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Selection of the Most Informative Individuals From Families With
Multiple Siblings for Association Studies
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Association analyses may follow an initial linkage analysis for mapping and identifying genes underlying complex
quantitative traits and may be conducted on unrelated subsets of individuals where only one member of a family is
included. We evaluate two methods to select one sibling per sibship when multiple siblings are available: (1) one sibling
with the most extreme trait value; and (2) one sibling using a combination score statistic based on extreme trait values and
identity-by-descent sharing information. We compare the type I error and power. Furthermore, we compare these selection
strategies with a strategy that randomly selects one sibling per sibship and with an approach that includes all siblings, using
both simulation study and an application to fasting blood glucose in the Framingham Heart Study. When genetic effect is
homogeneous, we find that using the combination score can increase power by 30–40% compared to a random selection
strategy, and loses only 8–13% of power compared to the full sibship analysis, across all additive models considered, but
offers at least 50% genotyping cost saving. In the presence of genetic heterogeneity, the score offers a 50% increase in power
over a random selection strategy, but there is substantial loss compared to the full sibship analysis. In application to fasting
blood sample, two SNPs are found in common for the selection strategies and the full sample among the 10 highest ranked
single nucleotide polymorphisms. The EV strategy tends to agree with the IBD-EV strategy and the analysis of the full
sample. Genet. Epidemiol. 33:299–307, 2009. r 2008 Wiley-Liss, Inc.
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INTRODUCTION

Mapping and identifying complex disease genes are
difficult because there is no simple correspondence between
genotype and phenotype [Palmer and Cardon, 2005]. Some
complex traits are measured on a continuous scale, such as
weight and height. Some complex disease phenotypes are
defined by threshold models applied to continuous traits.
For example, obesity is often defined as high body mass
index (BMI). Therefore, it is important to understand the
genetics of underlying continuous traits in order to under-
stand the traits themselves or their associated disease
phenotypes. Because most complex quantitative traits may
be the result of multiple loci, each contributing modestly to
the total heritability, more efficient study designs need to be
considered to increase power to detect disease signals for
both linkage analysis and association studies.

Sibling pairs are often used for linkage analysis. Previous
studies have shown that sibling pairs ascertained on their
phenotypes are more powerful than randomly selected
sibling pairs from the population for quantitative trait
linkage analysis [Carey and Williamson, 1991; Eaves and
Meyer, 1994; Risch and Zhang, 1995]. The effect of

ascertainment on power has also been explored in popula-
tion-based quantitative association studies. Truncated selec-
tion (TS) picks a group of individuals with high trait values,
which serve as ‘‘cases,’’ and a random group, which serve as
‘‘controls,’’ and a typical case-control analysis is performed
[Slatkin, 1999]. Chen et al. [2005] extend the TS approach to a
two-sided selection approach (t-TS), in which the controls are
selected with low trait values rather than a random sample.
This extension is shown to further improve power. Chen
et al. [2005] also suggest a more feasible approach of extreme
random selection. Wang and Elston [2006b] examine various
selection strategies analytically and with simulations. They
find that the t-TS method is most powerful for a trait locus
segregating common alleles with similar effects.

Association studies often follow an initial linkage
analysis, targeting these regions identified by linkage
analysis for fine mapping purposes. In order to address
the question of how to design an efficient association
study given information provided by the previous linkage
analysis, Fingerlin et al. [2004] propose using the identity-
by-descent (IBD) sharing information to select one case per
sibship from sibships with multiple affected siblings.
In the context of quantitative traits, Wang and Elston
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[2006a] derive a quantitative linkage score (QLS) based on
Haseman-Elston regression [Elston et al., 2000; Haseman
and Elston, 1972] and make use of this score to select a
subsample from the linkage study sample. They show that
subjects selected using the QLS tend to be more homogenous
than a random sample, and therefore greatly improve the
power of the association study. In addition, they propose a
test to determine if an associated variant in a linkage region
can explain, in part, the detected linkage signal.

An association study using all available siblings in a
family should be more powerful than a study using a single
selected sibling per family, simply because the effective
sample size is larger. However, genotyping all siblings (AS)
is costly and budgets remain a major limiting factor for
most studies. The aim of our study is to select the most
informative sibling per sibship with multiple siblings for an
association study following a quantitative linkage analysis.
In the ‘‘Methods’’ section, we propose two methods to select
one sibling per sibship with multiple siblings: (1) one
sibling with the most extreme trait value; and (2) one sibling
using a combination score statistic based on trait values and
IBD-sharing information. The proposed score statistic, S(j),
belongs to the framework of Haseman and Elston (H-E)
revisited [Elston et al., 2000] and is an extension of the QLS
statistic introduced by Wang and Elston [Wang and Elston,
2006a]. The QLS statistic is a sibship-specific score and is
used to select sibships with evidence of linkage in the
context of population heterogeneity, resulting in more
homogeneous samples. The S(j) statistic is a sibling-specific
score and is used to select an individual with an extreme
trait value and increased allele sharing with other siblings
in a sibship with similar trait values.

Furthermore, we describe a simulation study to compare
these selection strategies with a strategy that randomly
selects one sibling per sibship and the strategy that includes
AS. The simulation study is carried out in both homogeneous
and heterogeneous sample conditions. In the ‘‘Results’’
section, we describe our simulation results along with an
application to fasting plasma glucose (FPG) in the Framing-
ham Heart Study (FHS). We put our selection strategies in
the context of other ascertainment approaches and discuss
their advantages and limitations in the final section.

METHODS

We first define a score statistic to be used as one of the
strategies in selecting siblings from families with multiple
siblings. Definitions of six possible selection strategies
follow, with a description of a simulation study to compare
these six selection approaches. We evaluate these selection
strategies in homogeneous samples and in heterogeneous
samples consisting of subpopulations with different
quantitative trait locus (QTL) effects. Finally, we describe
the FHS sample to illustrate our proposed methods.

SCORE STATISTIC

We define a combination score statistic for the jth sibling
as

SðjÞ ¼
X

i 6¼j

ðxi � mÞðxj � mÞ½p̂ði;jÞ � 1
2�

Nsib � 1
;

where the sum is taken over by only those sibling pairs
that include sibling j. Here, p̂ði;jÞ is the estimated multipoint
IBD sharing for siblings i and j in a sibship at the locus
with maximum evidence for linkage or with maximum
LOD score (MLS); and xi and xj are phenotype values for
sib i and j, respectively. The population mean for the
phenotype is m, and Nsib is the number of siblings in the
sibship. The use of the Nsib in the denomination in S(j)
does not alter ranking of the sibs within a sibship;
however, it is used to standardize S(j) across sibships.
Because the siblings have equal S(j) scores for sibpairs, we
consider shipships containing more than two siblings in
our study. The siblings selected using the score statistic S(j)
tend to fall in two categories: (1) a sibling with large
absolute trait value and high IBD sharing with other
siblings with similar trait values; (2) a sibling with large
absolute trait value and low IBD sharing with other
siblings with dissimilar trait values.

SELECTION STRATEGIES

We consider six selection strategies to select one sibling
from a sibship with multiple siblings. For the ‘‘all random’’
or AR strategy, one sibling is randomly selected from each
sibship yielding a sample of unrelated subjects. In the
second approach one sibling with the highest absolute
phenotype value |xi| (i.e., the extreme value or the EV
strategy) is selected. The third approach consists of
selecting one sibling with the highest score statistic S(j)
using the population mean (IBD-EV). The fourth strategy
is an alternative to the IBD-EV strategy, replacing the
population mean with the sibship-specific mean in S(j)

SðjÞ2 ¼
P

i6¼j
ðxi�mÞðxj�mÞ½p̂ði;jÞ�1

2�

nsib�1 or the IBD-EV2 strategy. When

a sample consists of some large sibships or when the study
population is heterogeneous (i.e., the QTL explains
different genetic variance of the subpopulations), the
sibship-specific mean might be more appropriate as an
offset in the S(j) score and thus provide better power. The
fifth strategy is based on one sibling with the highest
absolute phenotype value |xi|, restricted to linked
families (ML-EV). The sixth selection is based on one
sibling with the highest score statistic S(j), restricted to
linked families (ML-IBD-EV). In order to evaluate cost-
effectiveness for these selection strategies, we also
consider a reference group that consists of AS.

COMPARISON OF SELECTION
STRATEGIES

We compare the power and type I error for the selection
strategies in tests for association between a single nucleo-
tide polymorphism (SNP) in linkage disequilibrium (LD)
with a QTL influencing the phenotype of interest,
assuming that genotypes at the QTL are not observed.
For each sample of unrelated individuals selected from
different strategies, the difference between the phenotype
means of the genotype groups is assessed using an F
statistic derived from an analysis of variance (ANOVA)
approach. Because some selection strategies result in a
sample with non-normally distributed traits, statistical
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significance is further evaluated with a permutation test
[Fisher, 1935; Good, 2005]. In a permutation test, the
phenotypic values are randomly shuffled among the
unrelated individuals and the test statistic is computed
using the shuffled data. Permuted phenotypes should not
be associated with their non-permutated genotypic coun-
terparts and by repeating the permutation multiple times
(20,000 in our case). One obtains an estimate of distribution
of the statistic under the null hypothesis.

Generalized estimating equations (GEE) methods are
used for the analysis of all siblings in order to account for
correlation among siblings within the same sibship.

SIMULATIONS

The goal of this research is to utilize linkage information
and quantitative trait values to select the most informative
individuals for follow up association studies. Therefore,
we consider a QTL that might consist of a cluster of genetic
loci with moderate to high heritability, which could be
detected by linkage analysis. A set of microsatellite
markers, 1 or 5 cM apart, are simulated on both sides of
the QTL, assuming Hardy-Weinberg and linkage equili-
brium. Parental chromosomes are generated according to
population allele frequencies and are passed down to
offspring after introducing crossovers between markers
according to the Haldane mapping function with a rate of
one crossover per Morgan [Haldane, 1919]. The phenotype
values for parents and offspring are generated according
to a variance component model [Amos, 1994].

In order to evaluate type I error and power of different
selection strategies, we generate six SNPs in the region of
interest (i.e., under the linkage peak). One SNP marker is
in LD (measured by r2) with the QTL and referred to as
‘‘LD SNP.’’ By varying the r2, the LD SNP can represent
one of a cluster of genetic loci that contribute small to
modest genetic effect toward the QTL. Five other SNPs,
with MAFs p 5 0.05, 0.1, 0.2, 0.35 and 0.5, are also
generated in the same region. These five SNPs are not in
LD with the QTL, and thus, represent the null and can be
used to estimate type I error.

The power of associations is estimated at 0.1% sig-
nificance level (a5 0.001) with 10,000 simulation repli-
cates, because our methods are likely to be applied to
multiple SNPs under a linkage peak, and therefore some
correction for multiple testing is appropriate. We choose
three nominal type I error rates (a5 0.001, 0.01, and 0.05)
for all genetic models and generate 100,000 simulation
replicates for evaluation of type I error.

A sample of 300 unascertained sibships are generated
for both homogeneous and heterogeneous samples. When
the sample is homogeneous, we consider a QTL with total
heritability of 30% for most genetic models. Without loss of
generality, we set s2

T ¼ 1 and calculate the additive and
dominant effects, a and d, on the basis of the assumed QTL
heritability (H) and minor allele frequency, p. Note that the
additive effect corresponds to half the average phenotype
difference between the two homozygous genotype groups,
and d is defined by the genetic model: d 5 0, a and �a for
an additive, dominant, and recessive model, respectively.
We consider a number of scenarios with different
combinations of QTL allele frequencies (p), r2, sibship
sizes, and mode of inheritance. In more detail, we compare
power for selection strategies with (1) a range of p 5 0.1,

0.2, and 0.4 for additive and dominant models and p 5 0.3,
0.4, and 0.7 for recessive models with s 5 3 and a fixed
r2 5 0.1; (2) varying s (s 5 3, 4, and 5) with p 5 0.4 and a
fixed r2 5 0.1; and (3) varying effect size of SNP
(LD 5 0.05–0.20, incremented by 0.05) with s 5 3 and
p 5 0.4. These scenarios are summarized in Table I.

Because a study population is likely to be heterogeneous
in many situations, we further evaluate the selection
strategies in 300 sibships consisting of subpopulations.
The simulation of heterogeneous samples is similar to
what has been described in Wang and Elston [2006a] with
minor modifications. The first sample structure consists of
two subpopulations. A QTL with 40% total heritability is
present in subpopulation 1 only. There is no QTL effect in
subpopulation 2. We vary the proportion of the subpopu-
lation 1 (q1) from 0.5 (this sample is denoted as Het1), 0.7
(Het2), and 0.9 (Het3), resulting in samples with increas-
ing homogeneity. Another sample structure consists of
four equally sampled subpopulations with a QTL effect
explaining 0, 10, 20, and 40% of the total variance in
subpopulations 1–4, respectively, this sample is denoted as
Het4. For these four heterogeneity models, we compare
power and type I error for the selection strategies. The
heterogeneity scenarios are summarized in Table III.

All simulations are carried out using the R (version
2.6.1) language (http://www.r-project.org). Merlin soft-
ware [Abecasis et al., 2002] is utilized to estimate multi-
point IBD sharing among individuals and to carry out
variance component linkage analysis to identify the MLS
and sibships with evidence for linkage. We define a
sibship as showing evidence for linkage if the sibship-
specific LODZ0 at the location of the MLS.

TABLE I. Characteristics of the simulated genetic
models: homogeneous populations

Model H% p a MLS (Nlink) Model R2 (%)

Additive
[A1] 30 0.1 1.3 2.7 (169) 3.4
[A2] 30 0.2 1.0 2.7 (170) 3.3
[A3] 30 0.4 0.8 2.7 (170) 3.2�

[A4] 20 0.4 0.7 1.4 (161) 3.3
Dominant

[D1] 30 0.1 0.7 2.7 (170) 3.2
[D2] 30 0.2 0.6 2.6 (172) 3.0
[D3] 30 0.4 0.6 2.4 (173) 2.6�

[D4] 20 0.4 0.5 1.3 (170) 2.6
Recessive

[R1] 30 0.3 1.1 1.7 (169) 1.7
[R2] 30 0.4 0.8 2.2 (169) 2.2�

[R3] 30 0.7 5.5 2.5 (186) 2.9
[R4] 20 0.4 0.6 1.2 (169) 2.1

H, heritability; p, minor allele frequency for the QTL; a, the
additive effect; MLS, the maximum LOD score; Nlink, average
number of linked families; R2, the proportion of phenotypic
variability explained by the LD SNP; s 5 3 for all models in this
table. The r2 5 0.1 between the LD SNP and the QTL for all
scenarios described in this table. The asterisk (�) denotes that
additional genetic models are evaluated with the same H, p, and a
under various LD (r2 5 0.05, 0.1, 0.15, and 0.20) (Table II).
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APPLICATION TO THE FHS DATA

Detailed information for the study sample and genotyp-
ing methods are described elsewhere [Cupples et al., 2007].
In brief, a subset of 1345 FHS participants were selected
from the largest 330 extended pedigrees and genotyping
was conducted using the Affymetrix 100K GeneChip.
Original genome-wide linkage analyses were performed
using 1,341 subjects from the 310 full pedigrees with a
subset of SNPs selected to minimize LD (all pair-wise
D0o0.5) combined with 613 microsatellite markers
[Cupples et al., 2007]. A region of linkage was identified
for FPG measured at the 5th exam LOD43.0 at about
72–77 cM on chromosome 10. We chose this region for
comparing the selection strategies for association analysis.

Because the selection strategies considered application
to nuclear families, we break down the 330 pedigrees into

441 sibships with two or more siblings with phenotypes
and genotypes available. The 441 sibships include 119
sibling pairs, 161 sibships of size 3, 98 sibships of size 4,
and 63 sibships of size 5 or more. These sibships are used
for selection of siblings for association studies. A set of 467
SNPs with pair-wise maximum LD (measured as D0)o0.5
are selected on chromosome 10 to evaluate the linkage
evidence in this sub-sample. The average distance between
any two SNPs is about 289.5 kb. Multipoint IBD sharing is
calculated using Merlin [Abecasis et al., 2002]. In order to
control for confounding from known risk factors and to
increase the ability to detect genetic signals, standardized
residuals were created using multiple linear regression
models [Cupples et al., 2007] adjusting for sex, age, age
squared, and BMI. Furthermore, rank normalized resi-
duals are created for linkage analysis because departure
from the normality assumption may lead to spurious
evidence for linkage [Allison et al., 1999].

Three selection strategies are applied to the FHS data to
select one sibling per sibship, yielding a sample of 441
subjects or about 33% of 1,345 siblings for association
study: (i) the AR strategy; (ii) the EV strategy; (iii) the
strategy based on the combination score statistic (IBD-EV).
Association analyses are performed for the SNPs that are
within the corresponding 1.0-LOD support interval from
the linkage analysis in this study. For each SNP, we
compare association test results using these three strate-
gies to that of GEE using the original 330 pedigrees
structure. The distribution of the standardized residuals of
FPG is skewed to the right (data not shown) and thus,
permutation test are performed for the three selection
strategies.

RESULTS

We first present summary statistics for the genetic
models, followed by power and type I error comparisons
for the different selection strategies in our simulations.
Then we describe the results obtained with FPG in the
FHS.

SIMULATION RESULTS

GENETIC MODELS

Table I presents summary statistics of the simulated
genetic models with sibship size s 5 3 in homogeneous
samples. The 10,000 simulation replicates are used to
estimate the MLS, the number of linked families and the
model R-square (R2). Across additive, dominant, and
recessive models, the average MLS is under 3.0 and the
average number of linked sibships is less than 60%
(56–58%) for H 5 30% and 300 sibships of size s 5 3.

The average R2, corresponding to the estimate of genetic
heritability explained by the LD SNP, is displayed in
Table II for selected additive, dominant, and recessive
genetic models for a range of LD (r2). The QTL (r2 5 1)
explains about 30% phenotypic variability and equals
model heritability H. In general, R2 is largest for additive
models and smallest for recessive models when other
parameters are held constant; moreover, R2 increases when
LD increases for all genetic models.

TABLE III. Summary statistics of the simulated genetic
models: heterogeneous populations

Model p a MLS (Nlink) Model R2 (%)

Additive
[Het1] 0.1 1.5 1.5 (161) 0.02
[Het2] 0.1 1.5 2.4 (165) 0.03
[Het3] 0.1 1.5 3.9 (170) 0.05
[Het4] 0.1 0, 0.7, 1.1 and 1.5 1.4 (160) 0.02

[Het1] 0.2 1.1 1.5 (162) 0.02
[Het2] 0.2 1.1 2.4 (167) 0.03
[Het3] 0.2 1.1 3.8 (174) 0.05
[Het4] 0.2 0, 0.6, 0.8, and 1.1 1.3 (163) 0.02

[Het1] 0.4 0.9 1.4 (166) 0.02
[Het2] 0.4 0.9 2.4 (171) 0.03
[Het3] 0.4 0.9 3.8 (175) 0.05
[Het4] 0.4 0, 0.5, 0.6 and 0.9 1.2 (164) 0.02

Het1, Het2, and Het3 consist of two subpopulations. The QTL
effect with total heritability of 40% only exists in subpopulation 1.
There is no QTL effect in subpopulation 2. We vary proportion of
the subpopulation 1 or q1 at 0.5 (this resulting sample is denoted
as Het1), 0.7 (Het2), and 0.9 (Het3) resulting in samples with
increase in homogeneity. The Het4 consists of four equally
distributed subpopulations with the QTL effect explaining 0, 10,
20, and 40% of the total variance. p, minor allele frequency for the
QTL; a, the additive effect; MLS, the maximum LOD score; Nlink,
average number of linked families; R2, the proportion of
phenotypic variability explained by the LD SNP; s 5 3 for all
models in this table. The r2 5 0.15 between the LD SNP and the
QTL for all scenarios described in this table.

TABLE II. Phenotype variability that can be explained
by LD-SNP markers (%)

r2
(LD SNP-QTL locus) 0.05 0.10� 0.15 0.20 1

R2 [A3] 1.9 3.2 4.8 6.3 30
R2 [D3] 1.5 2.6 3.9 5.1 30
R2 [R2] 1.2 2.2 3.1 5.7 30

The asterisk (�) denotes that scenario is also described in Table I;
rðSNP�D locusÞ represents linkage disequilibrium between an LD
SNP and the QTL locus.
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Table III displays the average model R2 and the average
MLS over 10,000 simulation replicates of the simulated
genetic models for heterogeneous samples.

TYPE I ERROR

Table IV displays the type I error for an additive model
with H 5 30%, p 5 0.2, and s 5 3 when the study popula-
tion is homogeneous. Across all models, the type I error is
not affected by the unassociated SNPs with MAFs in the
range of 0.05–0.5 for all selection strategies at all a levels.
The sample with all siblings (GEE analysis), in general,
exhibits slightly inflated type I error rate at each a level
and this inflation of the type I error is similar for all sibship
sizes. We further evaluate the type I error rates for the EV,
IBD-EV, ML-EV, and ML-IBD-EV strategies using the
permutation test at a5 0.001, 0.01, and 0.05 based on a
total 100,000 replicates. The permutation type I error rates
are similar to the ANOVA type I error (data not shown).
The type I error for other genetic models in both
homogeneous and heterogeneous samples is similar to
that presented in Table IV.

POWER

The power to detect the LD SNP—quantitative trait
association is estimated by simulation in a sample of 300
unascertained sibships for all selections strategies and the
approach using AS. The AR strategy randomly selects one
sib per sibship, resulting in a group of subjects that
represents the underlying population and is expected to
have lower power. The AS sample uses all siblings and is

expected to be more powerful than all selection strategies.
Thus, the AR strategy and the AS sample define the lower
and upper power range and are used as reference points
for power comparisons for other selection strategies. For
both homogeneous and heterogeneous sample conditions,
we compare power for additive models and point out
where dominant and recessive model results differ from
the additive model result.

Homogeneous samples. Figures 1 and 2 display
power comparisons for homogeneous samples. Figure 1
displays power for the six selection strategies and the AS
reference for additive models with H 5 30%, r2 5 0.1, and
s 5 3 and a range of p. Figure 2 presents power for additive
models with H 5 30%, r2 5 0.1, and p 5 0.4 for sibship sizes
s 5 3, 4, and 5. The power of the AR strategy remains
virtually unchanged regardless of sibship size and QTL
minor allele frequency. For additive models, all selection
strategies except the AR strategy exhibit increased power
when p increases. For recessive models, all strategies
exhibit increased power as p increases (Supplementary
Fig. 1). However, dominant models exhibit a different

TABLE IV. Type I error (%) of the five selection
strategies and the approach that uses all siblings for five
SNP markers not associated with the quantitative trait

a AR EV
IBD-
EV

ML-
EV

ML-IBD-
EV

AS
(GEE)

SNP1 0.10% 0.12 0.10 0.09 0.06 0.06 0.23
SNP2 0.13 0.07 0.11 0.10 0.10 0.12
SNP3 0.11 0.09 0.10 0.11 0.11 0.15
SNP4 0.11 0.09 0.10 0.11 0.11 0.13
SNP5 0.11 0.10 0.10 0.10 0.10 0.11

SNP1 1.00% 0.96 0.97 0.98 0.91 0.91 1.45
SNP2 1.03 1.00 0.94 0.99 0.99 1.21
SNP3 0.96 0.90 0.93 0.96 0.96 1.20
SNP4 0.97 0.96 1.02 1.05 1.06 1.16
SNP5 0.99 0.99 1.02 1.01 1.01 1.10

SNP1 5.00% 5.02 4.91 4.95 4.89 4.89 6.03
SNP2 5.13 5.00 4.94 4.95 4.95 5.39
SNP3 4.87 4.88 4.83 4.88 4.87 5.51
SNP4 4.89 5.09 5.04 5.03 5.03 5.35
SNP5 5.05 5.00 4.95 5.02 5.02 5.26

Minor Allele Frequencies (MAFs) for SNP1–SNP5 are 0.05, 0.1, 0.2,
0.35, and 0.5; respectively; AR, randomly selects a sibling/per
sibship; EV, one sibling with the highest absolute phenotype value
|xi| is selected; IBD-EV, one sibling with the highest score statistic
S(j) is selected; ML-EV, the EV strategy is applied using only
linked sibships; ML-EBD-EV, the IBD-EV strategy is applied using
only linked sibships; AS, all siblings are included using model
generalized estimation equation (GEE).

Fig. 1. Additive models with H 5 30%, s 5 3, r2 5 0.1 for p 5 0.1,

0.2, and 0.4: Power comparisons for six strategies and the full
sample in homogeneous samples. AR, randomly selects a

sibling/per sibship; EV, one sibling with the highest absolute

phenotype value |xi| is selected; IBD-EV, one sibling with the

highest score statistic S(j) is selected; ML-EV, the EV strategy is
applied using linked sibships only; ML-EBD-EV, the IBD-EV

strategy is applied using linked sibships only; AS, all siblings

are included using Generalized Estimation Equation (GEE) to
account for sibling correlation.

Fig. 2. Additive models with H 5 30%, p 5 0.4, r2 5 0.1: Power
comparison for six strategies and the full sample with sibship

sizes s 5 3, 4, and 5 in homogeneous samples. AR, randomly

selects a sibling/per sibship; EV, one sibling with the highest

absolute phenotype value |xi| is selected; IBD-EV, one sibling
with the highest score statistic S(j) is selected; ML-EV, the EV

strategy is applied using linked sibships only; ML-EBD-EV, the

IBD-EV strategy is applied using linked sibships only; AS, all

siblings are included using Generalized Estimation Equation
(GEE) to account for sibling correlation.
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trend in that all selection strategies have a decrease in
power for larger QTL allele frequencies (Supplementary
Fig. 2).

The IBD-EV strategy is the most powerful method of all
selection strategies across all additive models considered.
It exhibits 34% higher power than the AR strategy with
p 5 0.1, and about 40% higher power than the AR strategy
for p 5 0.2 and 0.4 (Fig. 1). Compared to using all
individuals, the IBD-EV strategy shows 8, 12, and 13%
loss of power with p 5 0.1, 0.2, and 0.4, respectively
(Fig. 1). In general, the IBD-EV2 strategy has about 4 to
10% lower power than the IBD-EV strategy for all genetic
models we evaluated for homogeneous samples except for
a recessive model with p 5 0.25 and s 5 3 (Supplementary
Fig. 3). When s 5 3, the IBD-EV2 strategy has 4, 9, and 10%
lower power than the IBD-EV strategy for p 5 0.1, 0.2, and
04, respectively (Fig. 1). For additive models with s 5 3, the
EV strategy has 14% lower power than the IBD-EV
strategy with p 5 0.1 and 5% lower power with p 5 0.2;
when p 5 0.4, the two strategies have almost the same
power (Fig. 1). However, the EV strategy is slightly more
powerful than the IBD-EV strategy for both recessive and
dominant models, and the power difference between these
two strategies become smaller for larger p (Supplementary
Figs. 1 and 2). When sibship size increases, the IBD-EV
strategy tends to be more powerful than the EV strategy,
and this is true for all additive, dominant, and recessive
genetic models (Fig. 2 and Supplementary Figs. 3 and 4). In
Fig. 2, the IBD-EV strategy exhibits 2% higher power than
the EV strategy for both s 5 4 and 5.

In general, the sample size for the ‘‘linked’’ strategies is
about 60% of that for the AR/EV/IBD-EV strategies.
However, the two ‘‘linked’’ strategies are more powerful
than the AR strategy for all genetic models investigated.
The ML-IBD-EV strategy gains about 11, 13, and 14% of
power for p 5 0.1, 0.2, and 0.4, respectively, over the AR
strategy, despite about 40% of decrease in sample size
(Fig. 1). There is a slight gain in power for the ML-EV
strategy over the AR strategy when p 5 0.1, the gains being
10 and 14% when p 5 0.2, and 0.4, respectively (Fig. 1).
Despite the power gains over the AR strategy, the power to
detect the marker-phenotype association is 20–50% lower
for the two ‘‘linked’’ strategies compared to the power
using all siblings. This observation holds for all genetic
models investigated, and is due to the great reduction in
sample size by restricting the analysis to linked sibships.

We vary the effect size of the SNP marker by varying the
LD between the LD SNP and the QTL. The results indicate
that the power of all strategies increases in parallel with r2

increases from 0.05 to 0.10, 0.15, and 0.20, for additive
models with H 5 30%, p 5 0.4, and s 5 3. The correspond-
ing model R2 is 1.92, 3.24, 4.77, and 6.26%, respectively.
The biggest power increases occurs when R2 changes from
1.92 to 3.24% (or r2 changes from 0.05 to 0.10). For R2 of 5%
or more, the power for all strategies, but the AR strategy,
approach 1 at a5 0.001.

Because the trait values for individuals selected from the
EV, IBD-EV, ML-EV and ML-IBD-EV strategies are no
longer normally distributed, we perform a permutation
test on selected genetic models. We simulated a total
20,000 replicated and evaluate power for these four
strategies at a5 0.001. The power estimated from the
permutation test for the strategies are similar to the power
estimated from ANOVA models.

HETEROGENEOUS SAMPLES

Figure 3 displays power comparisons for the selection
strategies for the four heterogeneity models with s 5 3,
r2 5 0.15, and QTL allele frequency p 5 0.2. We use this
example to compare power in heterogeneous samples and
point out differences with other genetic models. For the
four heterogeneous samples we consider, the power
increases as the homogeneity in the sample increases
[i.e., Power (Het3)4power (Het2)4power (Het4)4power
(Het1)]. The IBD-EV selection strategy remains most
powerful among all the selection strategies for additive
genetic models and is more powerful than the IBD-EV2
strategy in most instances (Fig. 3 and Supplementary Figs.
5–8). For the model presented in Figure 3, the IBD-EV
strategy retains about 33, 70, 96, and 48% of power
achieved using all individuals (AS reference) for Het1,
Het2, Het3, and Het4 samples, respectively. The EV
strategy is equivalent to or slightly better than the IBD-
EV strategy for the additive model at p 5 0.4, dominant
models at p 5 0.1, 0.2, and 0.4 and recessive models at p
5 0.4 and 0.7 (Supplementary Figs. 5, 7, and 8). The linked
strategies have lower power compared to EV and IBD-EV
strategies. Compared to the AR strategy, the ML-IBD-EV
strategy is 40, 31, 36, and 52% more powerful for Het1,
Het2, Het3, and Het4 samples, respectively (Fig. 3).

Despite the power difference among the selection
strategies, the power loss for the best selection strategy
(IBD-EV in Fig. 3) is large compared to the use of all
siblings (the AS reference) when the study sample is more
heterogeneous: 67 and 52% power loss for Het1 and Het4
sample conditions compared to AS for the example in
Figure 3.

Fig. 3. Additive model with p 5 0.2, s 5 3, and r2 5 0.15: Power
comparison for six selection strategies and the full sample in

heterogeneous samples. There are two subpopulations (with

proportion q1 and q2, q1 þ q2 ¼ 1) in Het1, Het2, and Het3. The

QTL effect with H 5 40% only exists in subpopulation 1. We
vary q1 from 0.5 (this sample is denoted as Het1), 0.7 (Het2), and

0.9 (Het3). The Het4 sample consists of four equally sampled

subpopulations with a QTL effect explaining 0, 10, 20, and 40%
of the total variance in subpopulations 1–4, respectively. AR,

randomly selects a sibling/per sibship; EV, one sibling with the

highest absolute phenotype value |xi| is selected; IBD-EV/or

IBD-EV2, one sibling with the highest score statistic S(j), using
the population mean/or sibship-specific mean, is selected; ML-

EV, the EV strategy is applied using only linked sibships; ML-

EBD-EV, the IBD-EV strategy is applied using only linked

sibships; AS, all siblings are included using Generalized
Estimation Equation (GEE) to account for sibling correlation.
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APPLICATION TO THE FHS DATA

We perform variance component linkage analysis using
441 sibships and selected 467 SNPs on chromosome 10.
The resulting LOD scores from the linkage analysis using
the 441 sibships are generally lower than using the 330
extended pedigrees with the same set of SNPs (data not
shown). However, the linkage peaks fall at the same region
(70–80 cM on chromosome 10) for both analyses. To follow
up on this linkage peak, 580 SNPs within the correspond-
ing 1.0-LOD support interval are further tested for
association with FPG; among them, 55 are included in
the 467 SNP set that is used in linkage analysis.

Table V displays the 10 highest ranked SNPs from each
of the IBD-EV, EV strategies and analysis of the full sample
using GEE model. Table V(a) displays P-values ordered by
IBD-EV P-values, (b) by EV P-values, and (c) by GEE

P-values. Table V(b) contains 11 SNPs because the last
two SNPs have the same P-values for the EV strategy. Two
SNPs, rs876705 and rs780654, are in common for the
two selection strategies and the full sample. The IBD-EV
and EV strategies yield more consistent results and six
SNPs are in common for these two selection strategies.
Five SNPs identified from the analysis of the full sample
are also in the EV strategy analysis. The IBD-EV and
analysis of the full sample only have two SNPs in common
(rs876705 and rs780654). In contrast, the AR strategy yields
no P-values below 0.05. Seven SNPs from the IBD-EV
strategy and six SNPs from the EV strategy fall within or
very close to genes, while only three SNPs from analysis of
the full sample are within genes. We include the gene
names in the footnote of Table V. Among them, the
hexokinase domain containing 1 (HKDC1, �5 kb away
from rs5030938); and hexokinase 1 (HK1; �55 kb away

TABLE V. The 10 smallest P-values from EV, IBD-EV strategies and full sample (GEE) within 1.0 - LOD support interval
for linkage peak on chromosome 10 with fasting plasma glucose at exam 5

SNP ID IBD-EV IBD-EV Permutation EV EV Permutation AR GEE Known Gene

(a) Ordered by IBD-EV P value
rs4074715 0.0005 0.0011 0.0002 0.0002 0.2215 0.0228 CTNNA3 (intron)
rs10509276 0.0022 0.0026 0.0008 0.0013 0.3289 0.0859 CTNNA3 (intron)
rs5030938 0.003 0.0023 0.0237 0.0236 0.3181 0.1451 HKDC1|HK1 (flanking)
rs2043089 0.0036 0.0036 0.0047 0.0042 0.1622 0.0288
rs4082516 0.0053 0.0061 0.0118 0.0119 0.3594 0.0955 COL13A1 (intron)
rs876705 0.0067 0.0065 0.0059 0.0057 0.1405 0.0113
rs10509378 0.0085 0.0094 0.0681 0.0664 0.3365 0.2838 KCNMA1 (intron)
rs10509379 0.0112 0.0106 0.056 0.0526 0.3987 0.553 KCNMA1 (intron)
rs3851252 0.0113 0.0106 0.0057 0.0061 0.3053 0.1041
rs780654 0.0126 0.0137 0.0037 0.0043 0.281 0.0065 SLC29A3 (intron)

(b) Ordered by EV P value
rs4074715 0.0005 0.0011 0.0002 0.0002 0.2215 0.0228 CTNNA3 (intron)
rs10509276 0.0022 0.0026 0.0008 0.0013 0.3289 0.0859 CTNNA3 (intron)
rs4074716 0.0191 0.0173 0.0015 0.0016 0.3236 0.1131 CTNNA3 (intron)
rs4622198 0.014 0.0137 0.0016 0.0017 0.3138 0.1234 KCNMA1 (intron)
rs1516510 0.019 0.0199 0.0026 0.0026 0.3378 0.158 KCNMA1 (intron)
rs780654 0.0126 0.0137 0.0037 0.0043 0.281 0.0065 SLC29A3 (intron)
rs2043089 0.0036 0.0036 0.0047 0.0042 0.1622 0.0288
rs3851252 0.0113 0.0106 0.0057 0.0061 0.3053 0.1041
rs876705 0.0067 0.0065 0.0059 0.0057 0.1405 0.0113
rs2140391 0.0589 0.0565 0.0099 0.008 0.2739 0.0093
rs1880065 0.0589 0.0565 0.01 0.008 0.2744 0.0097

(c) Ordered by GEE P value
rs780654 0.0126 0.0137 0.0037 0.0043 0.281 0.0065 SLC29A3 (intron)
rs2140391 0.0589 0.0565 0.0099 0.008 0.2739 0.0093
rs1354038 0.068 0.0656 0.1175 0.1183 0.2639 0.0096
rs1880065 0.0589 0.0565 0.01 0.008 0.2744 0.0097
rs2140390 0.0589 0.0565 0.01 0.0082 0.2746 0.0097
rs7895188 0.0499 0.0477 0.0368 0.0349 0.2132 0.0105 DLG5 (intron)
rs876705 0.0067 0.0065 0.0059 0.0057 0.1405 0.0113
rs1500737 0.0867 0.0803 0.1438 0.1426 0.2753 0.0119
rs4399260 0.0274 0.0256 0.0367 0.0396 0.1755 0.012
rs2120989 0.1735 0.1706 0.3323 0.3287 0.4128 0.012 CCDC6 (intron)

Genotype annotation sources are described in Cupples et al. [2007]; CTNNA3, a-T-catenin; COL13A1 type XIII collagen a 1 (COL13A1);
KCNMA1, potassium large conductance calcium-activated channel, subfamily M, a member 1; HKDC1, hexokinase domain containing 1;
HK1, hexokinase 1; SLC29A3, solute carrier family 29 (nucleoside transporters), member 3; DLG5, DLG5 discs, large homology 5; CCDC6,
coiled-coil domain containing 6; AR, all random or randomly select a sibling/per sibship; EV, one sibling with the highest absolute
phenotype value |xi| is selected; IBD-EV, one sibling with the highest score statistic S(j) is selected.
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from rs5030938) are involved in glucose metabolism. In
addition, DLG5 discs, large homology 5 (DLG5) (contains
intron SNP rs7895188) is associated with inflammatory
bowel diseases and Crohn’s disease.

DISCUSSION

In this article, we extend the selection of the most
informative individuals from families with multiple
siblings from a binary trait [Fingerlin et al., 2004] to a
quantitative trait to propose the use of the most extreme
trait value and a score statistic, S(j) that incorporates an
individual’s trait value and his/her IBD sharing informa-
tion with other siblings in the selection of the most
informative individuals. The S(j) score is an extension of
the QLS statistic [Wang and Elston, 2006a] with modifica-
tions and is used in a different manner in the selection
process. The S(j) score contains a modified QLS statistic,
replacing the sibship-specific mean with the sample mean.
In addition, the S(j) score for an individual is a summation
of the sibpair scores over all pairs that includes sibling j,
while the QLS statistic is a summation of the scores for all
the pairs in a sibship. As a result, the QLS statistic is
sibship-specific and selects linked sibships from a hetero-
geneous sample, and S(j) is sibling-specific and selects the
most informative individuals from sibships. Despite the
difference, the individuals selected based on these two
score statistics tend to carry genetic variants influencing
the quantitative trait and be more homogeneous and thus
have greater power to detect an association compared to
the random selection strategy.

We evaluated different selection strategies in both
homogeneous and heterogeneous study samples. When
the sample was or was close to homogeneous, we found
that the IBD-EV strategy saves most in genotyping cost
when selecting one ‘‘best’’ sibling from sibships with
multiple siblings for additive genetic models included in
our simulations. The IBD-EV strategy only lost 8–13% of
power compared to the full sample that uses all siblings,
across all additive models considered, but offered at least
50% genotyping cost saving (Figs. 1 and 3). Compared to
the alternative IBD-EV2 strategy, which incorporates the
sibship-specific mean as the offset in the S(j), the IBD-EV
strategy, using the sample mean as the offset in S(j), retains
more power, for most genetic models in both homoge-
neous and heterogeneous conditions and different sibship
sizes. The GEE model that was used to accommodate
correlated family structure posed somewhat increased
type I error (Table IV), as observed by Cupples et al. [2007].
If we take this fact into consideration, the power loss of the
IBD-EV strategy is even less.

One limitation of this score statistic is that the IBD
sharing information does not accurately reflect the
expected trait differences when trait values follow either
dominant or recessive models. We illustrate this point with
a dominant model, where the mean phenotype of
individuals with the AB and BB genotypes are the same
but different from the mean phenotype of individuals
with the AA genotypes. For a nuclear family with three
siblings having genotypes of AA, AB, and BB, the trait
difference for sib-pair 1–2 will be bigger, on average, than
that trait difference for sib-pair 2–3 for a dominant model
despite the IBD sharing probability being the same for sib-
pair 1–2 and sib-pair 2–3. A similar situation occurs for

recessive models. For additive models, the IBD-based
statistic reflects the expected difference in phenotype more
accurately. Thus, the IBD-EV strategy is the most powerful
strategy among all selection strategies in the context of
additive models.

Across all additive models, the EV strategy loses little
power compared to the IBD-EV strategy except for
additive models with p 5 0.1. For dominant and recessive
models, the EV strategy is, in general, slightly more
powerful than or equivalent to the IBD-EV strategy. The
EV strategy does not require IBD sharing information and
thus can be performed for sibling selection without prior
linkage scans, and result in a sample that can be used for
testing association across the whole genome, not just
under a particular linkage peak.

We performed permutation tests to validate our findings
for the EV, IBD-EV, ML-EV, and ML-IBD-EV strategies
with a range of selected genetic models, because the trait
values based on these strategies are no longer normally
distributed. Permutation test results agree with the results
from the ANOVA F-test in this study, mainly because the
trait values based on the EV and IBD-EV strategies are
symmetric. In practice, the phenotype studied may not be
normally distributed because of either ascertainment,
outlier observations, or a skewed distribution. For non-
normal data, trait values based on the EV and IBD-EV
strategies may not be symmetric, and the trait values
based on the AR strategy may be skewed in an ascertained
sample unlike the traits simulated in our study. Even
though the ANOVA method is robust to non-normal data,
we recommend performing the permutation test to obtain
empirical P-values for association studies for all strategies.
The GEE model is also susceptible to non-normal data and
might has larger elevated type I error [Cupples et al.,
2007], however; the permutation test cannot be directly
used in the GEE model because of correlation structure in
the full sample.

We applied three selection strategies to an FHS contin-
uous trait—FPG at exam 5. Only two SNPs are in common
in the EV and IBD-EV strategies and the analysis of the full
sample. There may be two reasons for the inconsistent
results. First, there is a trade-off when we try to select the
most informative individuals from sibships. As stated
previously, 441 siblings only represent about 30% of sample
formed by all available siblings. On the other hand, the
selected 441 siblings may represent a more homogeneous
population than the full sibships. Therefore, the EV and
IBD-EV strategy may detect signals that would go
undetected by analyzing the full sample. Despite the
inconsistency among all three approaches, six SNPs from
the EV strategies are in common with the IBD-EV strategies
and five SNPs yielded from the analysis of the full sample
are also in the EV strategy analysis, indicating that the EV
strategy might be the best approach in practice, given the
results in this application and those from simulations.

In association studies using family data, if trait values
and linkage information are available, selection of the most
informative individuals from each family using the score
statistic or only the trait value is a worthwhile effort. This
selection offers at least 50% genotyping cost saving,
sacrificing little power loss (at most 13% in this simula-
tion) if a study population is or close to homogenous. If the
study population is heterogeneous, selection might repre-
sent a more homogeneous population.
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