
On the Advantage of Haplotype
Analysis in the Presence of Multiple
Disease Susceptibility Alleles

Richard W. Morrisn and Norman L. Kaplan

Biostatistics Branch, National Institute of Environmental Health Sciences,
Research Triangle Park, North Carolina

We investigated the effect of multiple susceptibility alleles at a single disease locus

on the statistical power of a likelihood ratio test to detect association between

alleles at a marker locus and a disease phenotype in a case-control design. Using

simplifying assumptions to obtain the joint frequency distribution of marker and

disease locus alleles, we present numerical results that illustrate the impact of

historical variation of initial associations between marker alleles and suscept-

ibility alleles on the power of a likelihood ratio test for association. Our results

show that an increase in the number of susceptibility alleles produces a decrease in

power of the likelihood ratio test. The decrease in power in the presence of

multiple susceptibility alleles, however, is less for markers with multiple alleles

than for markers with two alleles. We investigate the implications of this

observation for tests of association based on haplotypes made up of tightly linked

single-nucleotide polymorphisms (SNPs). Our results suggest that an analysis

based on haplotypes can be advantageous over an analysis based on individual

SNPs in the presence of multiple susceptibility alleles, particularly when linkage

disequilibria between SNPs is weak. The results provide motivation for further

development of statistical methods based on haplotypes for assessing the

potential for association methods to identify and locate complex disease genes.
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INTRODUCTION

Studies of statistical methods for detecting and localizing genes contributing to
risk for a complex disease depend on a number of simplifying assumptions. One
assumption frequently employed in studies of methods that test for association
between marker genotypes and disease phenotype is that a single susceptibility allele
is present in the population at a disease locus [Clayton, 2000; Lazzeroni, 2001]. This
assumption, embodied in the concept of a shared ancestral haplotype, is appropriate
for populations in which chromosomes bearing a susceptibility allele trace their
history to a common ancestor carrying the susceptibility mutation. Such a mutation
may have been present in a small group of founders, or it may have arisen
spontaneously. Alternatively, allelic variation at a complex disease locus may be
extensive, with multiple susceptibility alleles of independent origin present in a
population [Pritchard, 2001; Terwilliger and Weiss, 1998]. Because the genetic basis
of complex human diseases is unknown, the hypothesis of a single susceptibility allele
may be inappropriate when studying the prospects for association methods to
identify complex disease genes.

An immediate concern raised by the hypothesis of multiple susceptibility
alleles is the potential for limiting statistical power to detect association [Slager et
al., 2000; Longmate, 2001]. It is not difficult to see how the presence of multiple,
independent susceptibility alleles at a disease locus might adversely affect
detection of association between marker genotypes and a disease phenotype.
Suppose that a biallelic marker locus is tightly linked to a disease locus at which
multiple susceptibility alleles arise by independent mutation. Susceptibility
mutations occur on chromosomes bearing either marker allele in proportion to
the frequencies at which the marker alleles occur in the population. If penetrances
of genotypes that carry any of the susceptibility alleles are similar, then the
frequency of a particular marker allele among affected individuals effectively
depends on how often a susceptibility mutation occurs on a background bearing
that marker allele. If the number of independent susceptibility mutations is large,
then the frequencies of marker alleles among affected individuals will be very
similar to the frequencies of marker alleles among unaffected individuals, making
it difficult to detect an association between marker genotypes and a disease
phenotype [MacLean et al., 2000; Schork et al., 2001]. Recombination, which
reduces initial linkage disequilibrium between marker alleles and susceptibility
alleles, would make the situation worse.

Here we investigate the consequences of multiple, independent susceptibility
alleles on the power of a likelihood ratio test (LRT) to detect association in a case-
control design. We studied power under alternatives in which linkage disequilibria
between marker and susceptibility alleles arose from independent sampling of
marker alleles by susceptibility mutations. Our primary conclusion is that in the
presence of multiple susceptibility alleles an analysis based on haplotypes can be
advantageous over an analysis based on individual single-nucleotide polymorphisms
(SNPs), especially when linkage disequilibria between SNPs forming a haplotype are
weak. This result provides motivation for further development of statistical methods
based on haplotypes for assessing the potential for association methods to identify
and locate complex disease genes.
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METHODS

Likelihood Ratio Test

We studied the effect of multiple susceptibility alleles on the statistical power of
an LRT to detect a difference in marker allele frequencies between cases and
controls. We assumed a single population in which mating occurs at random with
respect to marker-disease haplotypes, and computed power of the LRT under
specific alternatives for a sample of 600 cases and 600 controls.

The LRT statistic for a test of the null hypothesis that marker allele frequencies
are equal in case and control populations is given by 2½lðy; p̂pÞÞ � lðy; p̂p0Þ�, where y
represents marker allele, haplotype, or genotype counts. lðy; p̂p0Þ is the value of the
log-likelihood with separate maximum likelihood estimates of marker probabilities,
p̂p, in cases and controls, and lðy; p̂p0Þ is the value of the log-likelihood under the null
hypothesis with marker probability estimates, p̂p0, constrained to be equal in cases
and controls. Under the null hypothesis, the LRT statistic is asymptotically
distributed as central w2 with degrees of freedom equal to the number of constraints
used to compute lðy; p̂p0Þ. Under an alternative hypothesis, the LRT statistic is
asymptotically distributed as noncentral w2 with degrees of freedom as under
the null.

The LRT statistic is based on a multinomial likelihood. For markers with two
or more alleles and for haplotypes when haplotype phase was assumed known, the
LRT statistic was computed using multinomial maximum likelihood estimates
of marker allele or haplotype frequencies [Agresti, 1990]. When haplotype phase
was assumed unknown, the LRT statistic was computed using an expectation-
maximization algorithm to maximize a multinomial likelihood based on genotype
frequencies under the assumption of Hardy-Weinberg equilibrium [Excoffier and
Slatkin, 1995; Fallin et al., 2001]. We used a Newton-Raphson algorithm to
maximize the complete-data likelihood and substituted the resulting maximum
likelihood estimates into the observed-data likelihood, which has coupling and
repulsion phase double heterozygotes confounded, to obtain the LRT statistic.

To compute the power of the LRT, we obtained the noncentral parameter of the
w2 distribution for a specified alternative hypothesis by computing the LRT statistic
using expected log-likelihoods in the expression for the LRT statistic. The resulting
value of the LRT statistic was used as the noncentrality parameter of the noncentral
w2. Expected log-likelihoods were formed by replacing counts y with their expected
values, obtained as the product of sample size and the multinomial probabilities
associated with a specific alternative hypothesis, as described below [for genetic
applications, see Schaid, 1999; Longmate, 2001]. Using this noncentral parameter,
the power for LRT under a specified alternative was obtained by computing the
probability that a noncentral w2 distributed random variate exceeds the (1�a)
percentile from a central w2 distribution with the same degrees of freedom. We used
a¼ 0.01 for all tests. The accuracy of this method of power computation was verified
by computer simulations (results not shown).

To compare the power of a multiple-degree-of-freedom LRT based on
haplotypes with the power based on individual SNPs, we defined an individual
SNP procedure as the maximum LRT statistic among the set of LRT statistics
computed individually for each SNP comprising a haplotype. Control of type I error
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associated with performing separate tests was accomplished by Bonferroni
correction of the critical value. Results of permutation tests for individual SNP
procedures suggested that Bonferroni correction at level a¼ 0.01 is not conservative
for 2 and 3 marker haplotypes (results not shown).

Specification of Alternative Hypotheses

The LRT has null hypothesis PrfmijAg ¼ Prfmig for all i ¼ 1; 2; . . . ; r,
where mi indexes the i

th allele (or haplotype) among r marker alleles, and A denotes
an affected phenotype. As shown in the Appendix, under random mating,
PrfmijAg ¼

Pt
j¼0 Prfmi jgjgPrfgj jAg, where gj represents allele j ¼ 0; 1; . . . ; t at the

disease locus. The case for a single susceptibility allele is given by Akey et al. [2001]
and Chapman and Wijsman [1998].

The null hypothesis is satisfied when all penetrances are identical (i.e.,
Prfgj jAg ¼ Prfgjg for all j ). In this article, we limit consideration to additive
penetrances of the following form: PrfAjg0g0g ¼ b0, PrfAjg0gjg ¼ b0 þ b1, and
PrfAjgigjg ¼ b0 þ 2b1, for i; j ¼ 1; 2; . . . t. Power computations were done using
values of b0 ¼ 0:01 and b1 ¼ 0:02, which produce genotype relative risks of 3 or 5 for
1 or 2 copies of a susceptibility allele, respectively.

The null hypothesis is also satisfied when linkage equilibrium occurs between all
marker-disease allele pairs (i.e., Prfmi jgjg ¼ Prfmig for all i and j ). Since the joint
marker-disease allele frequency distribution determines all pairwise linkage
disequilibria, it is sufficient to specify the joint frequency distribution of marker
and disease locus alleles along with a set of penetrances to compute the power for an
alternative hypothesis, and thereby study the power of the LRT.

Single Historical Scenario

To illustrate the construction of a joint marker-disease allele frequency
distribution for one possible historical scenario, we consider a single susceptibility
allele and assume a large population in which a biallelic marker is segregating for
alleles m1 and m2. Suppose that a susceptibility mutation, g1, at a tightly linked
disease locus occurs by chance on a chromosome bearing 1 of the 2 marker alleles,
say, the m2 allele. If the effects of recombination are minimal, then to a reasonable
approximation, Prfm2jg1g ¼ 1, which implies Prfm2 \ g1g ¼ Prfg1g. Moreover,
since g1 initially occurred on a chromosome bearing m2, we also have Prfm1jg1g ¼ 0,
which implies Prfm1 \ g1g ¼ 0. Among chromosomes bearing the nonsusceptibility
allele g0, we assume that marker allele frequencies are stable and write Prfmi \ g0g ¼
PrfmigPrfg0g for i¼ 1, 2.

Generalizing to multiple susceptibility alleles, the joint marker-disease allele
frequency distribution has three types of elements:

Prfmi \ g0g ¼PrfmigPrfg0g

Prfmi \ gjg ¼
Prfgjg if gj occurs on a chromosome with marker mi

0 otherwise

� �

where j ¼ 1; . . . t indexes susceptibility alleles. Table I gives an example of one
possible historical scenario for four marker alleles and four susceptibility alleles. This
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hypothetical joint distribution is a reasonable approximation when four preexisting
marker alleles are segregating in a population into which four susceptibility
mutations were introduced at a tightly linked locus and increased in frequency
quickly enough that recombination can be ignored. Omitting recombination results
in complete linkage disequilibrium between marker alleles and susceptibility alleles,
which produces the greatest opportunity for detecting an association. We consider
the consequences of relaxing this assumption in the Discussion.

The distribution given in Table I differs from the initial conditions employed by
Chapman and Wijsman [1998, their Table 1] and Akey et al. [2001] for a single
susceptibililty allele. They fixed marginal marker allele frequencies at the time of
sampling, whereas we fixed ancestral marker allele frequencies and allowed
alternative mutational histories to influence marginal marker allele frequencies
at the time of sampling, depending on how the mutation process distributed
susceptibility alleles among marker alleles. Current marker allele frequencies can
therefore be viewed as random variables whose values depend on the outcome of
a random mutation process that associates susceptibility mutations with marker
alleles. From this perspective, ancestral marker allele frequencies, Prfmig, can be
thought of as expected values of current marginal marker allele frequencies over
random mutational histories. In what follows, when we refer to marker allele
frequencies, we mean ancestral marker allele frequencies.

The joint marker-disease allele frequency distribution is determined by marker
allele frequencies, susceptibility allele frequencies, and the outcome of the historical
process that associates particular susceptibility alleles with particular marker alleles
as a consequence of independent mutations. For stable ancestral marker allele
frequencies, we consider the consequences of alternative historical scenarios on LRT
power when susceptibility alleles are equally frequent. This represents a worst-case
scenario with respect to LRT power, because disease locus genotypes bearing a
particular number of susceptibility alleles will be equally represented among cases.
For a fixed number of susceptibility alleles, t, we set Prfg0g ¼ 0:80 and let
Pr{gj}¼ 0.20/t for all j.

Multiple Historical Scenarios

With two marker alleles and t41 susceptibility alleles, the number of
susceptibility mutations associated with one of the marker alleles, say, m1, is

TABLE I. Hypothetical Joint Distribution of a Marker Locus With Four Alleles and Disease Locus With

One Nonsusceptibility Allele, g0, and Four Susceptibility Alleles

Disease locus alleles

Marker alleles g0 g1 g2 g3 g4

m1 Pr{m1}Pr{g0} Pr{g1} 0 0 0

m2 Pr{m2}Pr{g0} 0 Pr{g2} 0 Pr{g4}

m3 Pr{m3}Pr{g0} 0 0 0 0

m4 Pr{m4}Pr{g0} 0 0 Pr{g3} 0

a
All LRT power computations, except those based on ancestral selection graph, assume Pr{g0}¼ 0.80 and

equally frequent susceptibility alleles (Pr{gj}¼ 0.20/t for j¼ 1, 2,. . .,t).
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binomial with parameters Prfm1g and t. Each realization of the binomial process
represents a particular mutational history, which has associated with it a joint
marker-disease allele frequency distribution from which LRT power can be
computed. Consequently, power can be viewed as a random variable that depends
on initial associations between marker alleles and susceptibility mutations that occur
with binomial probabilities. We generalize the binomial distribution for a two-allele
marker to a multinomial distribution for an r-allele marker. With t susceptibility
alleles, the multinomial distribution has parameters t ¼ ðt1; t2; . . . ; trÞ

0 and
p ¼ ðp1; p1; . . . ; prÞ

0, where t is the vector of counts of susceptibility mutations
associated with each of the r marker alleles, such that

Pr
i¼1 ti ¼ t and p is the vector

of marker allele frequencies. For a fixed number of susceptibility mutations, the
number of historical scenarios considered for LRT power computations is the
number of outcomes for the multinomial distribution [Feller, 1957].

Expected LRT Power

Expected LRT power over all unobservable histories, denoted L, is given by

EL½PrfrejectH0g� ¼
X
h2L

PrfrejectH0jhgPrfhg;

where h indexes a particular historical realization. PrfrejectH0jhg is the power of
LRT conditional on a history, and Pr {h} is the multinomial probability for that
history. For a given number of equally frequent susceptibility alleles, there can be
substantial variation in conditional LRT power for different marker-susceptibility
allele configurations. Consequently, we summarized the distribution of conditional
LRT power resulting from historical variation by computing the probability of
obtaining an LRT with power of at least 0.80. The quantile statistic is

PrfLRT power � 0:80g ¼
X
h2sðLÞ

Prfhg;

where s(L) is the subset of histories for which conditional LRT power is at least 0.80.
We computed LRT power for every history and summed the multinomial
probabilities of histories for which conditional LRT power was 0.80 or greater.

Nonuniform Susceptibility Allele Frequencies

We relaxed the assumption of equally frequent susceptibility alleles by using a
model employed by Pritchard [2001] to study properties of susceptibility alleles that
originate by mutation and are subject to drift and weak purifying selection. The
model, known as the ancestral selection graph (ASG), was originally described by
Krone and Neuhauser [1997] and Neuhauser and Krone [1997], and represents an
extension of neutral coalescent methods to accommodate weak selection [Nordborg,
2001]. We used software developed by Paul Fearnhead (http://www.maths.lancs.
ac.uk/~fearnhea/software/) to generate samples of disease locus alleles from an ASG,
with mutation and selection parameters set to values provided by Pritchard [2001]. In
particular, we used ASG parameter values 4Nes ¼ 20 and 4Nem ¼ 5, where Ne is the
effective population size, s is the amount of selection against susceptibility alleles,
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and m is the mutation rate to susceptibility alleles (Pritchard’s ms). The mutation rate
from susceptibility to nonsusceptibility alleles (Pritchard’s mN) was 10

�2m.
For each ASG realization, representing a single historical scenario, a

prespecified allele was designated the nonsusceptibility allele and all other alleles
were designated susceptibility alleles. We used only realizations where the frequency
of the nonsusceptibility allele was in the interval [0.50, 0.95]. The joint marker-
disease allele frequency distribution used to compute LRT power was obtained
by random assignment of susceptibility alleles to marker alleles. Conditional
LRT power was computed for each ASG realization, and PrfLRT power � 0:80g
was estimated by the proportion of realizations with conditional LRT power
at least 0.80.

RESULTS

Uniform Distribution of Multiple Susceptibility Mutations:
2, 4, and 8 Marker Alleles

Since, for a fixed number of marker alleles, equally frequent alleles yield the
most powerful test [Chapman and Wijsman, 1998], we computed PrfLRT power �
0:80g under a uniform distribution of marker alleles. Figure 1 shows that for a
marker with 2, 4, or 8 alleles, PrfLRT power � 0:80g declines as the number of
susceptibility alleles increases. An interesting feature of Figure 1 is that with equally
frequent marker alleles, PrfLRT power � 0:80g does not decline as quickly for

Fig. 1. PrfLRT power � 0:80g for a marker with 2, 4, or 8 equally frequent alleles. Susceptibility alleles

are equally frequent, and sample size is 600 cases and 600 controls.
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a multiple allele marker as it does for a biallelic marker. Alternatively, for a given
number of susceptibility alleles, PrfLRT power � 0:80g is greater with more marker
alleles. This observation motivates power comparisons based on haplotypes.

Uniform Distribution of Multiple Susceptibility Mutations:
Haplotypes

Figure 2 illustrates results for a 3-SNP haplotype for which each SNP has
equally frequent alleles. Figure 2a represents uniformly distributed haplotype
frequencies, and Figure 2b represents skewed haplotype frequencies, with 2
complementary haplotypes at high frequency (0.41) and 6 haplotypes at low
frequency (0.03). Comparison of PrfLRT power � 0:80g among the three LRTs
shows that phase-known and phase-unknown exhibit a power advantage over the
individual SNP procedure. The power advantage is greater in Figure 2a, where
linkage equilibrium holds, than in Figure 2b, which illustrates a skewed haplotype
distribution. Similar results were obtained for a 2-SNP haplotype (results not
shown).

Fig. 2. PrfLRT power � 0:80g for a 3-SNP haplotype. Susceptibility alleles are equally frequent, and

sample size is 600 cases and 600 controls. Two haplotype frequency distributions are illustrated. a: Equally
frequent haplotypes. b: 0.41, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, and 0.41. Dark gray columns, phase known;

light gray columns, phase unknown; open columns, individual SNP procedure.
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To investigate extended haplotypes, we used haplotype data for six SNPs in
the IL4RA gene for a sample of whites (170) and blacks (108) in the Chicago area
[Table 1 in Ober et al., 2000]. The sample for whites has two haplotypes with
frequencies 0.382 and 0.376 and 11 haplotypes with frequencies below 0.06. In
contrast, the most frequent haplotype in blacks has a frequency of 0.194, and
ordered haplotype frequencies exhibit a comparatively smooth decline. Conse-
quently, haplotype frequencies in the sample for whites appear more skewed than in
the sample for blacks.

In Figure 3, we use sample haplotype frequencies for six SNPs in the IL4RA
gene as ancestral haplotype frequencies, and compare power for the phase-known
LRT and the individual SNP procedure. For whites and blacks, PrfLRT power �
0:80g declines with an increase in the number of susceptibility alleles. For blacks, the
decline in power is less, and the advantage of the haplotype procedure over the
individual SNP procedure is greater than for whites. This result is consistent with
observations on 3-SNP haplotypes in Figure 2 and observations on 2-SNP
haplotypes (results not shown).

Nonuniform Distribution of Multiple Susceptibility Mutations

Figure 4 illustrates the impact of skewness of susceptibility allele frequencies on
the value of PrfLRT power � 0:80g for 3-SNP haplotypes. For each of two 3-SNP
haplotype distributions, two sets of LRT power estimates are plotted. One set,
labeled ‘‘Ancestral Selection Graph’’, was computed directly from ASG output,

Fig. 3. PrfLRT power � 0:80g for a 6-SNP haplotype in the IL4RA gene (see text). Susceptibility alleles

are equally frequent, and sample size is 600 cases and 600 controls. Haplotype frequency distribution for

whites is 0.382, 0.376, 0.053, 0.041, 0.029, 0.029, 0.029, 0.024, 0.012, 0.006, 0.006, 0.006, and 0.006, and for

blacks is 0.194, 0.148, 0.129, 0.111, 0.102, 0.074, 0.064, 0.056, 0.037, 0.028, 0.019, 0.019, and 0.018. Gray

columns, phase known; open columns, individual SNP procedure.
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while the other set, labeled ‘‘Uniform Susceptibility Alleles’’, was computed using the
observed number of alleles from each ASG realization but setting ‘‘Uniform
Susceptibility Alleles’’ to be equally frequent when constructing the joint marker-
disease allele frequency distribution. For each of the three LRTs, PrfLRT power �
0:80g is greater when computed directly from susceptibility allele frequencies
generated under ASG than when computed using the number of alleles generated by
ASG but forcing them to be equally frequent. This observation holds when all three
SNPs are in pairwise linkage equilibrium and haplotypes are equally frequent
(Fig. 4a) and when the 3-SNP haplotype marker distribution is skewed (Fig. 4b),
although in the latter case power is reduced. We observed the same effect on power
for ASG parameters 4Nes ¼ 12 and 4Nem ¼ 1, and for 2-SNP haplotypes with both
sets of parameters (results not shown).

DISCUSSION

Our study of the effects of multiple susceptibility alleles on the statistical power
of an LRT to detect association is based on a variety of assumptions. Perhaps the
most critical of these assumptions is the form of the joint frequency distribution
of alleles at marker and disease loci. To highlight independent sampling of the
background marker distribution, which is an essential feature of the effect of
multiple susceptibility alleles, we assumed complete association between suscept-
ibility alleles and marker alleles. This assumption produces a simple limiting form of
the joint frequency distribution that retains initial marker-susceptibility allele
associations resulting from independent mutations occurring on a background

Fig. 4. PrfLRT power � 0:80g for a 3-SNP haplotype. For each history, the number of susceptibility

alleles is given by ASG. Susceptibility allele frequencies are directly from ASG or are assumed to be

equally frequent. Two haplotype frequency distributions are illustrated. a: Equally frequent haplotypes. b:
0.41, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, and 0.41. Dark gray columns, phase known; light gray columns,

phase unknown; open columns, individual SNP procedure.
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marker allele distribution. Scenarios where such a joint frequency distribution is
reasonable require minimal recombination between marker and disease loci. This
assumption is appropriate if marker and disease loci are tightly linked and
susceptibility mutations are of recent origin. Young neutral susceptibility mutations
may often be in low frequency; however, more common susceptibility mutations can
also be young if allelic variation at the disease locus is due to a dynamic balance
between mutation and drift with weak purifying selection [Pritchard, 2001]. We can
relax the assumption of minimal recombination when constructing the joint marker-
disease allele frequency distribution by allowing a fraction of initial association
between marker allele and susceptibility allele to be distributed among other markers
in proportion to ancestral marker allele frequencies. Computations performed using
this surrogate for recombination dynamics resulted in reduced power of the LRT
(results not shown). Relaxing the assumption of no recombination in this way,
however, did not alter the qualitative results.

We have assumed throughout that different susceptibility mutations occur
independently of one another in the history of the population. This assumption is
key to our treatment of the problem of multiple susceptibility alleles. Most of our
results, however, were obtained under two additional and admittedly artificial
assumptions that can have an effect on the impact of multiple susceptibility alleles.
One assumption is that susceptibility alleles are equally frequent, which represents
a worst-case scenario. To investigate the effect of this special distribution, we used
a plausible model for susceptibility alleles, the ASG, in which the resulting
distribution is typically skewed with one or few frequent alleles and other less
frequent alleles. In the extreme, a single susceptibility allele would be present. The
effect of skewness is to mitigate the impact of multiple susceptibility alleles on power
reduction of the LRT test. A second assumption is that all susceptibility alleles have
equal penetrance. This assumption ensures that there is no differential representation
of susceptibility alleles in cases due to differential penetrance. Relaxation of this
assumption to a limiting case in which one susceptibility allele has high penetrance
and all others have low penetrance could be expected to reduce allelic variation
among cases and, like skewness in distribution, reduce the impact of multiple
susceptibility alleles. It therefore follows that an ideal scenario for detecting
association with a marker in the presence of multiple susceptibility alleles is for the
disease locus to have a skewed distribution of susceptibility alleles, with the most
frequent allele having the greatest penetrance. Whether this special scenario is
representative of complex disease loci is unclear.

First and foremost, this study shows that the presence of multiple susceptibility
alleles at a disease locus can reduce the power of the LRT test to detect association.
This result was foreshadowed by Terwilliger and Weiss [1998] and illustrated for a
biallelic marker in family-based association tests by Slager et al. [2000]. Our results
extend these earlier results by showing that markers with multiple alleles also
experience a decline in power with an increase in the number of susceptibility alleles.
Consequently, if recent multiple susceptibility alleles are a feature of complex disease
loci, then sample sizes larger than those indicated for a single susceptibility allele
must be considered.

The results of this study suggest that in the presence of multiple disease
susceptibility alleles, haplotype analysis can be advantageous over analyses based
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on individual SNPs. For a single susceptibility allele, Akey et al. [2001] reported
that with equally frequent haplotypes made up of 2 or 4 biallelic sites, a chi-square
test has greater power when based on haplotype than when based on individual
SNPs. Their model involves recombination dynamics, but their conclusion is
essentially the same as that of Chapman and Wijsman [1998], who showed that
with equally frequent alleles, the power of the chi-square test is greater for a
multiple allele marker than for a biallelic marker. The results of this investigation
suggest that these conclusions can be extended to multiple susceptibility alleles at a
disease locus.

In the presence of multiple susceptibility alleles, the power advantage of
haplotype analysis over an individual SNP procedure depends on the degree of
nonrandom association among component SNPs. With strong correlation among
SNPs, marker variability is associated with a few common haplotypes. In this case,
as our results suggest, the power advantage of haplotype analysis can be minimal
or lost. Alternatively, if linkage disequilibrium between SNPs is weak, then
statistical methods based on haplotypes may hold promise for identifying and
locating disease genes if multiple susceptibility alleles are a general feature of
complex disease genes.
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APPENDIX

Denote an affected phenotype by A and let f ¼ PrfAg. Let migj index marker-
disease haplotypes with alleles i ¼ 1; 2; . . . ; r at the marker locus, and alleles j ¼
0; 1; . . . ; t at the disease locus. Let migj/mkgl represent the two haplotypes of an
individual. Then

PrfmijAg ¼
Xr

k¼1

Xt

j¼0

Xt

l¼0

Prfmigj=mkgl \ Ag=f

¼
Xr

k¼1

Xt

j¼0

Xt

l¼0

Prfmigj=mkglgPrfAjmigj=mkglg=f:

Assume disease status depends only on genotype at the disease locus, and write
PrfAjmigj=mkglg ¼ PrfAjgjglg. Further assume that genotypes are formed by
random union of marker-disease haplotypes, so that Prfmigj=mkglg ¼
PrfmigjgPrfmkglg. Then write gamete probabilities Prfmigjg as PrfmijgjgPrfgjg,
and obtain

Prfmi jAg ¼
Xr

k¼1

Xt

j¼0

Xt

l¼0

Prfmi jgjgPrfgjgPrfmk jglgPrfglgPrfAjgjglg=f:
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Sum over marker alleles k and note that random union of marker-disease haplotypes
implies Prfgkglg ¼ PrfgkgPrfglg. Summation over disease alleles l gives the result:

Prfmi jAg ¼
Xt

j¼0

Xt

l¼0

Prfmi jgjgPrfgjgl jAg ¼
Xt

j¼0

Prfmi jgjgPrfgj jAg:
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