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Abstract

Distal enhancers have recently emerged as a common mode of
gene regulation for several transcription factors, including
estrogen and androgen receptors, the two key regulators of
breast and prostate cancer major subtypes. Despite the rapid
success in genome-wide annotation of estrogen receptor-A
(ERA) binding sites in cell lines, the precise mechanism
governing the gene-to-enhancer association is still unknown
and no quantitative model that can predict the estrogen
responsiveness of genes has been hitherto proposed. This
article presents an integrative genomics approach to con-
struct a predictive model that can explain more than 70% of
estrogen-induced expression profiles. The proposed method
combines a recent map of the insulator protein CCCTC-
binding factor (CTCF) with previous ER location studies and
expression profiling in the presence of the translation
inhibitor cycloheximide, providing evidence that CTCF parti-
tions the human genome into distinct ER-regulatory blocks.
It is shown that estrogen-responsive genes with a decreased
transcription level (down-regulated genes) have a markedly
different relative distribution of ER binding sites compared
with those with an increased transcription level (up-regulated
genes). Finally, Bayesian belief networks are constructed to
quantify the effects of ER-binding distance from genes as well
as the insulating effects of CTCF on the estrogen responsive-
ness of genes. This work thus represents a stride toward
understanding and predicting the distal activities of steroid
hormone nuclear receptors. [Cancer Res 2008;68(21):9041–9]

Introduction

Several genome-wide studies have mapped the global binding
locations of estrogen receptor-a (ER-a) in the breast cancer cell
line MCF7 (1–3), shifting the traditional focus of study from
proximal promoters to distal enhancers, the preponderance of
which has now been shown also for other transcription factors
such as androgen receptor and p63 (4, 5). Despite the success in
constructing a genomic map of ER-binding sites, the mechanism by
which ER regulates a certain subset of genes while not affecting
others remains a profound mystery. In fact, the distal nature of ER
activities renders the binding site information alone quite
insufficient for predicting estrogen-responsive genes. For instance,
our analysis of these data shows that only 24% of genes with ER

binding in [�1 kb,1 kb] proximal promoters and only 15% of genes
with ER in exons or introns are actually regulated by ER.

In addition to using chromatin immunoprecipitation (ChIP), a
common approach for identifying genes regulated by a transcrip-
tion factor involves time course expression profiling before and
after overexpression or overactivation of the transcription factor,
e.g., via estrogen induction in the case of ER (2, 6). This method,
however, is complicated by the differential expression of numerous
secondary targets that are not directly regulated by the transcrip-
tion factor under investigation but rather by other transcriptionally
induced transcription factors. Ideally, a combination of high-
throughput expression and ChIP experiments can provide a
powerful tool to discover functional transcription factor binding
sites and a confident set of primary target genes by focusing on
differentially expressed genes with transcription factor binding
sites near the genes. Unfortunately, estrogen and androgen
receptors pose formidable exceptions to this ideal scenario because
they can bind quite far (>100 kb) from the genes that they regulate
while having no effect on intermediate genes. Along this line, a
crucial role has been ascribed to the so-called ‘‘pioneering factor’’
FoxA1, a forkhead protein that selectively localizes to H3K4me2-
modified enhancer regions and remodels chromatin for subsequent
ER and androgen receptor binding activities (1, 7). Around 50%
of ER binding sites have nearby FoxA1, and FoxA1 may thus play an
important role in establishing cell type–specific gene regulation
by ER and androgen receptor (1, 2, 7). However, only a small subset
(<40%) of estrogen-responsive genes can be explained by any
given study to date. Understanding how the estrogen receptor
selectively chooses genes that it regulates thus remains a daunting
challenge.

A recent study attempted to circumvent these difficulties by
using the translation inhibitor cycloheximide in time course
expression profiling (6). In addition to eliminating secondary
estrogen-target genes, cycloheximide can prevent potential repres-
sion of estrogen-induced primary transcription by secondary nega-
tive feedback loops and can also stabilize mRNAs by weakening the
activities of RNases (8), allowing low-level transcripts to accumu-
late for detection. Despite these apparent advantages of using
cycloheximide to identify the genes directly targeted by ER, the
cytotoxicity of cycloheximide and the accompanying genetic
perturbation introduced into cells may raise serious doubts against
the validity of this approach. Our article revisits the use of cyclo-
heximide in studying ER regulatory networks and provide strong
support for the use of cycloheximide in this particular setting. We
accomplish this task by integrating the data available from high-
throughput ER ChIP and expression studies with those from
another genome-wide assay of the so-called CCCTC-binding factor
(CTCF; ref. 9).

CTCF is a nuclear protein that is ubiquitously expressed across
cell types. It binds to diverse DNA sequences by combinatorial use
of its 11-zinc finger DNA-binding domains. CTCF is essential and
highly conserved from fruit fly to human, with its binding sites
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being highly conserved across vertebrates (10). It is the only major
protein identified in vertebrates that is involved in the establish-
ment of insulators that can block enhancer activities. CTCF has
been shown to be involved in the regulation of gene imprinting,
monoallelic gene expression, X chromosome inactivation, and
escape from X-linked inactivation (11). The mechanism of insulator
function, however, still remains unknown. The distribution of
CTCF binding sites in the genome correlates with gene density,
with f46% of sites lying in intergenic regions, 20% near tran-
scriptional start sites, 22% in introns, and 12% in exons (9). Regions
that are depleted of CTCF binding sites often include clusters of
related gene families and genes that are transcriptionally core-
gulated; on the other hand, regions that are enriched in CTCF
binding sites tend to contain genes with tissue-specific multiple
alternative promoters (9). The distribution of CTCF binding sites is
thus consistent with its role as an insulator, and it remains to be
shown in a genome-wide fashion whether CTCF can block the
activity of distally located transcription factors such as estrogen
receptor.

By combining the aforementioned data sets, we here report for
the first time integrated computational models that can predict
estrogen-responsive genes with 60% to 70% sensitivity and 70%
to 80% specificity, demonstrating the insulator function of CTCF
in a global scale. In particular, we show that CTCF may block
transcriptional activation of genes by ER and that most estrogen-
responsive genes do not have CTCF between them and nearby
ER binding sites. We also construct Bayesian belief networks to
quantify the distance effect of ER and FoxA1-binding sites as well
as the insulating effect of CTCF on gene regulation.

Materials and Methods

ChIP-ChIP data analysis. ChIP-enriched sites from the microarray data
set generated by Carroll and colleagues (2) were obtained at a cutoff of FDR

1% as described in ref. 7. We obtained 1,226 ER sites from ref. 3 by mapping

the 1,234 sites reported in ref. (3) to the latest human genome National

Center for Biotechnology Information (NCBI) Build 36, using University of
California Santa Cruz Batch Coordinate Conversion tool with 95% identity.

Overlapping regions from the two lists were combined to obtain a set of

6,285 distinct ER binding sites in MCF7.
Expression data normalization and analysis. The expression data

from refs. 2 and 6 were normalized together using RMA (12) and using the

latest probe mapping to the human genome NCBI Build 36 (13). The cutoffs

for deciding down-regulated and up-regulated genes in the presence of
cycloheximide were obtained by constructing a three-component mixture

model of log fold-change distribution, as described in Results. Gaussian

mixture models of log fold-change distribution were estimated using an

expectation maximization algorithm.1 The 5th and 95th quantiles of the
middle distribution consisting of noise and weakly responsive genes were

chosen as cutoffs. These cutoffs corresponded to the 2nd and 97th quantiles

in the overall fold-change distribution of Bourdeau and colleagues.
Equivalent cutoffs for selecting down-regulated and up-regulated genes of

Carroll and colleagues were taken to be the 2nd and 97th quantiles of the

distribution of the maximum statistic max( fold change at 3 h, fold change

at 6 h).
Correlation of expression of estrogen-inducible genes within and

across CTCF blocks. UGT1A1, UGT1A2, . . ., UGT1A10 comprise a gene

family with alternative transcription start sites (TSS) and were excluded

from ‘‘Within CTCF’’ comparisons to remove any potential bias. The data
set of Wang and colleagues was obtained from Gene Expression Omnibus

GSE2034.

Bayesian network analysis. For each gene, the distance DER from TSS
to the nearest ER binding site in the genome was computed and discretized

into 30 bins, and likewise for the distance DFoxA1 to the nearest FoxA1.

Discretization was performed using the Data PreProcessor (14) with the

option ‘‘Equal Frequency.’’ The boundaries of DER bins were located at
�1169719, �756064, �541760, �410268, �320005, �251895, �198610,

�159728, �125557, �97298, �73124, �51441, �30947, �15326, �684,

11100, 27113, 44859, 67912, 91809, 119665, 152739, 196654, 247969, 312264,

405354, 542869, 737070, 1139259. Similarly, the boundaries of DFoxA1 bins
were at �510165, �317673, �235483, �180471, �144864, �117117, �95399,

�77092, �61167, �46743, �33846, �22280, �12887, �3749, 557, 6754,

15363, 26293, 36663, 49181, 62833, 79941, 99614, 123768, 151500, 188368,

240405, 333340, 516120. The FoxA1 sites at FDR 1% were obtained from
ref. 7. BN PowerPredictor was used to select the four significant Bayesian

belief networks shown in Fig. 5A , maximizing the area under the receiver

operating characteristic curve (14) for training data sets. BN PowerPredictor
estimates the conditional probabilities graphically encoded in Fig. 5A by

simply counting the frequency of events in training data sets. We used an

unbiased success rate of 0.5 as a prior for the Bernoulli variable CLASS.

Posterior probability of CLASS is then computed for each test gene from
these conditional probabilities and prior distribution.

For cross-validation, we formed a subset excluding the 509 up-regulated

genes and trimmed the subset by discarding the top and bottom 5% of

genes ranked by fold change in the presence of cycloheximide. The resulting
trimmed set thus consisted of non–estrogen-responsive genes for testing

the specificity of the networks. The trimmed set and the up-regulated genes

were partitioned into five distinct equal-sized subsets with equal fold-
change distributions for cross-validation.

Results

The effect of cycloheximide and identification of estrogen-
responsive genes. Two sets of time course expression profiles in
MCF7 cells are currently available: (a) the study of Carroll and
colleagues at 0, 3, 6, and 12 hours after estrogen treatment of
hormone-starved cells (2); (b) the study of Bourdeau and colleagues
at 0 and 24 hours after estrogen treatment of hormone-starved
cells with or without cycloheximide (6). Carroll and colleagues used
a Welch t test P value cutoff of 0.001 to identify early (3 hours) and
late (6 and 12 hours) estrogen-induced genes, in which the early
up-regulated genes were interpreted as immediate targets of ER
and the late up-regulated genes a mixture of primary targets that
accumulate slowly and secondary targets that require other
transcription factors induced by estrogen (2). It has been observed,
however, that the t test can be problematic for analyzing diffe-
rential expression with few replicates, because variance estimates
can be unreliable (15). In contrast, ranking genes by fold change
has been shown to correlate well with results from quantitative
PCR validations and to yield a robust framework for comparing
different experimental studies (15). Bourdeau and colleagues thus
used a fold-change (24 hours versus 0 hour) method with a cutoff of
1.4 for up-regulated genes; we here take a similar approach and use
a statistical model to provide further justification for their choice of
fold-change cutoff.

To examine the effect of cycloheximide on estrogen-regulated
genes, we normalized together the data from Carroll and col-
leagues and Bourdeau and colleagues (see Materials and Methods).
Density and quantile-quantile plots of fold changes from the two
data sets, shown in Fig. 1A and B , respectively, indicated that
the data of Carroll and colleagues had roughly three times more
differentially expressed genes than the data of Bourdeau and
colleagues at a given fold-change cutoff in the same cell line MCF7,
consistent with the fact that cycloheximide eliminates many
secondary targets of ER from being differentially expressed after1 http://algorithmics.molgen.mpg.de/Software/PyMix/
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estrogen treatment. The fold-change distribution of Bourdeau and
colleagues has heavy tails and is not easily decomposed into
estrogen-responsive and nonresponsive genes because of tight
mixing between signal and noise. To find a statistical way of
demarcating the subdistribution of up-regulated genes directly
targeted by ER, we constructed a Gaussian mixture model of
fold changes consisting of three components. We fitted the log
fold-change distribution P using an expectation-maximization

algorithm1 as P = 0.64 N(�0.022,0.1) + 0.33 N(0.015,0.24) + 0.03
N(0.45, 0.77), where N(l,r) is normal distribution with mean l
and SD r . Figure 1C shows that the model fits the original distri-
bution well (Kolmogorov-Smirnov test P > 0.13). A simpler two-
component model did not yield a good fit (Kolmogorov-Smirnov
test P = 2.7 � 10�14; see Supplementary Fig. S1). We interpreted the
component N(�0.022,0.1) as describing pure noise, N(0.015,0.24) as
a mixture of noise and weakly responsive genes, and N(0.45, 0.77)

Figure 1. Distribution of estrogen-induced expression
changes. A, maximum of 3 and 6 h fold changes
from Carroll and colleagues and fold changes under
cycloheximide treatment from Bourdeau and
colleagues. Without cycloheximide (CHX ), which
filters out many secondary targets of ER, one
overestimates the number of estrogen-responsive
genes. B, quantile-quantile plot of the two
distributions in A . Cycloheximide is also seen to
dampen the strength of response to estrogen.
C, a three-component mixture model can accurately
describe the behavior of gene expression changes
under estrogen induction.
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as strongly responsive genes. By taking the 5th quantile and 95th
quantile of the distribution N(0.015,0.24) for weakly responsive
genes as cutoffs, we identified 509 up-regulated and 326 down-
regulated genes, consistent with the estimates of 544 up-regulated
and 235 down-regulated direct targets found by Bourdeau and
colleagues using their 1.4 fold-change cutoff. We shall use the genes
identified in this analysis as estrogen-responsive genes throughout
this article. It should be noted that the fold-change method agreed
well with significance analysis of microarrays (SAM; ref. 16), with
90% of our top 500 genes appearing in the list of top 500 genes
found by SAM; fold changes and SAM q values also had a very high
Pearson correlation of �0.93.
Partitioning the genome into CTCF blocks. A recent study has

mapped the locations of 13,801 CTCF binding sites in IMR90
human fibroblasts (9). These sites partitioned the genome into
distinct blocks of average size 213 kb and SD 601 kb, as exemplified
in Fig. 2. Supplementary Fig. S2 summarizes the distribution of
block sizes. RefSeq genes were grouped into 7,476 CTCF blocks of
size 317 kb (SD 699 kb), whereas ER-containing blocks had a larger
size of 555 kb (SD 1,061 kb), and the average number of RefSeq
genes in a CTCF block was 3 F 3. There was also a significant
difference in size between RefSeq containing CTCF blocks with and
without estrogen-responsive genes, 546 kb (SD 1,040 kb) and 290 kb
(SD 645 kb), respectively (P < 6.00 � 10�11 using t test), consistent
with the previous findings that ER regulation usually requires a
long-range interaction between distal enhancers and promoters of
regulated genes (1, 2). To incorporate the information about ER
binding sites into our study, we combined the 5,782 and 1,226 ER
binding sites from ChIP-Chip (2, 7) and ChIP-PET sequencing (3)
experiments, respectively, to obtain 6,285 distinct ER binding sites
in MCF7 (see Materials and Methods). There were in total 3,086
CTCF blocks containing ER binding sites; 25% of them had no
genes and 61% had genes but no estrogen-responsive genes.
Thus, only 14% of ER-containing CTCF blocks (ER blocks) had
differentially expressed genes, posing a difficult computational
problem of predicting estrogen-responsive genes from these ER
and CTCF binding data sets. This problem will be addressed in this
article.

The ER blocks showed no significant spatial clustering behavior,
and 80% of the ER blocks did not have ER binding in immediately
adjacent CTCF blocks (see Supplementary Table S1), indicating
that CTCF groups ER binding sites into isolated units. When
several ER blocks were clustered together in a row, up-regulated
genes were evenly distributed across the ER blocks, with the
exception that in a cluster containing precisely two adjacent ER
blocks, up-regulated genes had a significant tendency to lie within
only one of the two ER blocks (P = 0.019, binomial test; see
Supplemental Table S2).

Up-regulated estrogen-responsive genes have ER binding
sites within CTCF blocks. Three hundred forty-eight (68%) up-
regulated genes have ER binding within the same CTCF blocks as
the genes. To assess the significance of this phenomenon, we
computed the percentage of genes with ER as a function of
fold-change cutoff (see Fig. 3A). We simulated 6,285 random ER
binding sites and computed the fraction of up-regulated estrogen-
responsive genes (+cycloheximide) in CTCF blocks with ER,
repeating the procedure 10,000 times. Figure 3A shows that a
significant number of ER binding sites lie in the same CTCF blocks
as up-regulated genes (P value <10�4). It can also be seen that
much less significant fraction of the early up-regulated genes
identified by Carroll and colleagues have ER binding in CTCF
blocks, thus supporting the use of cycloheximide treatment in
filtering out genes not directly targeted by ER. Interestingly,
because highly estrogen-responsive genes tend to have ER within
20 kb, whereas CTCF blocks are much larger, simulating random
CTCF sites did not significantly change the fraction of genes having
ER within CTCF blocks, indicating that Fig. 3A may be capturing
the distance effect of ER rather than CTCF itself (see Supplemen-
tary Fig. S3A). Supplementary Fig. S3B shows the corresponding
analysis for ER and FoxA1 overlapping sites. Similar graphs are
obtained when one uses fold-change ranks instead of fold changes
(data not shown).

In contrast, down-regulated genes have a markedly different
behavior and the distribution of ER was not biased toward
down-regulated genes compared with random distributions (see
Supplementary Fig. S4), suggesting that the mode of ER-
mediated down-regulation differs from that of up-regulation.
CTCF can act as an insulator of ER regulation. It has been

shown that CTCF can act as boundary elements that group
together coregulated genes into regulatory blocks (9, 10). To see
whether CTCF also plays a similar role in ER-mediated gene
regulation, we examined the correlation of expression of estrogen-
inducible genes across cell lines in various expression profiling
studies. Figure 3B shows the boxplots of pair-wise Pearson
correlation across NCI60 cell lines (17) between up-regulated
genes within same CTCF blocks and between up-regulated genes
located within 100 kb but in different CTCF blocks. The correlation
of genes within the same CTCF blocks was significantly higher than
that of genes located within 100 kb but in different CTCF blocks
(P = 6.87 � 10�9 for the data of Bourdeau and colleagues in the
presence of cycloheximide, P = 9.261 � 10�11 for the data of Carroll
and colleagues), consistent with the idea that the genes within
CTCF blocks were coregulated by ER. Although it may be true that
nearby genes can be coregulated, the observed high correlation
was not because the genes were closer to each other within blocks
than between blocks; in fact, Supplementary Fig. S5 shows that the

Figure 2. CTCF partitions the genome into
distinct blocks. We call the genomic
intervals delimited by CTCF binding sites
CTCF blocks. A CTCF block may or
may not contain an ER binding site, and
when it does, we often refer to such a block
as an ER block.
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Figure 3. CTCF acts as an insulator. A, fractions of
up-regulated genes found by Bourdeau and colleagues
and Carroll and colleagues having ER binding within
the same CTCF blocks as the genes. A significant
proportion of up-regulated genes in the presence of
cycloheximide has ER binding sites. Dotted line, mean
proportion of the up-regulated genes of Bourdeau and
colleagues from simulating random ER binding sites
10,000 times; error bars, maximum deviation from the
mean. B, box plots of pair-wise Pearson correlation of
estrogen-responsive genes across NCI60 cell lines,
using pairs of estrogen-responsive genes within same
CTCF blocks and those located within 100 kb but in
different CTCF blocks. Estrogen-inducible genes within
a given CTCF block are highly correlated and are thus
likely to be coregulated by ER. C, for each CTCF block
containing both an up-regulated gene and ER, we
considered the immediately adjacent blocks without
ER. The box plot of maximum fold changes in the
blocks examined strongly indicates that CTCF can
insulate adjacent blocks from the ER activation of
genes.
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opposite was true for the gene pairs in our analysis, as we had
restricted the maximum distance between genes across CTCF
blocks to be 100 kb. A significant difference in correlation was also
observed across 286 primary ER+ and ER� breast cancer samples
(ref. 18; see Supplementary Fig. S6A). To find further support for
the insulator effect of CTCF on ER regulation, we randomized the
CTCF boundaries by taking the midpoints of original blocks as new
boundary locations, unless a block contained more than one
differentially expressed gene, in which case the midpoint between
two randomly chosen differentially expressed gene TSSs was
chosen. The expression levels of estrogen-regulated genes within
the random CTCF blocks were not significantly more correlated
across NCI60 cell lines than those in different blocks (P = 0.04; see
Supplementary Fig. S6B), indicating that the high correlation of
estrogen-responsive genes observed in Fig. 3B depended on the
structure of CTCF boundaries.

To further verify that CTCF can indeed act as an insulator of ER,
we checked that the genes in CTCF blocks without ER (non–ER
blocks) but immediately adjacent to ER blocks with up-regulated
genes have significantly low fold changes (P = 1.3 � 10�16, using
t test; see Fig. 3C). Supplementary Fig. S8 shows that randomizing

CTCF sites yields more ‘‘leaky’’ ER activities across CTCF
boundaries. In addition, of the 110 genes that lie in non–ER blocks
but have a nearest ER binding site within 20 kb in an immediately
adjacent CTCF block, only 3 were up-regulated (P = 5.6 � 10�4).
ER activation of genes, therefore, is mostly confined to ER blocks
and does not cross the boundaries into neighboring blocks. This
observation, together with the fact that a significant number of up-
regulated genes have ER binding sites within their CTCF blocks,
supports that CTCF can indeed delimit the range of ER activities.
Distance effect of ER binding sites. Distance distribution of

nearest ER binding sites from up-regulated genes in ER blocks
had mean 85 kb (SD 242 kb), 10% trimmed mean 47 kb (SD 63 kb;
see Materials and Methods). For down-regulated genes, the mean
was 216 kb (SD 391 kb), 10% trimmed mean 151 kb (SD 118 kb),
comparable with nonresponsive genes (mean 245 kb and SD
590 kb, 10% trimmed mean 148 kb and SD 180 kb). As can be seen
in Fig. 4A , ER was located significantly closer to the TSSs of up-
regulated genes than those of down-regulated or nonresponsive
genes (P < 10�14, Wilcoxon rank sum test), whereas there was no
significant difference between the nearest ER locations for down-
regulated and nonresponsive genes (P > 0.7, Wilcoxon rank sum

Figure 4. The effects of the nearest ER binding
locations on gene expression in the presence of
cycloheximide. A, a significant number of up-regulated
genes have ER binding sites within 100 kb from TSSs,
whereas down-regulated genes show no such
preference. B, up-regulated genes with high fold
changes tend to have ER binding sites within 20 kb
from TSSs, but, at the same time, many genes with
close ER binding sites have only modest response to
estrogen and the overall correlation between the
distance to nearest ER and expression change is
weak. In comparison, down-regulated genes have a
broader distribution of ER locations and a much weaker
response to estrogen.
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test). Although ER binding sites lie close to up-regulated genes
within CTCF blocks and most highly up-regulated genes have ER
binding within 20 kb, there was no significant global correlation
between the distance of ER binding sites and fold change among
up-regulated genes (see Fig. 4B). Pearson correlation between fold
change and log(|D |) was �0.09 with a P value of 0.097.

Down-regulated genes have a broad distribution of ER binding
locations with respect to TSS. They also have low fold changes,
possibly because of the low levels of the corepressors AP1 and
NRIP1 (2, 19), which are transcriptionally regulated by estrogen but
cannot be translated in the presence of cycloheximide. Indeed, the
fold change of down-regulated genes under cycloheximide
treatment was f30% less than that of down-regulated genes
found by Carroll and colleagues.
Bayesian networks for predicting estrogen-responsive

genes. Although 44% of the genes directly targeted by ER lie
within 20 kb of ER binding sites, the precise effect of the distance
between ER/FoxA1 binding sites and TSSs has not been hitherto
quantified. We here used Bayesian networks to model the distance
effect of ER/FoxA1 binding sites on differential expression of genes.
A Bayesian network is a probabilistic graphical model that allows
computation of joint probabilities in terms of a limited number of
conditional probabilities, with arrows encoding the conditional
dependence of the head node on the tail node. Bayesian networks
have been previously applied to successfully predict 73% to 79% of
the gene expression patterns in Saccharomyces cerevisiae (20). After
feature selection, four models shown in Fig. 5A were analyzed using
BN PowerPredictor (14) and the performance of each model was
tested using 5-fold cross-validation (see Materials and Methods).

The first network in Fig. 5A involving only the distance DER to
the nearest ER in the genome yielded 56% sensitivity and 81%
specificity for predicting estrogen-responsive genes. Roughly, this
model predicted a gene to be estrogen regulated if it had an ER
binding site within 50 kb of its TSS. The second model that
included only the information about whether a gene had an ER
binding site within its CTCF block increased the sensitivity to 68%
but lowered the specificity to 65%. The third model combining the
information about ER in CTCF block and distance to the nearest
ER had 66% sensitivity and 72% specificity (68% sensitivity on
training sets). Incorporating the distance to the nearest FoxA1 site
in the genome (the fourth model in Fig. 5A) yielded 92% sensitivity
and 79% specificity on training sets, but only 55% sensitivity and
74% specificity on test sets, indicating that this model was
overfitted. We have also analyzed the model containing only the
information about nearest FoxA1 sites; however, it had only 50%
sensitivity and 66% specificity on test sets. Overall, the third model
gave the best compromise between sensitivity and specificity and
also had the greatest area under the receiver operating character-
istic curve (Supplementary Fig. S9).

We have examined other factors that could potentially correlate
with estrogen responsiveness, but no significant influence was
found: There was a slight correlation between the number of ER
binding sites within CTCF blocks and expression fold change
(Supplementary Fig. S10A). Although the ER blocks with an up-
regulated gene had significantly more ER binding sites than those
without an up-regulated gene (Supplementary Fig. S10B), the
distance-normalized number of ER binding sites was similar
between CTCF blocks with and without differentially expressed

Figure 5. Bayesian network model
of predicting estrogen-responsive genes.
A, four significant Bayesian network
models after feature selection. For each
gene, we have CLASS = responsive/
nonresponsive, DER = distance to nearest
ER anywhere in the genome, CTCF = YES
if there is ER within the same CTCF block
as the gene, and DFoxA1 = distance to
nearest FoxA1 anywhere in the genome.
B, 5-fold cross-validation of the models.
Including only DER has high specificity but
low sensitivity because it classifies
estrogen-responsive genes with distal
ER enhancers as nonresponsive. The third
model that also incorporates the
information about having ER within the
CTCF block of a gene seems to be a good
compromise between sensitivity and
specificity.
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genes. There was also no correlation between the number of ER
motifs in nearest ER binding sites and fold change (correlation =
0.01 and P = 8.517 � 10�1). We also checked that there was no
orientation bias in differentially expressed genes within CTCF
blocks.

Discussion

Cycloheximide eliminates spurious differentially expressed
genes. Cycloheximide is a potent cytotoxic agent that can
introduce significant stress into cells, including DNA damage
and cell cycle arrest, and can therefore cause profound changes in
the transcriptional program of affected cells in response to the
stress. To separate cycloheximide-induced expression changes
from estrogen-induced ones, it is thus important to subject both
estrogen-treated and control cells to cycloheximide and compare
their differential expression profiles, as was done in ref. (6).
Furthermore, the response of cells to estrogen under the
perturbations of cycloheximide may not accurately reflect the
normal response of estrogen-inducible genes. Despite these
potential complications, this article supports the utility of
cycloheximide in facilitating the discovery of direct target genes
of ER. We have shown that estrogen-responsive genes in the
presence of cycloheximide are correlated within their CTCF blocks
and that up-regulated genes also have preferential ER binding
activities. Without cycloheximide, secondary targets of ER make
the distance effect of ER binding difficult to interpret and the
distribution of ER becomes no more specific to estrogen-
responsive genes than a random distribution (Fig. 3A). We have
also provided further justification for the choices of fold-change
cutoffs used in ref. (6) and have shown that the majority of
differentially expressed genes according to these cutoffs can be
correctly classified by our Bayesian network models.

Unlike the up-regulated genes, we observed that down-regulated
genes had a broad distribution of ER binding sites and had low fold
changes. The weak response of down-regulated genes is consistent
with the fact that cycloheximide prevents the translation of AP1
and NRIP1, which are transcriptionally activated by ER and which
have been shown to play critical roles in ER-mediated repression of
genes (2, 19). Our study thus supports the hypothesis that ER
repression of genes involves secondary cofactors that are
themselves induced by estrogen.
CTCF in MCF7 versus IMR90. To date, a genome-wide map of

CTCF binding sites in MCF7 is not available. It has been shown,
however, that the CTCF binding sites are mostly invariant across
cell types. For example, a comparison of 44 genomic regions
representing 1% of the human genome (ENCODE regions) in the
hematopoietic progenitor cell line U937 and primary human fibro-
blasts IMR90 yielded an agreement of 67% at a strict confidence
level of P < 10�6; the overlap increased at lower cutoffs
(9). CTCF sites have also been mapped in CD4+ T cells using
ChIP-seq (21) and a genome-wide comparison between the sites
and those in IMR90 had a 71% overlap. We thus believe that the
majority of the CTCF binding sites found in IMR90 will also be
present in MCF7 and, at the same time, that accounting for the
cell type–specific CTCF sites will only increase the power of our
analysis.
CTCF blocks form regulatory units for understanding and

predicting ER activities. For the past 3 years, high-throughput
sequencing and ChIP-ChIP studies have revealed that ER can bind
in distal enhancers to regulate its targeted genes (1–3). Although

it was observed that highly regulated genes tended to have ER
binding within 20 kb (2, 7), various distance cutoffs were chosen
somewhat arbitrarily for analyses and no quantitative model has
yet been formulated to capture the precise distance effect of ER
binding locations. Here, we trained a Bayesian belief network to
discover that just based on the information about nearest ER
locations, our model classified genes that have nearest ER within
50 kb as estrogen responsive. As expected, this naı̈ve approach
capturing only the ER distance effect yielded a high level of 44%
false negatives.

We have presented in this article several lines of evidence that
CTCF can demarcate the range of ER activities, grouping
coregulated estrogen-responsive genes into distinct blocks. As
can be seen in Fig. 5B , incorporating the information about
whether genes reside in ER-containing CTCF blocks increased the
performance of our Bayesian network. Considering conserved
motifs in promoters further improved the sensitivity and
specificity by f3% (data not shown), supporting the hypothesis
that the specificity of estrogen-induced genes is in part determined
by the presence of particular cofactors in promoters. Interestingly,
Bourdeau and colleagues could not find c-Myc as enriched in
up-regulated genes, although c-Myc has been shown to localize to
estrogen-responsive promoters and interact with ER (22). c-Myc
is an important oncoprotein with a diverse transcriptional
program in cell proliferation, growth, and apoptosis, interacting
not only with ER but with other cofactors (23). The broad
distribution of c-Myc and its non–ER-specific activities throughout
the genome thus may make it difficult to find c-Myc as
an enriched motif in estrogen-responsive genes. Our analysis
shows that CTCF also helps in this regard; moreover,
by considering the CTCF blocks with and without ER separately,
we were able to detect c-Myc as a potential cofactor of ER in
up-regulated promoters.

Many aspects of ER regulation of genes still remain unclear. For
instance, about 30% of up-regulated genes did not have ER binding
sites in their CTCF blocks. It could be that ER was actually present,
but the specific epitopes recognized by antibodies were masked by
interacting proteins such as FoxA1. Furthermore, there are more
than 6,000 ER binding sites in the genome but only f500 direct
target genes, and more than 6,000 non–estrogen-responsive genes
(35% of RefSeq genes studied here) had ER binding within their
CTCF blocks. Therefore, we do not yet understand the functions, if
any, of the majority of ER binding regions. It is possible that the
specificity of ER activation of genes can be influenced by local
chromatin structure or other epigenetic states, such as the recently
found estrogen-induced dimethylation of histone 3 arginine 17 in
the E2F1 promoter by CARM1 (24). Future studies in these
directions will greatly facilitate our understanding of how ER
functions in normal development and cancer.
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