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Detecting Differential Expressions in GeneChip
Microarray Studies: A Quantile Approach

Huixia WANG and Xuming HE

In this article we consider testing for differentially expressed genes in GeneChip studies by modeling and analyzing the quantiles of gene
expression through probe level measurements. By developing a robust rank score test for linear quantile models with a random effect, we
propose a reliable test for detecting differences in certain quantiles of the intensity distributions. By using a genomewide adjustment to
the test statistic to account for within-array correlation, we demonstrate that the proposed rank score test is highly effective even when the
number of arrays is small. Our empirical studies with real experimental data show that detecting differences in the quartiles for the probe
level data is a valuable complement to the usual mixed model analysis based on Gaussian likelihood. The methodology proposed in this
article is a first attempt to develop inferential tools for quantile regression in mixed models.

KEY WORDS: Gene expression; Microarray data; Quantile regression; Random effect; Rank score test.

1. INTRODUCTION

Recent advances in high-throughput technologies such as mi-
croarrays are playing a major role in our understanding of the
molecular mechanisms that underlie normal and dysfunctional
biological processes. Gene expression profiling on microarrays
has enabled the measurement of thousands of genes in a single
RNA sample. Gene expression data, however, are noisy, and
require careful statistical analysis. One of the basic questions
that interests the biologists is to identify differentially expressed
genes across experimental conditions. In this article we focus
on the GeneChip data from Affymetrix, a popular commer-
cial oligonucleotide technology for studying gene expression.
A GeneChip is a glass wafer synthesized with oligonucleotides,
where each gene is represented by a probe set composed of
11–20 probe pairs, each of which consists of a perfect match
(PM) probe and a mismatch (MM) probe. Each array contains
a varying number of probe sets, usually in the thousands, de-
pending on the experiments. The labeled mRNA samples are
added to the arrays and hybridize to the probes. After hybridiza-
tion, arrays are scanned and the scanned images are analyzed to
obtain intensity measurements for each probe. These intensi-
ties measure how much hybridization has occurred in the cor-
responding probes.

A common approach to analyze GeneChip data is to summa-
rize the probe intensities for each probe set, then use the sum-
marized values for statistical inference. Among the most popu-
lar summarization methods are the Microarray Suite 5 (MAS5)
of Affymetrix (2001), the model-based expression index of Li
and Wong (2001), and the robust multiarray analysis (RMA)
of Irizarry et al. (2003). Although the summarization methods
are certainly useful, the probe level intensities contain more in-
formation and may give more power for statistical inference.
Based on the probe level data, Chu, Weir, and Wolfinger (2002)
compared the intensity measurements between different biolog-
ical samples for each gene, using a mixed model that treats the
array effect as a random effect,

yijk = µ + Ti + Pk + aij + eijk, (1)
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where yijk indicates the log base 2 transformed intensity mea-
surement after some appropriate normalization, µ stands for the
overall level, Ti is the ith treatment effect, Pk is the kth probe
effect, aij is the effect of the jth array nested within the ith
treatment, and the eijk is the random error. Both the aij’s and
the eijk’s in their work are assumed to be iid normal random
variables with mean 0, and variances σ 2

a and σ 2
e , respectively,

and the eijk’s are independent of the aij’s. By treating the ar-
ray effect as a random effect, the model accounts for within-
array correlation that is often seen in GeneChip data. Inference
on Ti in model (1) can be made with the standard likelihood-
based methods in linear mixed models; see, for example, Khuri,
Mathew, and Sinha (1998) and Littell, Milliken, Stroup, and
Wolfinger (1996). In essence, one compares the means of the
log intensity distributions under different treatments. However,
it is clear from microarray data that the normality assump-
tions are often severely violated for interesting genes. Unusual
probes and outlying probe level measurements also occur fre-
quently to upset normality. There are biological as well as tech-
nical reasons for those problems, as we shall discuss later in the
article. To avoid the distributional assumptions, we propose a
robust inferential method for model (1) by the means of quan-
tile regression.

Instead of focusing on the changes in the mean, the quan-
tile regression of Koenker and Bassett (1978) models the con-
ditional quantiles, allowing us to test whether there is a change
in the τ th quantile of y for any given τ ∈ (0,1). When the con-
ditional distributions of y are non-Gaussian, the mean may not
be the most appropriate summary, and a change in distributions
may not be effectively detected through the means. We show
that the quantile approach is a highly valuable complement to
the mean approach for detecting differential gene expressions,
especially in the presence of unusual probes or arrays in the
microarray data.

Inference for linear quantile regression models has become
a subject of intense study in recent years, and statistics and
econometrics software (e.g., R, SAS, and Stata) has started to
include inferential methods in their packages for quantile re-
gression. However, existing inferential methods such as those
discussed by Koenker (2005) and Kocherginsky, He, and Mu
(2005) are developed for independent data. The primary ob-
jective of the present article is to develop a rank score test for
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quantile regression models with a random effect as in model
(1). We recognize that most other inferential methods require
a modestly large sample size, but microarray experiments are
often carried out with a small number of arrays. Therefore we
propose to use a genomewide estimate of within-array correla-
tion to preserve a valid significance level and the desired false
positive rates at small sample sizes. The details of the proposed
rank score test are given in Section 2, and Monte Carlo assess-
ments of the test are provided in Section 3. By applying the
rank score test to two GeneChip studies, we demonstrate in
Section 4 how and why our proposed quantile approach adds
value to GeneChip studies. Some concluding remarks are made
in Section 5. Some technical details are given in the Appendix.

Although the present article focuses on Affymetrix GeneChip
data, its primary goal is to develop inferential tools based on
quantiles. In microarray studies, there are other important is-
sues that are of interest or concern to statisticians. For example,
Hu and He (2006) and Fan, Huang, and Peng (2005) proposed
new methods of normalization, and Fan, Chen, Chan, Tam, and
Ren (2005) used a semilinear in-slide model for Affymetrix ar-
rays, all of which can aid detection of significant genes. For the
sake of focus, we do not elaborate on these issues in this article.

2. QUANTILE REGRESSION AND PROPOSED TEST

In this section we consider a more general form

yijk = xT
ijkα + zT

ijkβ + uijk,

i = 1, . . . , I, j = 1, . . . , Ji, k = 1, . . . ,Kij, (2)

where yijk is defined in the same way as before, xijk and zijk are
the p × 1 and q × 1 design vectors, α and β are the p- and q-
dimensional parameters, which in model (1) represent the probe
and treatment effects, respectively, and uijk = aij + eijk is the
composite error term. In addition to the treatment and probe
effects, other covariates (e.g., log mismatch intensity or some
phenotype measurements) are possible in model (2). Obviously,
the model arises in other applications too, where an additive
random effect represents subjects or clusters. Throughout this
article, we assume that the first element of xijk is 1, correspond-
ing to the intercept in α.

For any given τ , we consider the τ th quantile of y given
(x, z). For identifiability, we assume that the τ th quantile of u
is zero. Other than that, no distributional assumptions are made
on u. We consider testing the null hypothesis H0 :β = 0 versus
the alternative hypothesis H1 :β �= 0.

Following Koenker and Bassett (1978), the quantile regres-
sion estimate of (α,β) is obtained by minimizing

∑
ijk ρτ (yijk −

xT
ijkα − zT

ijkβ), where ρτ (u) = u(τ − I{u<0}) is the quantile loss
function. Under mild conditions, the estimate is asymptotically
normal, so the Wald-type tests can be carried out under the jus-
tification of large sample theory; see He, Zhu, and Fung (2002).
Related work appears in Koenker (2004), where a shrinkage ap-
proach is used to predict aij in addition to the estimation of the
fixed effects. In either approach, the large sample variance of
the quantile estimate involves the unknown density of u and the
large-sample inference based on the Wald-type test is generally
unstable at small sample sizes. To avoid direct estimation of the
nuisance parameter (i.e., density), we turn to the idea of rank
score test for quantile regression as considered by Gutenbrun-
ner, Jurêcková, Koenker, and Portnoy (1993), hereafter GJKP.

2.1 Quantile Rank Score

We focus on the quantile rank score, which was proposed in
GJKP for iid error models and is now extended to model (2).
When τ = .5, it is a generalization of the sign test in the uni-
variate sample. First, we fix the notation.

Let n = ∑I
i
∑Ji

j=1 Kij and L = ∑I
i
∑Ji

j=1 Kij(Kij − 1). Upon
rewriting model (2) in matrix form as Yn = Xnα + Znβ + Un,
we have Yn and Un as n-dimensional vectors, and Xn and Zn
as n × p and n × q matrices, respectively. Furthermore, we let
H = Xn(XT

n Xn)
−1XT

n and Z∗
n = (z∗

ijk)n×q = (I − H)Zn.
The piecewise derivative of ρτ (u) is called the score function

ψτ (u) = τ − I{u<0}. In what follows, we write X̃n = (Xn,Zn)

and use F1 to denote the common marginal distribution function
of uijk, for any i, j, k.

The quantile rank score test is based on

Sn = n−1/2
∑

ijk

z∗
ijkψτ (ûijk(τ )),

where z∗
ijk are elements of Z∗

n and ûijk(τ ) = yijk − xT
ijkα̂(τ ) are

the residuals of the quantile estimate obtained under the null
hypothesis. Letting

Qn(δ) = n−1
∑

ijk

z∗
ijkz∗T

ijk τ(1 − τ)

+ n−1
∑

ij

∑

k1 �=k2

z∗
ijk1

z∗T
ijk2

(−τ 2 + δ) (3)

with

δ = P(u111 < 0,u112 < 0), (4)

we define the quantile rank score test statistic as

Tn(τ ) = ST
n {Qn(δ̂)}−1Sn, (5)

where

δ̂ = (L − p)−1
∑

ij

∑

k1 �=k2

I{ûijk1 (τ )<0,ûijk2 (τ )<0}. (6)

The second term on the right side of (3) accounts for the depen-
dence within arrays. If the uijk’s are iid, then this reduces to the
quantile rank score test of GJKP (with δ = τ 2). If the number
of arrays Ji tends to infinity, then, without surprise, we have the
following asymptotic limiting distribution.

Theorem 1. Under Assumptions A.1–A.4 spelled out in the
Appendix, the null distribution of Tn(τ ) converges to χ2

q as
mini{Ji} → ∞.

The proof of Theorem 1 is outlined in the Appendix. In Sec-
tion 3 we see through simulation that this δ adjustment to Qn is
critical for valid inference when the errors uijk are correlated.

2.2 Variations in Estimating δ

When the chi-squared distribution is used as the reference
distribution, the small-sample performance of the test Tn(τ ) de-
pends on how δ is estimated in Qn. Our Monte Carlo simulation
study shows that the particular estimate (6), based on the signs
of the residuals obtained under H0, does well in preserving the
significance level of the test even for Ji as small as 3. This quan-
tile rank score test will be referred to as QRS0. Using an al-
ternative estimate of δ based on the residuals obtained under
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the alternative hypothesis leads to an asymptotically equivalent
test, later referred to as QRS1. Monte Carlo comparisons (not
reported in this article) indicate that QRS1 has higher power at
the cost of slightly inflated level. After calibrating for type I
errors, these two variants of the test have about the same per-
formance.

When the number of arrays Ji is small (in the range of 3–10),
we propose to take advantage of the large number of genes
available on those arrays to obtain a more stable estimate of δ. If
we average the δ̂’s used in QRS0 across genes to obtain a com-
bined estimate δ̄, we then conduct the quantile rank score test
by rejecting H0 if Tc(τ ) = ST

n {Qn(δ̄)}−1Sn > χ2
q (α), the upper

αth quantile of the chi-squared distribution with q degrees of
freedom. The resulting test will be denoted QRSc.

It is not unreasonable to assume that the sign correlations
of the error terms in the probe intensity measures are about the
same across the genes; these correlations are all due to the probe
sets living on the same arrays. The common δ approach is a
simplistic form of shrinkage. As demonstrated in Section 3, our
proposed test QRSc tends to outperform QRS0 and QRS1 when
the Ji’s are small, even when the true δ values are not exactly
shared across the genes. However, more sophisticated shrinkage
methods toward information-sharing tests across genes may be
developed in future work using empirical Bayes ideas such as
those behind the refined t test given in Lönnstedt and Speed
(2002).

2.3 Heteroscedastic Errors

The assumption of homoscedastic errors in uijk simplifies
the derivation of Qn in the quantile rank score test, but in re-
ality, the quantile rank score test for the hypothesis on treat-
ment effects is highly robust against heteroscedastic errors.
Consider the case where the uijk’s are not exchangeable, but
δij,k1,k2 = P(uij,k1 < 0,uijk2 < 0) = δi,k1,k2 are common across j
for given i, k. Theorem 1 remains valid if Qn is replaced by

Qn,2 = n−1
∑

ijk

z∗
ijkz∗T

ijk τ(1 − τ)

+ n−1
∑

ij

∑

k1 �=k2

z∗
ijk1

z∗T
ijk2

(−τ 2 + δi,k1,k2

)
.

For testing the treatment effect with zijk = zij (=1 or −1), this
reduces to (3) with δ as the average of δi,k1,k2 over i and k, which
can be consistently estimated by (6). Therefore, the quantile
rank score test given in Section 2.1 remains valid in this rather
realistic heteroscedastic error models for GeneChip studies,
where the replicate arrays are taken to be exchangeable. For
more general forms of heteroscedasticity, we refer to the doc-
toral dissertation of the first author (Wang 2006).

2.4 Combined Tests on Multiple Quantiles

A change in the gene expression measures might be most
distinguishable in the upper or lower quantiles, depending on
the distribution of the probe level measurements. It might be
useful to formulate joint hypotheses about the relevance of cer-
tain groups of covariates at several quantiles, but here we re-
strict ourselves to the partitioned mixed model (2) and propose
a combined rank score test.

The null hypothesis to be tested is

H0 :β(τ1) = β(τ2) = · · · = β(τl) = 0,

where β(τa) is the coefficient vector of the quantile regression
model at the quantile level τa for a set of 0 < τ1 < τ2 < · · · <

τl < 1.

Let

D1n = n−1
∑

ijk

z∗
ijkz∗T

ijk and

D2n = n−1
∑

ij

∑

k1 �=k2

z∗
ijk1

z∗T
ijk2

,

and define

Wn = (
S(1)

n ,S(2)
n , . . . ,S(l)

n

)
,

where S(a)
n = n−1/2 ∑

ijk z∗
ijkψτa(ûijk(τa)) is the quantile regres-

sion score at the quantile level τa, a = 1, . . . , l. The asymptotic
covariance matrix of Wn, V∗

n = (v(ab)∗
n ), 1 ≤ a, b ≤ l, is given

by

v(ab)∗
n = (τa − τaτb)D1n + (−τaτb + δ(τa, τb))D2n,

where δ(τa, τb) = P(u111(τa) < 0, u112(τb) < 0), u111(τa) =
u111 − F−1

1 (τa), and u112(τb) = u112 − F−1
1 (τb).

For the sake of clearer presentation, we denote ûijk(τa) as the
estimated residuals from the quantile regression model at the
quantile level τa. Then we can estimate the δ’s by

δ̂(τa, τb) = (L − 2p)−1
∑

ij

∑

k1 �=k2

I{ûijk1 (τa)<0,ûijk2 (τb)<0},

and foregoing term (L−2p)−1 should be replaced by (L − p)−1

when τa = τb, consistent with (6). Furthermore, as with QRSc

in the preceding section, we may carry out the combined test by
assuming common δ’s across genes, and we refer to this com-
bined rank score test as CRSc. By replacing the nuisance para-
meters with the corresponding estimates, we obtain a consistent
estimator of V∗

n and denote it as Vn.

Theorem 2. Under Assumptions A.1–A.4 in the Appendix,
we have, under H0,

Tn = WT
n V−1

n Wn
D−→ χ2

lq as min
i

{Ji} → ∞. (7)

For GeneChip data, we propose testing the hypotheses at the
three quartiles. An alternative to the combined test is to use the
Bonferroni adjustment to the p values of these three individual
tests. The relative performances of these two approaches de-
pend on the correlations among the individual scores.

3. MONTE CARLO SIMULATIONS

This section summarizes our findings on the performance of
the quantile rank score tests through Monte Carlo simulations.
We generate data from models that mimic those we encountered
in GeneChip experiments.
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3.1 Model Descriptions

The simulation study is based on model (1). We assume that
the number of treatments I = 2, the number of probes K = 16,
and each treatment has J replicate arrays. The parameter µ is
chosen to be 8 and the probe effects Pi are generated from
N(0,4). The parameter β = T1 − T2 = T1 (with T2 = 0) mea-
sures the treatment effect. The following four different cases are
considered in this study.

• Case 1. Fixed-effect linear model. The aij’s are set to 0
and the eijk’s are generated randomly from the distribution
N(0, .42).

• Case 2. The aij’s are generated randomly from the distrib-
ution N(0, .22) and the eijk’s are generated from N(0, .42).

• Case 3. The aij’s are generated from N(0, .22) and the
eijk’s are set at .4z, where z follows the mixture distrib-
ution .9N(0,1) + .1t1.

• Case 4. The aij’s and eijk’s are generated from N(0, σ 2
a )

and N(0, σ 2
e ), respectively, where σa is chosen to be .2

and is kept unchanged, σ 2
e is set to be σ 2

a (1 − γ )/γ vary-
ing from gene to gene, and γ = σ 2

a (σ 2
a + σ 2

e )−1 is the
intra-array correlation coefficient. The γ ’s are generated
by converting Fisher’s z, which is randomly chosen from
N(.2, .12), back to the correlation scale. For the particu-
lar z generated in our study, δ ranges between .25 and .32.

In each case, we generate 100 datasets, each consisting of
120 genes, of which 100 genes are nondifferentially expressed
(β = 0) and 20 genes are differentially expressed (β �= 0). This
is a simplistic case where those 20 genes can be viewed as
a cluster. The fixed-effect parameter values are held constant
across all simulations. We also vary the treatment effect β un-
der H1 from .1 to 1 (in increments of .1) in the study. For the
rank score tests, we concentrate on the median regression here.

3.2 Simulation Results

For each simulated dataset, we test the null hypothesis on
120 genes simultaneously, with the false discovery rate (FDR)
adjustment following Benjamini and Hochberg (1995). The
genes with FDR adjusted p values smaller than .05 are iden-
tified as significant. The Benjamini and Hochberg adjustment
is chosen for convenience, but other FDR adjustments can be
expected to yield similar comparisons.

Table 1 summarizes the results in terms of true positives (TP)
and false positives, where TP is the number of identified genes
that are truly differentially expressed (with an ideal value of 20)
and FDR is the empirical FDR, averaged over the 100 datasets.
The FDR for a given dataset is taken as 0 when no gene is de-
tected. We report the results for three values of J and several
values of β . The test QRS denotes the quantile rank score test
without any δ adjustment; MIX denotes the test carried out us-
ing PROC MIXED from SAS Systems.

Some inflated FDRs are shown in bold in the table. It is evi-
dent that QRS without the δ adjustment loses complete control
of FDR in Cases 2–4, where the measurements yijk are depen-
dent. This affirms that the δ adjustment to Qn is critical when
the errors are correlated.

When J is small (3 and 5), the test QRS1 has much higher
FDR than the nominal level, which indicates that the chi-
squared approximation for QRS1 deteriorates at small samples.

Table 1. The Number of True Positives (TP) and the Estimated False
Discovery Rate (FDR) in Cases 1–4

QRS QRS0 QRS1 QRSc MIX

Experiment TP FDR TP FDR TP FDR TP FDR TP FDR

Case 1
J = 3, β = .3 13 .106 0 .000 14 .268 7 .020 0 .000
J = 5, β = .3 17 .062 0 .000 17 .152 15 .026 15 .000
J = 25, β = .3 20 .044 20 .038 20 .060 20 .020 20 .031

Case 2
J = 3, β = 1.0 20 .523 0 .000 20 .282 19 .011 11 .011
J = 5, β = .7 20 .468 8 .002 19 .161 19 .023 18 .043
J = 25, β = .3 20 .443 19 .034 19 .051 19 .030 19 .033

Case 3
J = 3, β = 1.0 17 .160 0 .000 15 .268 10 .022 0 .000
J = 5, β = .7 14 .149 0 .000 12 .191 9 .033 0 .000
J = 25, β = .3 13 .146 7 .031 10 .075 9 .043 1 .003

Case 4
J = 3, β = 1.0 20 .521 0 .000 19 .280 18 .017 10 .010
J = 5, β = .7 20 .473 6 .001 19 .163 17 .030 17 .040
J = 25, β = .3 20 .449 18 .032 19 .056 18 .039 19 .032

NOTE: The desired FDR is .05. Some inflated FDRs are shown in bold.

This problem is mostly rectified by QRSc, which controls FDR
reasonably well without losing much power when the true δ

are constant (Cases 1–3), as well as when they differ slightly
from gene to gene (Case 4), supporting our preference for a
genomewide adjustment of δ. For J = 25, the three variations
QRS0, QRS1, and QRSc perform very similarly.

Generally speaking, the proposed QRSc is very competi-
tive to MIX even in the Gaussian cases, where the latter loses
some power because the FDR adjustment is too conservative. In
Case 3, where eijk follows a mixture distribution of the standard
normal and t1, QRSc is clearly more powerful than MIX. It is
interesting to note that the efficiency of median regression for
Gaussian data is clearly higher than 64%, the well-known as-
ymptotic efficiency of the univariate sample median relative to
the mean. In fact, the relative efficiency of the median increases
for correlated data, which can be verified both mathematically
and empirically.

3.3 Chi-Squared Approximation versus Resampling

When J is small, we naturally ask whether we can better ap-
proximate the p values than the (limiting) chi-squared distribu-
tion for the quantile rank score statistic. We considered permu-
tation, arraywise bootstrap, and blocked wild bootstrap to gen-
erate reference distributions for the quantile rank scores, and we
compared their performances with that of QRS0. The details of
our Monte Carlo study are skipped, but the results show that use
of the chi-squared distribution for the quantile rank score test is
hard to beat by those methods, even for small J.

4. EMPIRICAL DATA ANALYSIS

In this section we apply the proposed rank score tests to iden-
tify differentially expressed genes across two experimental con-
ditions to two GeneChip studies. These examples demonstrate
the value of the quantile approach in the analysis of GeneChip
data.

4.1 Spiked-in Study

The spiked-in dataset from GeneLogic (http://qolotus02.
genelogic.com/datasets.nsf/ ) consists of 32 human GeneChip
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Table 2. Expected and Observed Ranks of the Spiked-in Probe Sets

Probe
set

Concentration Expected
rank

Observed rank

T1 T2 RMA Q1 Q2 Q3 MIX CRSc

BioB-5_at 100.0 .5 1 1 1 1 1 2 1
BioB-3_at .5 25.0 2 2 1 1 1 3 1
BioC-5_at 2.0 75.0 3 3 8 7 1 73 7
BioB-M_at 1.0 37.5 3 5 1 1 1 1 1
BioDn-3_at 1.5 50.0 5 4 1 1 1 5 1
DapX-3_at 37.5 3.0 6 7 1 1 1 6 1
CreX-3_at 50.0 5.0 7 9 7 7 1 7 8
CreX-5_at 12.5 2.0 8 8 10 118 1,858 2,179 10
BioC-3_at 25.0 10.0 9 6,431 1,096 114 9 12,319 11
DapX-5_at 5.0 1.5 10 10 9 118 1,266 3,433 9
DapX-M_at 3.0 1.0 11 6 1 1 1 4 1

arrays (HG-U95A) and all the arrays have a common back-
ground cRNA derived from an acute myeloid leukemia tumor
cell line. In the experiment, 11 different cRNA fragments were
hybridized at different picomolar concentrations to each array
(apart from replicates). In this example, we choose six arrays
from a pair of triplicates (T1 and T2), and the spiked-in concen-
trations for each of the 11 control cRNAs are shown in Table 2.
Irizarry et al. (2003) provided some details on the experimental
design.

The total number of probe sets in this study is 12,626. The
data are normalized with the quantile normalization method
from Bioconductor’s affy package, using the default setting as
of March 2006. We consider the log base 2 transformed perfect
match (PM) intensity as dependent variable y. In this study we
expect only those 11 spiked-in probe sets to be differentially
expressed.

Considering the small number of replicates in the study, we
choose to use the quantile rank score test QRSc at three quar-
tiles denoted Q1, Q2, and Q3. The method MIX on the means
is also included for comparison. To study the genes that have a
difference between two concentration groups in one of the three
quartiles, we also performed the combined rank score test CRSc
and the Bonferroni correction (Bonf) to the p values of the four
individual tests (Q1, Q2, Q3, and MIX) for each gene. A .05
cutoff is used thereafter for the FDR adjusted p values to iden-
tify differentially expressed genes. Table 3 summarizes the to-
tal number of significant probe sets (total positive), the number
of correctly identified spiked-in probe sets (true positive), and
the number of misidentified probe sets (false positive) for each
method used. The Q2 and Bonf perform similarly, both detect-
ing 10 probe sets, 8 of which are the spiked-ins. The combined
rank score test detects all 11 spiked-in probe sets successfully
without a false positive.

Using the same dataset, Irizarry et al. (2003) calculated the
observed ratios or “fold changes” between the two averages

Table 3. Summary Statistics for the Spiked-in Study

Tests Total positive True positive False positive

Q1 7 7 0
Q2 10 8 2
Q3 0 0 0
MIX 0 0 0
CRSc 11 11 0
Bonf 10 8 2

over the triplicate RMA summarized measures and obtained the
ranks of the ratios. Here, we provide ranks based on the test sta-
tistics proposed in the present article as compared to the ranks
obtained under RMA. For the probe sets that represent spiked-
in cRNAs, the observed ranks of either the fold changes or the
test statistics should, ideally, coincide with those of the true fold
changes of the spiked-in concentrations. Table 2 summarizes
the spiked-in concentrations for each of the 11 control cRNAs
on the two sets of triplicates (T1 and T2), the expected ranks
of the true fold changes, the observed ranks of RMA, QRSc at
three quartiles (Q1, Q2, and Q3), MIX, and the combined rank
score test (CRSc). The quantile score test statistics often have
ties; that is why, for example, the rank 1 is given to eight probe
sets under Q3 and, in this case, the next rank is 9.

From Table 2, we notice that 8 out of the 11 spiked-in genes
are easy to detect, but 3 of them, namely CreX-5_at, BioC-3_at,
and DapX-5_at show up in the top only by some measures.
The combined test statistic CRSc is a lucky winner, because
it separates all the 11 spiked-in probe sets from the rest. Due
to the small number of replicates, significance tests such as
the two-sample t test applied to the RMA summarized expres-
sion indices fail to detect any spiked-in genes after the FDR
adjustment, even though the ranks based on the RMA summa-
rized values reflect the expected ranks quite well (except for
one probe set). The use of probe level data results in a more
powerful statistical inference here.

To explain some of the discrepancies among various tests
used, we focus on DapX-5_at, which is singled out by the quan-
tile rank score test statistic at Q1, but not by any test statistic
(say, MIX) on the mean. Figure 1 gives the expression profile
of this probe set, where the x axis is the probe number and the
y axis is the normalized log2(PM) centered by the median of six
arrays within each probe. It is clear from the plot that array 4
shows the opposite direction of regulation from arrays 5 and 6.
Earlier studies of this dataset did not identify this phenomenon
and the reason for this outlying array is unknown. Possible rea-
sons are image scratches and dust, but if one analyzes the probe
level data with no awareness of outliers of this nature, inference
based on averages may take its toll. In this case, array 4 leads to
a large variance estimate under the Gaussian model, but the first
quartiles are still clearly distinguishable for the two groups. If
array 4 is removed, all the tests give consistent results.

4.2 Smoking Study

The smoking study was conducted by Boston University
School of Medicine. The raw dataset was downloaded from
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Figure 1. Expression Profiles of Gene DapX-5_at in the Spiked-in Study. The y axis is the normalized log2(PM) centered by the median of six
arrays within each probe. The symbols 1–3 represent the three replicate arrays from T1 and the symbols 4–6 represent the three arrays from T2.

the National Center for Biotechnology Information (accession
number GSE994). The experiment was designed to study the
effects of cigarette smoking on the human airway epithelial cell
transcriptome. The dataset consists of 75 Affymetrix U133A
human gene expression arrays, including 34 arrays with RNA
samples from current smokers, 23 arrays from healthy non-
smokers, and 18 arrays from former smokers. More informa-
tion on the dataset can be found in Spira et al. (2004). The
number of genes analyzed is 22,204 and the number of probes
is 11 for most of the genes. The data are preprocessed with
the background correction and quantile normalization methods
from Bioconductor’s package affy. In this analysis, we focus on
the genes that are found to be differentially expressed by one
test, but not the other.

There are 217 genes detected by MIX but not by Q2 and 378
genes detected by Q2 but not by MIX. For those “controver-
sial” genes, we examined their expression profiles and verified
the probe sequences using the BLAST program from NCBI. We
found that many of these cases have outlying probes or obser-
vations. Four such genes (210384_at, 201147_s_at, 208725_at,
and 200654_at) are shown here for illustration. Figure 2 shows
the boxplots of expression intensities with regard to different
probes. The x axis represents the probes. The y axis is the
log2 PM after quantile normalization. The grey boxes denote
current smokers and the white boxes denote nonsmokers. The
genes 210384_at and 201147_s_at are detected to be significant
in the mean but not in the median, while genes 208725_at and
200654_at are found to be significant in the median but not in
the mean. Table 4 summarizes the raw p values from MIX and
Q2 for these four genes before and after excluding the outlying
probes or observations. The p values from the two-sample t test

based on the RMA summarized values are included for refer-
ence. Note that RMA is not robust against outlying arrays, but
rather is robust against a small number of outlying probes, so it
is quite clear from the table that the results from RMA are more
in line with those from Q2, but the test is less powerful.

For gene 210384_at, the BLAST results show that probes 3,
6, 8, and 10 have no match to the human genome, while the
rest of the probes match sequences on chromosome 21. From
Figure 2, we notice the low intensities of these four probes. In
addition, probes 3, 8, and 10 show smaller medians in the non-
smoker group, which is opposite to the comparisons from the
other probes. This leads the test on the median to show no sig-
nificance. After excluding these four suspect probes, both mean
and median tests show that this gene has significantly higher
intensities in nonsmokers than in smokers (see Table 4).

For gene 201147_s_at, the test MIX gives a p value .005,
while the median test Q2 gives a large p value .676. Figure 2
suggests that the significance in the mean is mostly due to quite
a few outlying observations, which drive up the mean intensities
of current smokers. After excluding the outlying observations
(marked as circles in the boxplots), neither mean nor median
tests shows significance. In this case it is unclear whether any
conclusion can be made without further study.

For gene 208725_at, the BLAST results show that probes 1
and 6 have no match to any sequence on the human genome,
while the other probes match sequences on chromosome 20.
The two suspect probes, especially probe 6, inflate the variances
to make it harder to detect changes in the mean. With these two
probes removed, the p value from MIX falls from .088 to .005.

For gene 200654_at, we see an interesting phenomenon.
Probes 8–11 have much lower intensities than the other probes.
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Figure 2. Expression Profiles of Four Example Genes in the Smoking Study. The x axis represents the probes. The y axis is the log2PM after
quantile normalization. The grey boxes denote current smokers and the white boxes denote nonsmokers.

Furthermore, the first seven probes show higher median inten-
sities for smokers, leading to significance in the quantile rank
score test at Q2. The differences in the means are found to be in-
significant due to high between-probe variability. For this gene,
alternative splicing might have occurred (see, e.g., Wu et al.
2005), but further studies are needed to explain the different
gene expression profiles in probes 8–11 definitively.

The upshot of this example is that examining the differ-
ences in the quantiles in addition to the mean can help iden-
tify individual genes that cannot be summarized rightly by the
means. As we know, different probes have different sensitivity
and specificity, and, more importantly, problems in probe selec-

Table 4. The p Values Before and After Excluding the Outlying Cases
for 4 Genes in the Smoking Study

Before After

Gene ID Probes excluded Q2 MIX RMA Q2 MIX

210384_at 3, 6, 8, and 10 .033 .001 .050 .000 .000
201147_s_at Outlying observations .676 .005 .425 .873 .200

208725_at 1 and 6 .001 .088 .010 .000 .005
200654_at 8–11 .002 .249 .051 .003 .084

tion, cross-hybridization, probe-to-gene mapping, and alterna-
tive splicing all point to one thing, that is, it would be naive to
trust the results from any test on the mean. Because of the large
number of genes in microarray studies, human inspection of
every single gene might, in practice, be prohibitive. The quan-
tile approach considered in this article can be used to cross-
check the results we normally obtain on the mean intensities.
We have found that significant differences in the quartiles can
often be detected more reliably than differences in the means.
Discrepancies in the test results may flag anomaly in the probe
sets used, suggesting focused validation studies on a smaller
number of genes.

Some empirical studies of the current and earlier GeneChip
data suggest that up to 20% of the probe level data might be
compromised for certain genes; this supports our preference for
hypothesis testing on the three quartiles. In one study, Mecham
et al. (2004) pointed out that for mammalian Affymetrix mi-
croarrays, the proportion of inaccurate probes is in the 20%
range. Quality improvement is being made constantly in mi-
croarray technology, but the quantile approach can be valuable
even if the probe level measurements are free of technical prob-
lems. The genes of interest are often those with non-Gaussian
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distributions in their intensities (on log scale), and the quantiles
give more comprehensive summaries than the mean in those
cases.

5. CONCLUSIONS

The quantile rank score tests are very useful in the analysis
of probe level genomic data. The array effect, which is a ran-
dom effect in linear models, requires an adjustment of the rank
score test statistic as discussed in the present article. General
inferential tools for linear quantile regression with correlated
measurements are little discussed in the literature yet. In this
article, we propose a simple genomewide δ adjustment to the
quantile rank score test under the working assumption of an ad-
ditive homogeneous random effect to the error. The resulting
quantile rank score test is easy to implement and robust in per-
formance. Our empirical studies of GeneChip data show that
inference on the quartiles of the gene expression distribution
often lead to more reliable results than inference on the mean.
We also demonstrate that discrepancies in the significance re-
sults on the quartiles and on the mean often flag anomaly in the
probe sets being considered. It is our hope that by taking the
proposed quantile approach in the analysis of probe level mi-
croarray data, one can improve reliability of and confidence in
the results.

In the GeneChip studies given in this article, we take the
position that any apparent probe–treatment interaction in the
data is a nuisance against which our comparisons of treatment
should be robust. In other studies however, the interaction terms
may be of interest. For example, the quantile approach will
also be useful for analyzing the more recent release of the exon
tiling arrays where inference needs to be made on the exon sites
by treatment interaction. The proposed rank score test applies
readily to those applications, but no empirical work has been
done so far.

APPENDIX: ????

Following Section 2.1, we start with technical assumptions.

Assumption A.1. The function F1 has a Lebesgue density f1 > 0
with a bounded first-order derivative. The joint distribution function
F1,2 of uijk1 and uijk2 for any i, j and k1 �= k2 is Lipschitz in a neigh-
borhood of (0,0).

Assumption A.2. There exist maxijk ‖̃xijk‖ = O(n1/4/
√

log n) and

n−1 ∑
ijk ‖̃xijk‖3 = O(1) as n → ∞, where ‖̃xijk‖ denotes the Euclid-

ean norm of x̃ijk .

Assumption A.3. The minimum eigenvalues of D1n = n−1Z∗T
n Z∗

n ,
D2n = n−1 ∑

ij
∑

k1 �=k2
z∗T

ijk1
z∗

ijk2
, and D3n = n−1XT

n Xn are bounded
away from 0 as n → ∞.

Assumption A.4. The set {Kij, i = 1, . . . , I, j = 1, . . . , Ji} is an uni-
formly bounded sequence of positive integers.

Note that Assumption A.2 implies that the maximum eigenvalues of
D1n, D2n, and D3n are bounded away from infinity.

The proof of Theorem 1 relies on the following three lemmas.
Lemma A.1 follows easily from theorem 1 of He et al. (2002), so the
proof is skipped.

Lemma A.1. Let α̂(τ ) = arg mina∈Rp
∑

ijk ρτ (yijk − xT
ijka) be a

quantile estimate of α(τ ). Then, under Assumptions A.2–A.4 and H0,
we have α̂(τ ) − α(τ ) = Op(n−1/2).

Lemma A.2. Let S∗
n = n−1/2 ∑

ijk z∗
ijkψτ (yijk −xT

ijkα(τ )). Then un-

der Assumptions A.1–A.4 and under H0, we have Sn = S∗
n + op(1).

Proof. Consider any t such that ‖t‖ ≤ C(log n)1/2 for some con-
stant C. Let uijk(τ ) = uijk − F−1

1 (τ ),

Rij(t) =
Kij∑

k=1

z∗
ijk

[
ψ

(
uijk(τ ) − n−1/2(xT

ijkt)
) − ψ(uijk(τ ))

]
, (A.1)

and rn(t) = ∑
ij Rij(t). For each (i, j), we have

var(Rij(t)) ≤ Kij

Kij∑

k=1

‖z∗
ijk‖2 · ∣∣P(

uijk(τ ) < n−1/2(xT
ijkt)

)

− P(uijk(τ ) < 0)
∣
∣

= Kij

Kij∑

k=1

‖z∗
ijk‖2f1(F−1

1 (̃τ )) · n−1/2|xT
ijkt|, (A.2)

where F−1
1 (̃τ ) is between F−1

1 (τ ) and F−1
1 (τ )+ n−1/2(xT

ijkt), and the
first part of Assumption A.1 is used in the last step.

Therefore, by Assumptions A.2 and A.4, we know that
∑

ij

var(Rij(t)) ≤ c1(n log n)1/2 (A.3)

and

max
ijk

Rij(t) ≤ c2 max
ijk

‖z∗
ijk‖ ≤ c3(n log n)1/4/

√
log n, (A.4)

where c1, c2, and c3 are positive constants.
Thus, applying the well-known Hoeffding inequality, there is c0

such that for λ > 0 and n large enough,

P
{∣
∣rn(t) − E(rn(t))

∣
∣ ≥ c0λn1/4(log n)3/4} ≤ 2n−λ. (A.5)

Following a chaining argument similar to that used in the proof of
Lemma A.2 in Koenker and Portnoy (1987), we can extend (A.5) uni-
formly in {t :‖t‖ ≤ C(log n)1/2}, and get

sup
‖t‖≤C(log n)1/2

∥
∥rn(t) − E(rn(t))

∥
∥ = Op

(
n1/4(log n)3/4)

. (A.6)

From (A.1), we know that

sup
‖t‖≤C(log n)1/2

∥
∥E(rn(t))

∥
∥

= sup
‖t‖≤C(log n)1/2

∥
∥
∥
∥

∑

ijk

z∗
ijk

[
F1(F−1

1 (τ ))

− F1
(
F−1

1 (τ ) + n−1/2(xT
ijkt)

)]
∥
∥
∥
∥

= sup
‖t‖≤C(log n)1/2

∥
∥
∥
∥

∑

ijk

z∗
ijk

[
f1(F−1

1 (τ ))n−1/2(xT
ijkt)

+ f ′
1(F−1

1 (̃τ ))n−1(xT
ijkt)2]

∥
∥
∥
∥

= O(log n), (A.7)

where the fact that Z∗T
n X = 0, and Assumptions A.1, A.2, and A.4 are

used in the last step.
Combining (A.6) and (A.7), we have

sup
‖t‖≤C(log n)1/2

n−1/2
∣
∣
∣
∣

∑

ijk

z∗
ijk

[
ψτ

(
uijk(τ ) − n−1/2(xT

ijkt)
)

− ψτ (uijk(τ ))
]
∣
∣
∣
∣ = op(1), (A.8)
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which together with Lemma A.1 completes the proof.

Lemma A.3. Under H0 and Assumptions A.1–A.4, we have δ̂
P−→ δ

as n → ∞.

Recall that δ = P(u111(τ ) < 0,u112(τ ) < 0). Lemma A.3 can be
verified using lemma 4.1 of He and Shao (1996), which provides an
uniform approximation of the sum in δ̂. We skip the details that are
purely technical.

Proof of Theorems 1 and 2

Let

Rij =
Kij∑

k=1

z∗
ijkψτ (yijk − xT

ijkα(τ )) =
Kij∑

k=1

z∗
ijk

(
τ − I{uijk(τ )<0}

)
,

where uijk(τ ) = uijk − F−1
1 (τ ). Direct calculations show that

cov(Rij) =
Kij∑

k=1

z∗
ijkz∗T

ijk τ (1 − τ ) +
Kij∑

k1 �=k2

z∗
ijk1

z∗T
ijk2

[−τ2 + δ].

Note that S∗
n = n−1/2 ∑I

i=1
∑Ji

j=1 Rij and that Rij are independent en-
tries. It follows from the Lindberg–Feller central limit theorem that

(Q∗
n)−1/2S∗

n
D−→ N(0q, Iq) (A.9)

as n → ∞, where Q∗
n = n−1 ∑

ijk z∗
ijkz∗T

ijk τ (1 − τ ) + n−1 ×
∑

ij
∑Kij

k1 �=k2
z∗

ijk1
z∗T

ijk2
(−τ2 + δ). The proof for Theorem 1 is therefore

complete by combining (A.9), and Lemmas A.2 and A.3.
The proof of Theorem 2 is a direct extension of that of Theorem 1,

where we approximate each S(a)
n in Wn by S(a)∗

n = n−1/2 ∑
ijk z∗

ijk ×
ψτa(uijk(τa)) for 1 ≤ a ≤ l. For details, refer to the doctoral thesis of
Wang (2006).

[Received April 2006. Revised July 2006.]
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