, .02 compared to .24 in (2.12); the z-value histogram, from two-
sample t-tests, comes close to following the theoretical N(0, 1) null near its center, N(0, 1.062) as opposed to
N(.03, 1.572) in Figure 1; and False Discovery Rate analysis yields some 50 “significant” genes. Nevertheless,
Figure 3 indicates a systematic drift in the expression level readings as the study progressed. Some genes
drift up, others down (the average drift equaling 0 because of standardization), inducing a small amount of
column-wise correlation.

Section 5 discusses models for X where the n × n row covariance matrix ∆ is of the “single degree of
freedom” form

∆ = I + λββ′ (3.6)

for some known fixed vector β, the null hypothesis of column-wise independence being H0 : λ = 0. An
obvious choice of test statistic in this situation is

Sβ = β′(∆̂− I)β, (3.7)

a monotone increasing function of β′∆̂β.
If β is unknown we can replace Sβ with

SB =
H∑
h=1

β′h∆̂βh = tr(∆̂
∑
h

βhβ
′
h) ≡ tr(∆̂B), (3.8)

where {β1, β2, . . . , βH} is a catalog of “likely prospects” as in (3.5). From the SVD (2.3), ∆̂ =
∑
j(d

2
j/m)vjv′j ,

6



giving

SB =
∑
j

d2
j

m

(
v′jBvj

)
. (3.9)

Finally, the model leading to (3.6) suggests that most of the information against H0 lies in the first eigenvector
v1, getting us back to test statistic S(v1) = v′1Bv1 as in (3.3). (Notice that permutations of X’s columns do
not affect the eigenvalues d2

j .)
Two objections can be raised to our permutation tests: (1) they are really testing i.i.d., not independence;

(2) non-independence might not manifest itself in the order of v1 (particularly if the order of the microarrays
has been shuffled in some unknown way).

Column-wise standardization makes the column distributions more similar, mitigating objection (1).
Going further, “quantile standardization” — say replacing each column’s entries by normal scores (Bolstad
et al., 2003) — makes the marginals exactly the same. The Cardio data was reanalyzed using normal scores,
with almost identical results.

Objection (2) is more worrisome from the point of view of statistical power. The order in which the arrays
were obtained should be available to the statistician, and should be analyzed to expose possible trends like
those in Figure 3. It would be desirable, nevertheless, to have independence tests that do not depend on order
— that is, test statistics invariant under column-wise permutations. The discussion in Section 5 concerns
the difficulties in constructing such “non-permutation” tests.

4 Normal Theory

Multivariate normal theory offers an alternative to the nonparametric methods of Section 3. We consider
the matrix normal distribution for X,

X
m×n

∼ Nm,n(0, /Σ
m×m

⊗ ∆
n×n

) (4.1)

where the Kronecker notation indicates covariance structure

cov(Xij , Xi′j′) = /Σii′∆jj′ . (4.2)

Row xi of X has covariance matrix proportional to ∆,

xi ∼ Nn(0,/Σii∆) (4.3)

(not independently unless /Σ is diagonal), and likewise for column xj , xj ∼ Nm(0,∆jj/Σ). As in (2.1), we
take all means equal 0.

Much of classical multivariate analysis focuses on the situation /Σ = I, where the rows xi are independent
replicates,

/Σ = I : xi
iid∼ Nn(0,∆) i = 1, 2, . . . ,m, (4.4)

in which case the sample covariance matrix ∆̂ = X ′X/m has a scaled Wishart distribution,

∆̂ ∼Wishart(m,∆)/m. (4.5)

Distribution (4.5) has first and second moments

∆̂
n×n
∼ ( ∆

n×n
, ∆(2)

n2×n2
/m) with ∆(2)

jk,lh = ∆jl∆kh + ∆jh∆kl (4.6)

for j, k, l, h = 1, 2, . . . , n; see Mardia, Kent and Bibby (1979, p. 92).
Relation (4.6) says that when /Σ = I, that is when the rows of X are independent, ∆̂ unbiasedly estimates

the row covariance matrix ∆ with accuracy proportional to m−1/2. Correlation between rows reduces the
accuracy of ∆̂, as shown next.

Returning to the general situation (4.1)–(4.3), define

∆̃ = X ′σ−2X/m, (4.7)

where σ is the diagonal matrix with diagonal entries σi = /Σ1/2
ii .
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Theorem 2. Under model (4.1), ∆̃ has first and second moments

∆̃ ∼ (∆,∆(2)/m̃), m̃ = m/[1 + (m− 1)α2], (4.8)

where α is the total correlation as in (2.13),

α2 =
∑
i<i′

(/Σ2
ii′//Σii/Σi′i′)

/(m
2

)
, (4.9)

and ∆(2) is the Wishart covariance (4.6).

Comparing (4.8) with (4.6), we see that correlation between the rows reduces “effective sample size”
from m to m̃: for α = .241 as in (2.12), the reduction is from m = 20426 to m̃ = 17.2! (Notice that row
standardization effectively makes σi

.= 1 in (4.7), so ∆̃ .= ∆̂, (3.1), justifying the comparison.) The total
correlation α shows up in other efficiency calculations; see Remark 6.7.

Proof. The row-standardized matrix X̃ = σ−1X has matrix normal distribution

X̃ ∼ Nm,n(0, /̃Σ⊗∆), (4.10)

where /̃Σ = σ−1/Σσ−1 has diagonal elements /̃Σii = 1. From (4.2) we see that /̃Σii′ = /Σii′/(/Σii/Σi′i′)1/2 is the
correlation between elements Xij and Xi′j in the same column of X; ∆̃ = X̃ ′X̃/m has entries ∆̃jk =∑
i X̃ijX̃ik/m, and is unbiased for ∆,

E{∆̃jk} = ∆jk, (4.11)

using (4.2).
The covariance calculation for ∆̃ involves expansion

∆̃jk∆̃lh =
(∑

i

X̃ijX̃ik/m
)(∑

i′

X̃i′lX̃i′h/m
)

(4.12)

=
1
m2

(∑
i

X̃ijX̃ikX̃ilX̃ih +
∑
i6=i′

X̃ijX̃ikX̃i′lX̃i′h

)
. (4.13)

Using the formula
E{Z1Z2Z3Z4} = γ12γ34 + γ13γ24 + γ14γ23 (4.14)

for a normal vector (Z1Z2Z3Z4)′ with 0 means and covariances γij , (4.2) gives

E
{∑

i

X̃ijX̃ikX̃ilX̃ih

}
= m[∆jk∆lh + ∆jl∆kh + ∆jh∆kl] (4.15)

and
E
{∑
i6=i′

X̃ijX̃ikX̃i′lX̃i′h

}
= m(m− 1)∆jk∆lk + (∆jl∆kh + ∆jh∆kl)

∑
i 6=i′

/̃Σ
2

ii′ . (4.16)

Then (4.13) yields

E{∆̃jk∆̃lh} = ∆jk∆lh + (∆jl∆kh + ∆jh∆kl)
(

1 + (m− 1)α2

m

)
, (4.17)

giving
cov(∆̃jk, ∆̃lh) = (∆jl∆kh + ∆jh∆kl)/m̃ (4.18)

as in (4.8). �

A corollary of Theorem 2, used in Section 5, concerns bilinear functions of ∆ and ∆̃,

τ2 = w′∆w and τ̃2 = w′∆̃w, (4.19)

where w is a given n-vector.
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Corollary. Under model (4.1), τ̃2 has mean and variance

τ̃2 ∼ (τ2, 2τ4/m̃). (4.20)

The proof follows that for Theorem 2; see Remark 6.9.
If /Σ = I in (4.1), then ∆̃ = ∆̂ and τ̃2 has a scaled chi-squared distribution,

τ̃2 ∼ τ2 · χ2
m/m, (4.21)

with mean and variance τ̃2 ∼ (τ2, 2τ4/m), so again the effect of correlation within /Σ is to reduce the effective
sample size from m to m̃, (4.8).

We can approximate ∆̃, (4.7), with
∆̂ = X ′σ̂−2X/m, (4.22)

where σ̂2
ii is an estimate of /Σii based on the observed variability in row i. If the rows of X have been

standardized then σ̂2
ii = 1, and ∆̂ returns to its original definition X ′X/m.

Both Theorem 2 and the Corollary encourage us to think of ∆̂ as, approximately, a scaled Wishart
distribution based on an independent sample of size m̃,

∆̂ ∼̇Wishart(m̃,∆)/m̃. (4.23)

The dangers of this approximation are discussed in Section 5, but it is, nevertheless, an evocative heuristic,
as shown below.

Figure 4 returns to the question of the seemingly overwhelming correlation .805 between arrays 31 and 32
seen in Figure 1. A one-sided p-value was calculated for each of the 946 column correlations, using as a null
hypothesis the normal theory correlation coefficient distribution based on a sample size of m̃ = 17.2 pairs
of points (the correct null if ∆ = I in (4.23)). Benjamini and Hochberg’s (1995) False Discovery Rate test,
level q = .1, was applied to the 946 p-values. This yielded 7 significant cases, those with sample correlation
≥ .723; all 7 were from the block of arrays 27 to 32 indicated in Figure 3. Correlation .805 does turn out to
be significant, but by a much closer margin than Figure 1’s scattergram suggests.

The Fdr procedure was also applied using the simpler null distribution N (−.023, .2412), (2.12). This
raised the significance threshold from .723 to .780, removing two of the previously significant correlations.

Theorem 1 showed that the variance of the observed column correlations is useless for testing column-
wise independence, since any value at all can be induced by row correlations. The test in Figure 4 avoids
this trap by looking for unusual outliers among the column correlations. It does not depend on the order
of the columns, objection (2) in Section 3 for permutation tests, but pays the price of increased modeling
assumptions.

5 Other Test Statistics

Theorem 2 offers a normal-theory strategy for testing column-wise independence. We begin with X ∼
Nm,n(0,/Σ⊗∆), (4.1), taking

/Σii = 1 and ∆jj = 1 for all i and j, (5.1)

as suggested by double standardization. The null hypothesis of column-wise independence is equivalent to
the row covariance matrix ∆ equaling the identity,

H0 : ∆ = I, (5.2)

since then (4.2) says that all pairs in different columns are independent.
To test (5.2), we estimate ∆ with ∆̂, (4.22) or more simply ∆̂ = X ′X/m after standardization, and

compute a test statistic
S = s(∆̂), (5.3)

9



 

Column−wise correlations

F
re

qu
en

cy

−0.5 0.0 0.5

0
10

20
30

40
50

.723

.805

Figure 4 Dashed curve is normal theory density for correlation coefficient from m̃ = 17.2 pairs of points; see
Remark 6.6. Histogram is the 946 column correlations, right panel Figure 2. FDR test, q = .1, yielded 7 significant
correlations, dCor ≥ .723, including .805 between arrays 31 and 32, Figure 1.

where s(·) is some measure of distance between ∆̂ and I. The accuracy approximation ∆̂ ∼̇ (∆,∆(2)/m̃)
from (4.8), with ∆ = I, is used to assess the significance level of the observed S, maybe even employing the
more daring approximation ∆̂ ∼̇Wishart(m̃, I)/m̃. Strategy (5.3) looks promising but, as the examples of
this section will show, it suffers from serious difficulties.

One of the difficulties stems from Theorem 1. An obvious test statistic for H0 : ∆ = I is

S =
∑
j<j′

∆̂2
j,j′

/(n
2

)
, (5.4)

the average squared off-diagonal element of ∆̂. But ∆̂ = Ĉov, (2.6), so in the doubly standardized situation
of (2.11), S is an increasing monotone function of α̂, the estimated total correlation. This disqualifies S as
a test statistic for (5.2), since large values of α̂ can always be attributed to row-wise correlation alone.

Similarly, the variance of the eigenvalues (2.5),

S =
K∑
k=1

(ek − e·)2/k (e· =
∑

ek/K), (5.5)

looks appealing since the true eigenvalues all equal 1 when ∆ = I. However (5.5) is also a monotonic function
of α̂; see Remark 6.2.

The general difficulty here is “leakage,” the fact that row-wise correlations affect the observed pattern of
column-wise correlations. This becomes clearer by comparison with classical multivariate methods, where
row-wise correlations are assumed away by taking /Σ = I in (4.1). Johnson and Graybill (1972) consider a
two-way ANOVA problem where, after subtraction of main effects, X has the form

Xij = aiβj + εij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, (5.6)

ai ∼ N (0, λ) and εij ∼ N (0, 1), all independently, with β = (β1, β2, . . . , βn) a fixed but unknown vector
(representing “one degree of freedom for nonadditivity” in the two-way table X, Johnson and Graybill’s
extension of Tukey’s procedure).
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In the Kronecker notation (4.1), X ∼ Nm,n(0, I ⊗∆) with

∆ = I + λββ′. (5.7)

Now (5.2) becomes H0 : λ = 0. Johnson and Graybill show that, with β unknown, the likelihood ratio test
rejects H0 for large values of the eigenvalue ratio

S = e1

/ K∑
k=1

ek. (5.8)

Since the m rows of X are assumed independent, they can test H0 by comparison of S with values S∗ =
e∗1/

∑K
k=1 e

∗
k obtained from

∆̂∗ ∼Wishart(m, I)/m, (5.9)

as in (4.5).
Getting back to the correlated rows situation, Theorem 2 suggests comparing S with values S∗ from

∆̂∗ ∼Wishart(m̃, I)/m̃, (5.10)

m̃ as in (4.8). The solid histogram in Figure 5 compares 100 S∗ values from (5.10), m̃ = 17.2 for the Cardio
data, with the observed value S = .207 from the doubly standardized Cardio matrix for the healthy subjects
used in Figure 2. All 100 S∗ values are much smaller than S, providing strong evidence against H0 : ∆ = I.
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Figure 5 Eigenratio statistic (5.8) equals .207 for 20426× 44 Cardio matrix X; solid histogram 100 simulations
S∗ from Wishart (5.10), m̃ = 17.2; line histogram 100 simulations from correlated-row X∗ matrices (5.11), α =
.241,∆ = I.

The evidence looks somewhat weaker, though, if we simulate S∗ values with ∆̂∗ obtained from random
matrices

X∗ ∼ N20426,44(0,/Σ⊗ I), (5.11)

doubly standardized, where /Σ has total correlation α = .241, the estimated value for X, (4.9). The line
histogram in Figure 5 shows 100 such S∗ values, all still smaller than S, but substantially less so. (Remark
6.8 describes the construction of X∗.)
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Why does (5.11) produce larger “null” S∗ values than (5.10)? The answer is simple: even though the
first and second moments of ∆̂∗ = X∗′X∗/m match ∆̂∗ from (5.10), its eigenvalues do not. The non-zero
eigenvalues of X∗′X∗/m equal those of /̂Σ

∗
= X∗X∗′/n. This is another example of leakage, where the fact

that /Σ in (5.11) is not the identity Im distorts the estimated eigenvalue of ∆̂∗, even if ∆ = In.
The eigenratio statistic S = e1/

∑
ek is invariant under permutations of the columns of X, answering

objection (2) to permutation testing of Section 3. Because of invariance, the eigenratio and permutation
tests provide independent p-values for testing the null hypothesis of i.i.d. columns, and so can be employed
together. Figure 5 is disturbing nonetheless, in suggesting that an appropriate null distribution for S depends
considerably on the choice of the nuisance parameter /Σ in (5.11).

The bilinear form (4.19)–(4.20) yields another class of test statistics,

τ̂2 = w′∆̂w ∼̇ (τ2, 2τ4/m̃), (5.12)

where w is a pre-chosen n-vector and τ2 = w′∆w. Delta-method arguments give CV (τ̂) .= (2m̃)−1/2 for the
coefficient of variation of τ̂ . Defining

Zi = x′iw (x′i the ith row of X), (5.13)

yields the alternative form

τ̂2 =
m∑
i=1

Z2
i /m. (5.14)

In a two-sample situation like that for the Cardio study, sample sizes n1 and n2, we can choose

w′ =
(

n1n2

n1 + n2

)1/2

(−1n1/n1, 1n2/n2), (5.15)

“1n” indicating a vector of n 1’s. This choice makes

Zi =
(

n1n2

n1 + n2

)1/2

(x̄2i − x̄1i), (5.16)

the multiple of the mean response difference between the two samples that has variance 1 if ∆ = I. In terms
of (5.12), ‖w‖2 = 1 so τ2 = 1.

For the Cardio study, with n1 = 44, n2 = 19, and m̃ = 17.2, we obtain τ̂ = 1.48, coefficient of variation
0.17. This puts τ̂ more than 2.8 standard errors above the null hypothesis value τ = 1, again providing
evidence against column-wise independence. The Zi values from (5.16) are nearly indistinguishable from the
zi values in Figure 1 — not surprisingly since with the rows of X standardized, Zi is an equivalent form of
the two-sample t-statistic ti in (1.1).

Once again, however, there are difficulties with this as a test for column-wise independence. There is
no question that the Zi’s are overdispersed compared to the theoretical value τ = 1. But problems other
than column dependence can cause overdispersion, in particular unobserved covariate differences between
subjects in the two samples (Efron, 2004, 2008).

The statistic S = w′∆̂w in (5.15) does not depend upon the order of the columns of X within each
of the two samples, answering objection (2) against permutation tests, but it is the only such choice for
a two-sample situation. Other w’s might yield interesting results. The version of (5.15) comparing the
first 22 healthy Cardio subjects with the second 22 provided the spectacular value τ̂ = 1.87, and here the
“unobserved covariate” objection has less force.

Now, however, the test statistic depends on the order of the columns within the healthy subjects’ matrix,
reviving objection (2). We might again want to check a catalog of possible w vectors w1, w2, . . . , wH , leading
back to test statistic

SB =
∑
h

w′h∆̂wh = tr(∆̂B)
(

B =
∑
h

whw′h
)

(5.17)

as in (3.8), the only difference being that the null distribution of ∆̂ now involves normal theory rather than
permutations. Remark 6.9 shows that the null first and second moments of SB are similar to (5.12),

SB ∼
H0

(
tr(B),

2
m̃

tr(B2)
)
. (5.18)
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In summary, normal-theory methods are interesting and promising, but are not yet proven competitors
for the permutation tests of Section 3.

6 Remarks

This section presents some brief remarks and details supplementing the previous material.

Remark 6.1. Normal theory independence testing Our problem differs from classic multivariate normal
independence testing, as described in Chapter 9 of Anderson (2003). There the columns of X are taken
always to be independent, while the independence hypotheses concern the rows — for example, whether the
top half of X is independent of the bottom half.

Remark 6.2. The constant c2 The variance constant c2 in Theorem 1, (2.8), can be expressed as

c2 =
K

(mn)2

[
ē2 +

K∑
k=1

(ek − ē)2
]

(ē ≡
K∑
1

ek/K), (6.1)

so that c2 ≥ K(ē/mn)2, with equality only if the eigenvalues ek are equal. In the doubly standardized case
ē = mn/K, giving

c2 ≥ 1/K, (6.2)

where K is the rank of X.

Remark 6.3. Permutation invariance If the columns of X are i.i.d. observations from a distribution
on Rm, then the distribution of X is invariant under permutations: Xπ ∼ X for any n × n permutation
matrix π. Now suppose X̃ = L(X) where L performs the same operation on each column of X, for example
replacing each column by its normal scores vector. Then

X̃π = L(X)π = L(Xπ) ∼ L(X) = X̃, (6.3)

showing that X̃ is permutation invariant.
Similarly, suppose X̃ = R(X), R performing the same operation X̃i = r(Xi) on each row of X, where

now we require r(x)π = r(xπ) for all n-vectors x. The same argument as (6.3) demonstrates that X̃ is
still permutation invariant. Iterating row and column standardizations as in Table 1 then shows that if the
original data matrix X is permutation invariant, so is its doubly standardized version.

Remark 6.4. Covariances after demeaning Suppose that X is normally distributed, with covariances
/Σ ⊗∆, (4.2), all columns having the same expectation vector µ. Let X̃ be the demeaned matrix obtained
by subtracting all the row and column means of X. Then

X̃ ∼ Nm,n(0, /̃Σ⊗ ∆̃) (6.4)

where
∆̃jj′ = ∆jj′ −∆·j′ −∆j· + ∆··, (6.5)

dots indicating averaging over the missing subscripts, and similarly for /̃Σ. This shows that demeaning tends
to reduce covariances by recentering them around 0.
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Remark 6.5. Corrected estimates of the total correlation Suppose that the true row correlations corii′
have mean 0 and variance α2, as in (2.13) with cor = 0, and that given corii′ , the usual estimate ĉorii′ has
mean and variance

ĉori,i′
.= [corii′ , (1− cor2ii′)2/(n− 3)], (6.6)

(6.6) being a good normal-theory approximation (Johnson and Kotz, 1970, Chap. 32). Letting ᾱ2 be the
empirical variance of the ĉorii′ values, a standard empirical Bayes derivation yields

α̂2 = A2 − 3
n− 5

A4

[
A2 =

(n− 3)ᾱ2 − 1
n− 5

]
(6.7)

as an approxiately unbiased estimate of α2. (If cor is not assumed to equal 0, a slightly more complicated
formula applies.) Of course α̂2 = 0 if the right side of (6.7) is negative.

Theorem 1 implies that ᾱ2 nearly equals c2, (2.8), in the doubly standardized situation. Formula (2.11),
with say

α̃2 =
n

n− 1

(
ᾱ2 − 1

n− 1

)
(6.8)

is not identical to (6.7), but provides an excellent approximation for values of ᾱ ≤ 0.5: with n = 44 and
ᾱ = .283 as in (2.11), α̂ = .2415 while α̃ = .2412.

Remark 6.6. Column and row centerings The column correlation mean µ̂ = −1/(n−1) in (2.11) is forced
by the row-wise demeaning

∑
j xij = 0, (2.1), centering the solid histogram in the right panel of Figure 2 at

−.023. With m = 20426, the corresponding center for the line histogram is nearly 0, and the difference in
the two centerings is noticeable. The dashed density curve in Figure 4, and the corresponding p-values for
the FDR analysis, were shifted .023 units leftwards.

Remark 6.7. The total correlation α The total correlation α, which plays a key role in Theorem 2, (4.9),
also is the central parameter of the theory developed in Efron (2007a). Equations (3.15)–(3.16) there are
equivalent to (5.12) here. In both papers, α has the very convenient feature of summarizing the effects of an
enormous m×m correlation matrix /Σ in a single number.

Remark 6.8. /Σ for simulation (5.11) The X∗ simulation used in Figure 5 began with m × n matrix
Y = (yij),

yij = cIj + eij

{
eij ∼ N (0, 1)
cIj ∼ N (0, α2)

(all independent), (6.9)

where I = 1, 2, 3, 4, 5 as i is in the first, second, . . . , last fifth of 1 through m; Y was then column standardized
to give X∗, so that /Σ had a block form, with large positive correlations (about 0.61) in the (m/5)× (m/5)
diagonal blocks. The choice γ = 1.23 was required to yield α = .241.

Remark 6.9. Bilinear statistics Since ∆̃ ∼ (∆,∆(2)/m̃), (4.8), it is clear that E{τ̃2} = τ2 in Corollary
(4.20). The variance calculation proceeds as in Theorem 2:

var{τ̃2} =
∑
jk

∑
lh

∆(2)
jk,lhwjwkwlwh/m̃

=
∑
jk

∑
lh

[
∆jl∆kh + ∆jh∆kl

]
wjwkwlwh/m̃

=
[∑
jl

∑
kh

(∆jlwjwl)(∆khwkwh) +
∑
jh

∑
kl

(∆jhwjwh)(∆klwkwl)
]/
m̃

= 2
(∑

jk

∆jkwjwl

)2/
m̃ = 2τ4/m̃.

(6.10)

The verification of (5.18) is the same, except with element bjk of B replacing wjwk above, blh replacing
wlwh, etc.
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