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1. Introduction

Genomic studies provide enormous volume of data
for thousands of genes (segment of DNA that
encodes RNA). The technology used to produce
genomic expression data or single nucleotide
polymorphisms (SNPs) is expensive. Associating
sequence variations with heritable phenotypes is
a key facet in genetic research [1]. The most

widespread variations are single base pair differ-
ences, i.e., SNPs occurring approximately once
every 100—300 bases.

The human genome is estimated to contain 10
million SNPs of which around 300,000 have signifi-
cant genetic variations [2]. They are primarily
responsible for the variation between humans as
they determine among others, person’s skin color,
hair, immune response, and adverse effects due to
drugs. They promise to significantly advance our
ability to understand and treat diseases [3]. Genetic
information in the DNA is transcribed to RNA and
then translated to proteins, thus genetic poly-
morphisms indirectly affect the metabolism and
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Summary Objective: Genomic studies provide large volumes of data with the number
of single nucleotide polymorphisms (SNPs) ranging into thousands. The analysis of SNPs
permits determining relationships between genotypic and phenotypic information as
well as the identification of SNPs related to a disease. The growing wealth of
information and advances in biology call for the development of approaches for
discovery of new knowledge. One such area is the identification of gene/SNP patterns
impacting cure/drug development for various diseases. Methods: A new approach for
predicting drug effectiveness is presented. The approach is based on data mining and
genetic algorithms. A global search mechanism, weighted decision tree, decision-tree-
based wrapper, a correlation-based heuristic, and the identification of intersecting
feature sets are employed for selecting significant genes. Results: The feature selec-
tion approach has resulted in 85% reduction of number of features. The relative
increase in cross-validation accuracy and specificity for the significant gene/SNP set
was 10% and 3.2%, respectively. Conclusion: The feature selection approach was
successfully applied to data sets for drug and placebo subjects. The number of features
has been significantly reduced while the quality of knowledge was enhanced. The
feature set intersection approach provided the most significant genes/SNPs. The
results reported in the paper discuss associations among SNPs resulting in patient-
specific treatment protocols.
� 2004 Elsevier B.V. All rights reserved.
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disposition of many medications. SNPs may be
shared among groups of people with harmful but
unknown mutations and serve as markers for them.
Such markers help unearth the mutations and accel-
erate efforts to find therapeutic drugs. Thus poly-
morphisms in genes encoding (the receptors—
targets of medications) can alter the pharmacody-
namics of the drug response by changing receptor
sensitivity.

Genetic profile of each individual (subject) can
be assembled using the data produced by SNP-map-
ping technologies. Analysis of such data may lead to
genes/SNP patterns that may be responsible for
common diseases as well as genetic risk. Due to
high cost, a typical data set (containing as many as
300,000 SNPs) is available for limited number of
subjects (500—1000 patients). To handle such data
sets there is a need to select the most informative
genes/SNPs [4] for further analysis. Removal of
uninformative genes/SNPs decreases the noise,
confusion, and complexity [5], and increases
chances for identification of most informative
genes, classification of diseases, and prediction of
various outcomes, e.g., effectiveness of a cancer
therapy.

With the advancing technology, molecular phar-
macology, and functional relationship of poly-
morphisms, there is a need for computational
tools to determine drug responses [6]. These tools
are needed to discover associations among alleles
(the chemical bases such as adenine, guanine, thy-
mine, cytosine) at different SNPs and between
phenotypic and genotypic features [7].

This paper focuses on feature reduction
approaches that can be effectively applied to SNP
data sets. It discusses weighted decision-tree-based
gene selection (WDTGS), genetic algorithm-based
gene selection (GAGS), and feature set intersection
approaches. The features derived from the data
sets are evaluated in terms of the cross-validation
accuracy, specificity, and number of features
against the complete set of all features (baseline
measurements).

2. Background

Clustering [8], data mining [9—11] gene identifica-
tion [12], and gene regulatory network modeling
[13,14] are used to perform DNA analysis. Data
mining algorithms are commonly applied to analyze
gene expression data. Data mining is the process of
discovering interesting and previously unknown pat-
terns in data sets [15]. The main emphasizes of data
mining is on individual subject rather than the
population, providing an avenue for personalization

[16]. Several computational techniques have been
applied for gene expression classification problems,
including Fisher linear discriminant analysis [17], k
nearest neighbor [18], decision-tree, multi-layer
perceptron [19], support vector machines [20],
self-organizing maps [4], hierarchical clustering
[21], and graph theoretic approaches [22].

The goal of feature selection is to identify the
minimum set of non-redundant features (e.g., SNPs,
genes) that are useful in classification [5]. This can
be achieved through various supervised and unsu-
pervised methods such as neighborhood analysis
[17], Pearson correlation, Spearman correlation,
cosine coefficient, information gain, mutual infor-
mation, and signal to noise ratio [8], clustering [5],
principal component analysis, combining features
(i.e., creating hybrid features), independent com-
ponents analysis [23], supervised feature reduction
by iteratively applying a supervised grouping (clas-
sification) algorithm, and eliminating the lowest
weight features. DNA gene expression data sets
are pruned by eliminating insignificant features.
The results of the study performed to investigate
the distribution of SNPs in CAPN10 gene in Chinese
population and their impact on type two diabetes
mellitus in Han people of Northern China is reported
in [24]. The transmission-disequilibrium test (TDT)
and sib transmission-disequilibrium test (STDT) was
applied for analyzing the SNPs. They used statistical
techniques to examine the SNPs and determined
that there was no significant statistical difference
between the two ethnic groups based on the
CAPN10 gene. They examined a pre-selected gene
and corresponding SNPs rather than investigating all
potential genes/SNPs.

There is a need to develop a procedure that
begins with the collection of sequences and ends
with the creation of SNP data sets. Several strate-
gies both experimental and based on computational
intelligence have been devised for SNP discovery
and mapping [25]. Experimental SNP discovery
requires arduous, intricate, and expensive experi-
mental procedures. The four main experimental
SNP discovery methods are identification of single
strand conformation polymorphisms (SSCPs), het-
eroduplex analysis, direct DNA sequencing, and
variant detector arrays (VDAs) [26].

Computational intelligence-based discovery uses
large-scale data sets with SNP information that
might have been generated for other purposes,
e.g., routine clinical studies. Feature selection
approaches such as principal component analysis,
information gain, clustering algorithms, and regres-
sion can be implemented but may not provide the
best solution. To identify the most informative
SNPs, there is a need for a global search mechanism
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(genetic algorithms (GA) [27—30]) coupled with
decision trees [31], domain experts, and multi-
angle identification process. The domain experts
can provide the essential knowledge for screening
of genes/SNPs while the multi-angle identification
process utilizes the computational and experimen-
tal models to identify and validate the significant
genes/SNPs. The proposed approach provides such
functionality.

3. Proposed approach

A typical data set in pharmaceutical industry
includes data for drug and placebo subjects, normal
and abnormal subjects, and genotypic and pheno-
typic data. The purpose of the research reported in
this paper is to derive the most significant features
that reflect the best interactions between genoty-
pic and phenotypic data, drug effectiveness, and
natural recovery (placebo related improvement)
genes/SNPs. Three main approaches are proposed,
namely the WDTGS, GAGS, and the feature set
intersection approach.

3.1. Weighted decision-tree-based gene
selection (WDTGS)

Partitioning a data set into drug and placebo sub-
jects, application of data mining algorithms, and
applying various weighted schemes initiates the
WDTGS approach. This leads to the identification of
significant genes/SNPs set per weighted scheme.
Finally, the set of most significant genes is deter-
mined by intersecting all significant genes/SNPs sets.

The data sets are initially partitioned in the
placebo and drug category. The analysis is per-

formed independently for each set with the decision
variable as a measure (e.g., test scores, lab find-
ings, etc.) of improvement over time (i.e., decision
value ¼ final measure � initial measure) (see Step 1
of Fig. 1). The discretized decisions (Good and Bad)
for placebo and drug sets are considered.

In Step 1 (Fig. 1) a data set is formed for each
gene with more than three to five SNPs and the
decision feature. The decision-tree algorithm [31] is
applied in Step 2 (Fig. 1), which produces rules in
the following format:

IF USP SNP6 ¼ T T AND USP SNP2

¼ T T AND USP SNP4 ¼ A G AND USP SNP5

¼ G G THEN Decision ¼ D BAD

Classification and prediction accuracy are used in
data mining as the quality metrics [32]. In this
paper, classification accuracy is defined as the abil-
ity of a gene to best explain the ‘‘training’’ data set.
While the prediction accuracy (with the result of 10-
fold cross-validation) is defined as ability of a gene
to accurately predict a ‘‘test’’ data set. For exam-
ple, for the data set containing the USP gene the
classification accuracy is 71.49%, while the predic-
tion accuracy is 56.09% (see Table 1).

Maximizing classification accuracy may lead to
overfitting of the data and decreasing the predic-
tion accuracy (attained by cross-validation). Thus a
balance between classification and prediction accu-
racy needs to be maintained. It is accomplished by
employing multiple user-defined weighting schemes
(Step 3, Fig. 1) as illustrated next.

weighted accuracyðiÞ¼fAi� classification accuracy

þ Bi � prediction accuracyg with fAi þ Bi ¼ 1g
(1)

Figure 1 Weighted decision-tree-based selection (WDTGS) of genes/SNPs.
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Ai and Bi are the weights of the ith weighting
scheme. For example, if the classification is more
critical than prediction, then the scheme can be 0.7
� classification accuracy þ 0.3 � prediction accu-
racy, i.e. (0.7 � 71.49) þ (0.3 � 56.09) ¼ 66.87% for
the USP gene (Table 2).

The results from each weighted scheme are
ranked in the descending order of the weighted
accuracy (Table 2). To select the number of genes
for further analysis, two criteria are applied a
threshold on the number of selected genes and a
threshold combined weighted accuracy. For exam-
ple, the threshold values can be 15 genes and 60%
combined weighted accuracy. Ranked weighted
accuracy for each weighted scheme will lead to
potentially different genes set (Step 4, Fig. 1). If
the threshold values for Table 2 are 2 genes and
60% combined weighted accuracy, then ranked
weighted scheme 1 (WS1) will choose USP and
NBC genes, while the ranked weighted scheme 2
(WS2) will choose only USP gene.

To obtain a final significant gene set (Step 5,
Fig. 1), the intersection of all ranked gene sets is
generated (Fig. 1). The selected genes satisfy var-
ious weighted schemes and form a multi-objective
solution. The intersection of WS1 and WS2 weighted
schemes results in the USP gene (Table 2).

The same procedure is repeated for placebo data
sets. There are two sets of significant genes, one
each of placebo and drug subjects (Step 6, Fig. 1).

3.2. Genetic algorithm-based gene
selection (GAGS)

Partitioning the data into drug and placebo sets
initiates the GAGS. The genetic algorithm-based

feature-selection mechanisms such as a correla-
tion-based heuristic and decision-tree wrapper
approach are independently used to evaluate the
quality of the genes/SNPs. The analysis of the out-
puts, i.e., frequency, results in the identification of
the significant genes/SNPs for both drug and pla-
cebo sets. A brief introduction to the algorithms
used by GAGS is presented next.

GA [27—30] is a search algorithm using the con-
cepts from biology. A GA is initiated with a set of
solutions (represented by chromosomes) called the
population. Each solution in the population is eval-
uated in terms of its fitness. Solutions chosen to
form new chromosomes (offspring) are selected
according to their fitness, i.e., the more suitable
they are the higher likelihood they will reproduce.
This is repeated until a stopping condition (for
example, the number of populations or improve-
ment of the best solution) is satisfied. GA searches
the solution space without following crisp con-
straints and potentially samples the entire feasible
solution region. This provides a chance of visiting
the previously unexplored space and there is a high
possibility of achieving overall optimal/near-opti-
mal solution, making the GA a global search
mechanism.

With the GA as a global search tool, feature
selection can be performed using two approaches,
namely filter and wrapper search [33—35]. The
wrapper search uses machine-learning algorithm,
decision tree wrapper (DTW), to evaluate the GA
solutions [34,36,37]. The filter approach evaluates
the features using heuristic-based characteristics
(e.g., correlation) of the data. Correlation-based
feature selection (CFS) filter is a fast and effective
way for feature selection [35]. It selects a feature if
it correlates with the decision outcome but not to
any other feature that has already been selected.

Partitioning the data into drug and placebo sets
along with the decision forms the initial step of the
GAGS approach (Step 1, Fig. 2). The drug data set
with n features (all SNPs for all genes) and m
observations (subjects) is evaluated using GAGS
(i.e., GA—CFS and GA—DTW) approaches (Step 2,
Fig. 2).

To avoid local optima, the GA—CFS approach
(Step 3a, Fig. 2) applies the correlation-based heur-
istic n times (n ¼ 10—30) to each (drug and placebo)
data set. The output provides the frequency, i.e.,
number of times the feature was selected (Table 3).
A higher value of the frequency indicates superior
quality of the selected feature. The frequency is
sorted in the descending order for easy identifica-
tion of the quality features. A threshold on number
of features selected as well as the threshold fre-
quency can be set for inclusion in the final feature

Table 1 Example of classification and prediction
measurements

Classification Prediction

Gene Correct Gene Correct

USP 71.49 USP 56.09
BRH 59.32 BRH 49.24
NBC 64.07 NBC 53.04

Table 2 Ranking of combined weighted accuracy

WS1 WS2

Rank Gene Correct Rank Gene Correct

1 USP 66.87 1 USP 60.71
2 NBC 60.76 2 NBC 56.35
3 BRH 56.30 3 BRH 52.26
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set (Step 4a, Fig. 2). For example, the threshold
frequency can be set as ¼ 80% (i.e., 8 out of 10
times). The features selected for this threshold are
ABC_SNP6, CBS_SNP9, CBS_SNP1, and PAT_SNP4
(Table 3).

The GA—DTW approach (Step 3b, Fig. 2) is com-
putationally intensive as it builds decision trees for
each solution investigated by the GA. To gain con-
fidence in the selected features, the GA—DTW
approach is replicated (n times, where n ¼ 10—
30). The computational time is justified as it is
performed only ones. In absence of multiple repli-
cations, all the outputted features form the final
features set (Step 4b, Fig. 2). This single replication
feature set is still reliable as it was obtained through
global GA search supported by DTW with five-fold
cross-validation.

The GA—DTW and GA—CFS approaches provide a
set of potentially high quality features (Step 5,

Fig. 2). The number of selected features is substan-
tially reduced from that of the original data set. The
same procedure is applied to the placebo data sets.
Thus there are four features sets (two data sets
multiplied by two GA approaches).

3.3. Feature set intersection approach

To further reduce the number of features, two or
more feature sets (obtained in the previous sec-
tion) are combined (Fig. 3). The generated inter-
section provides important features as they are
selected by more than one approach, while the
union may provide knowledge that may have been
missed by one of the approaches. For example,
the intersection of the GA—CFS and WDTGS for
drug data sets has been performed (see Table 4).
The same procedure is performed for the placebo
data set.

Figure 2 Genetic algorithm-based feature selection.

Table 3 GA—CFS: frequency output with feature quality

No. Unsorted Sorted SNP quality

Frequency Attribute Frequency Attribute

1 10 ABC_SNP6 10 ABC_SNP6 Good
2 1 AUS_SNP3 10 CBS_SNP9
3 9 CBS_SNP1 9 CBS_SNP1
4 10 CBS_SNP9 8 PAT_SNP4

5 3 CDE_SNP4 6 WXY_SNP1 Moderate

6 8 PAT_SNP4 3 CDE_SNP4 Bad
7 2 TUV_SNP1 2 TUV_SNP1
8 0 USP_SNP2 1 AUS_SNP3

9 6 WXY_SNP1 0 USP_SNP2 No use
10 0 WXY_SNP3 0 WXY_SNP3
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In the first iteration, the WDTGS, GAGS, and the
feature set intersection approaches reduce the
number of features. To further reduce the number
of features, the above approaches can be re-applied
(iteratively) to each reduced data set (Fig. 4). The
iterative process is terminated, if the 10-fold cross-
validation accuracy deteriorates or the feature set
remains static.

3.4. Evaluating selected feature sets

The WDTGS, GAGS, and the feature set intersection
approaches provide four feature sets, each for the
drug and placebo data set (i.e., eight feature sets in
total). To evaluate the quality of each feature set,
baseline accuracy (10-fold cross-validation) and
specificity (true-negative rate, i.e., predicting
improvement when given that individuals have
had improvement due to drug/placebo treatment)
is used. The baseline accuracy and specificity are
obtained by performing data mining on all features
for the drug and placebo data set. A decision-tree
algorithm with default values and 10-fold cross-
validation can be applied. All other feature sets
(generated from various proposed approaches)
are also mined (with 10 fold-cross-validation) using
the same decision-tree algorithm with same default
values as the baseline. This forms the bases for a fair
comparison. The next quality measure of the fea-
ture set is the number of features pruned, while
maintaining or improving the cross-validation accu-
racy. A separate analysis of the drug and placebo
data was performed using the information gain (IG)
and standard regression (REG) (with the-best-first
search [33]) approaches that are reported in the
literature. This provided an additional quality mea-
sure. Even, if the feature set accuracy did not
increase, dealing with smaller number of features

is advantageous. Ideally, the percentage reduction
in the number of features should be meaningful.

The benefits of the above feature selection
approaches are that they consider the training
(classification) as well as testing (prediction) accu-
racy. The GA-based approach selects combinations
of genes/SNPs, which are not likely to be selected
by traditional approaches due to local optima. The
proposed approach has a potential of identifying
best performing set of genes/SNPs for drug effec-
tiveness. The complex interactions and associations
between genes/SNPs can be conveniently explained
by the decision rules in IF-THEN format.

4. Application to a genetic data set

4.1. Data set

The data set used in this paper emulates a standard
genetic data set. The naming convention for the
genes and SNPs is arbitrary. The genes/SNPs selected
for the analyses were based on domain knowledge,
nature of the disease, drug structure, pharmacody-
namics,pharmacokinetics,molecularpharmacology,
etc. Pre-screening of genes/SNPs by above methods
narrows the search space, reduces computational
effort and allows targeted analysis. The data set
(Table5)consistsoffivephenotypefeatures,32genes
with a total of 172 SNPs (Tables 6 and 7) and the
number of subjects affected by a disease is 1000.

The data set was divided into two parts similar to
the actual clinical trial and one set-representing
drug-treated subjects and the other placebo sub-
jects. The decision for each data set was formu-
lated. Thus a subject in the drug set was labeled
with Decision ¼ D_GOOD, if the difference between
test scores was above 25, else, the Decision ¼ D_-
BAD. Similarly, for placebo set Decision ¼ P_GOOD,
if the difference between test scores was above 12
else the Decision ¼ P_BAD.

4.2. Weighted decision-tree-based gene
selection (WDTGS)

Mining is performed on the data for each gene (i.e.,
32 runs of the decision-tree algorithm) for drug

Figure 3 Identification of the feature set intersection.

Table 4 Feature set for GA—CFS, WDTGS, and GA—CFS—WDTGS

GA—CFS feature set WDTGS feature set GA—CFS—WDTGS feature set

1 CBS_SNP9 KQE_SNP3 ORH_SNP2 CRH NBC CRH_SNP2 WXY_SNP4
2 CRH_SNP2 KQE_SNP7 ORH_SNP5 KQE WXY KQE_SNP3 WXY_SNP5
3 JGT_SNP2 NBC_SNP4 WXY_SNP4 KQE_SNP7
4 JGT_SNP6 NOP_SNP1 WXY_SNP5 NBC_SNP4
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subjects (Fig. 1). The results of classification and
prediction accuracy are presented in Table 8.

The weighted scheme 1 is defined as 0.7 � clas-
sification accuracy þ 0.3 � prediction accuracy.
The second weighted scheme is 0.3 � classification
accuracyþ 0.7 � prediction accuracy. The resulting
combined weighted accuracy for each gene, for
every weighted scheme is presented in Table 9.
The threshold for inclusion of a gene was set to
12 genes with combined weighted accuracy ¼ 55%
for each scheme. To obtain a final significant drug
gene set (Tables 10 and 12), an intersection of all
ranked gene sets was performed (Fig. 1).

The same procedure was performed for the pla-
cebo set. The ranked genes for both weighted
schemes are shown in Table 11, while the final
significant genes are shown in Table 12.

The approach identified 10 and 8 significant
genes for the drug and placebo data set, respec-
tively. It can be observed that the sets selected for
drug and placebo subjects have common genes
(Table 12). These common genes may be indicative
of natural improvement of the subjects.

4.3. Genetic algorithm-based gene
selection (GAGS)

4.3.1. GA–CFS approach
The drug data set with all features was used to
perform GA—CFS (Fig. 2). The 10 fold cross-valida-
tion provided results similar to those of Table 3. The

values of GA parameters employed in this approach
are: 100 GA runs, 100-population size, 0.6-crossover
rate, and 0.033 mutation rate. The computational
time on a standard PC (Pentium 4) was 130 s. The
threshold frequency of 60% (i.e., 6 out of 10 runs)
was set for selection of SNPs for the drug set. The
set of 63 selected SNPs are provided in Table 13. The
GA—CFS approach for placebo set yielded 59 SNPs.

4.3.2. GA–DTW approach
The drug data set with all features was used to
execute the GA—DTW based feature selection
(Fig. 2). The GA—DTW approach performed single
replication with the GA parameters similar to the
GA—CFS approach. A five-fold cross-validation with
the decision-tree algorithm was used by the wrap-
per approach. The total number of decision trees
built by this approach was [100 (GA runs) � 100
(population size) � 5 (DT five-fold cross-validation)]
50,000 decision trees. Building 50,000 decision
trees is a slow and tedious process requiring
approximately 82 h of computational time on a
standard PC (Pentium 4). The set of 72 selected
SNPs for drug set are provided in Table 14. Proces-
sing the placebo set with the same approach yielded
90 SNPs.

4.4. The feature-set intersection approach

To further reduce the number of features the inter-
section of significant genes/SNPs list produced by

Figure 4 Iterative process for best feature set.

Table 5 Symbolic representation of the data set

No. ABC_SNP1 ABC_SNP2 ABC_SNP3 Gender Age Race Weight Height Decision

1 C_G A_A C_G Female 46 1 83.86 164.50 D_BAD
2 G_G A_G C_C Male 46 1 62.14 176.71 D_BAD
3 G_G G_G C_G Female 56 1 80.19 186.41 D_BAD
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

998 G_G G_G C_G Male 69 1 58.31 168.28 P_GOOD
999 C_C G_G C_G Female 49 3 89.77 177.48 P_GOOD
1000 C_C G_G C_C Female 66 1 47.19 153.82 P_GOOD
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WDTGS and GA—CFS (i.e., GA—CFS—WDTGS) was
performed. The resulting set of 26 SNPs for drug
set is shown in Table 15. The same approach applied
to the placebo data set yielded 21 significant SNPs.

4.5. Evaluating selected feature sets

4.5.1. Baseline measurements
Data mining of a drug set with all features was used
to compute the baseline measurements. The base-
line cross-validation accuracy and specificity for
drug set were 48.85 and 50.76%, respectively. Var-
ious algorithms such as support vector machine,
clustering algorithm, neural network, and regres-
sion produced similar results to that of decision
trees. The possibility of noisy data sets, incorrect
decision assignment, complex interaction of various
human physiological processes, and the interaction
between various diseases can explain some aspects
of the poor baseline results. As the purpose of the
proposed approaches is to enhance the knowledge
base (i.e., rules/information that represent the

group of individuals) over the existing ones (i.e.,
obtained from original data set or domain experts),
the poor cross-validation and specificity results can
still act as the baseline. Thus relative increase in
cross-validation accuracy, specificity, and reduc-
tion in features are of prime importance. IG and
REG approaches were selected to determine the
significant gene/SNPs. All the approaches discussed
in this paper were compared with IG and REG
approaches with respect to quality measures dis-
cussed above.

4.5.2. Drug set
The WDTGS approach increased cross-validation
accuracy over the baseline by 4.69% and reduced
the number of features by 60.47%. The quality
measures for GA—CFS and GA—DTW approaches
are provided in Table 16. The best approach was

Table 6 Phenotypic features

No. Gene Number of SNPs

1 ABC 6
2 AUS 6
3 BRH 6
4 CBS 9
5 CDE 5
6 CRH 6
7 CRS 5
8 DSS 4
9 EFG 6

10 GRE 4
11 HIJ 5
12 IND 5
13 JGT 6
14 JIT 5
15 KLM 7
16 KQE 7
17 NBC 5
18 NOP 4
19 NOR 5
20 NPR 3
21 ORH 8
22 ORS 9
23 OST 4
24 PAT 6
25 QRS 5
26 QTS 3
27 RHN 5
28 RHP 7
29 STP 6
30 TUV 5
31 USP 8
32 WXY 7

Table 7 Example of genes and SNPs

Gene SNP

ABC ABC_SNP1
ABC_SNP2
ABC_SNP3
ABC_SNP4
ABC_SNP5
ABC_SNP6

AUS AUS_SNP1
AUS_SNP2
AUS_SNP3
AUS_SNP4
AUS_SNP5
AUS_SNP6

IND IND_SNP1
IND_SNP2
IND_SNP3
IND_SNP4
IND_SNP5

JGT JGT_SNP1
JGT_SNP2
JGT_SNP3
JGT_SNP4
JGT_SNP5
JGT_SNP6

BRH BRH_SNP1
BRH_SNP2
BRH_SNP3
BRH_SNP4
BRH_SNP5
BRH_SNP6

JIT JIT_SNP1
JIT_SNP2
JIT_SNP3
JIT_SNP4
JIT_SNP5
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the intersection approach of WDTGS and GA—CFS
(i.e., GA—CFS—WDTGS features set). This approach
has increased the cross-validation accuracy over
baseline by 8.58% with 84.88% reduction in the
number of features. The specificity had increased
by 3.29% over the baseline. Thus these approaches
perform better than the baseline and also
steadily improve over each other (see Fig. 5a and
Table 16).

The IG approach had cross-validation accuracy of
50.19%, a 2.74% increase over the baseline. Though
the IG approach resulted in a 63.37% reduction of
the number of features, the specificity decreased by
2.28%. Similarly, the REG approach had cross-vali-

dation accuracy of 52.66% with the elimination of
133 features over the baseline. The GA—CFS—
WDTGS approach performed much better than IG
and REG approaches on all quality measures
(Table 16). Although the cross-validation accuracy
of the REG and GA—CFS—WDTGS approaches dif-
fered by less than 0.5%, the number of features
reduced by GA—CFS—WDTGS approach was consid-
erably higher. The GA—CFS—WDTGS approach
identified 3 and 14 better gene/SNPs than IG
and REG, respectively (Table 17). Thus the GA
was able to uniquely identify some drug gene/SNPs
that were not identified by the traditional
approaches.

Table 8 Classification and prediction accuracy

Genes CA PA Genes CA PA Genes CA PA Genes CA PA

ABC 60.71 49.24 EFG 59.32 47.72 NBC 64.07 53.04 QRS 57.23 46.20
AUS 65.40 49.43 GRE 60.71 53.42 NOP 59.32 50.00 QTS 57.04 48.29
BRH 59.32 49.24 HIJ 52.85 48.29 NOR 55.14 43.35 RHN 65.21 50.95
CBS 65.40 48.86 IND 52.85 46.96 NPR 59.13 55.52 RHP 70.73 50.00
CDE 61.79 47.77 JGT 60.84 45.25 ORH 58.18 49.24 STP 60.27 48.29
CRH 68.25 50.19 JIT 61.98 48.29 ORS 69.02 50.00 TUV 60.84 49.43
CRS 56.85 51.71 KLM 63.50 54.76 OST 56.66 44.11 USP 71.49 56.09
DSS 54.00 48.86 KQE 69.58 48.67 PAT 71.87 48.67 WXY 67.87 51.34

CA: classification accuracy; PA: prediction accuracy.

Table 9 Weighted schemes

Gene WS1 WS2 Gene WS1 WS2 Gene WS1 WS2 Gene WS1 WS2

ABC 57.27 52.68 EFG 55.84 51.20 NBC 60.76 56.35 QRS 53.92 49.51
AUS 60.61 54.22 GRE 58.52 55.61 NOP 56.52 52.80 QTS 54.42 50.91
BRH 56.30 52.26 HIJ 51.48 49.66 NOR 51.60 46.88 RHN 60.93 55.23
CBS 60.44 53.82 IND 51.08 48.73 NPR 58.05 56.60 RHP 64.51 56.22
CDE 57.58 51.98 JGT 56.16 49.93 ORH 55.50 51.92 STP 56.68 51.88
CRH 62.83 55.61 JIT 57.87 52.40 ORS 63.31 55.71 TUV 57.42 52.85
CRS 55.31 53.25 KLM 60.88 57.38 OST 52.90 47.88 USP 66.87 60.71
DSS 52.46 50.40 KQE 63.31 54.94 PAT 64.91 55.63 WXY 62.91 56.30

Weighted scheme ¼ A � classification þ B � prediction. WS1: weighted scheme 1 (A ¼ 0.7 and B ¼ 0.3); WS2:
weighted scheme 2 (A ¼ 0.3 and B ¼ 0.7).

Table 10 Ranked genes for drug subjects

Weighted scheme 1 Weighted scheme 2

Rank Gene Correct Rank Gene Correct Rank Gene Correct Rank Gene Correct

1 USP 66.87 7 CRH 62.83 1 USP 60.71 7 ORS 55.71
2 PAT 64.91 8 RHN 60.93 2 KLM 57.38 8 PAT 55.63
3 RHP 64.51 9 KLM 60.88 3 NPR 56.60 9 CRH 55.61
4 ORS 63.31 10 NBC 60.76 4 NBC 56.35 10 GRE 55.61
5 KQE 63.31 11 AUS 60.61 5 WXY 56.30 11 RHN 55.23
6 WXY 62.91 12 CBS 60.44 6 RHP 56.22 12 KQE 54.94

Genes marked in bold are repeated for both weighted schemes.
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Some prominent sample rules for drug set are as
follows:

RULE 1: IF STP_SNP6 ¼ C_C AND NBC_SNP1 ¼
C_T AND KLM_SNP1 ¼ G_G AND USP_SNP7 ¼ C_C
AND CRH_SNP4 ¼ C_C AND KQE_SNP7 ¼ C_C
THEN Decision ¼ D_GOOD
RULE 2: IF STP_SNP6 ¼ C_T AND WXY_SNP2 ¼
C_C AND CRH_SNP3 ¼ C_T AND RHP_SNP2 ¼ C_C
THEN Decision ¼ D_BAD

Cross-testing of the knowledge obtained from the
drug set was performed by testing the rules against
the placebo set. A lower cross-validation accuracy
(of placebo set cross testing on drug knowledge,
i.e., rule sets) may indicate significant drug-related
genes (Fig. 5a). The reason for improved placebo
cross-testing accuracy (Fig. 5a) in this analysis can

Table 11 Ranked genes for placebo subjects

Weighted scheme 1 Weighted scheme 2

Rank Gene Correct Rank Gene Correct Rank Gene Correct Rank Gene Correct

1 RHP 65.36 7 CBS 63.31 1 AUS 59.14 7 ORS 56.61
2 KQE 63.72 8 WXY 63.31 2 CRH 58.04 8 KQE 56.12
3 CRH 63.69 9 NBC 62.49 3 CBS 58.00 9 GRE 56.05
4 ORS 63.44 10 PAT 61.95 4 NOR 57.26 10 STP 55.89
5 AUS 63.44 11 RHN 61.12 5 WXY 57.15 11 RHP 55.74
6 USP 63.42 12 JGT 59.96 6 NBC 56.93 12 CRS 55.45

Genes marked in bold are repeated for both weighted schemes.

Table 12 Significant genes

No. Drug gene Placebo gene Common gene

1 CRH AUS CRH
2 KLM CBS KQE
3 KQE CRH NBC
4 NBC KQE ORS
5 ORS NBC RHP
6 PAT ORS WXY
7 RHN RHP
8 RHP WXY
9 USP

10 WXY

Genes marked in bold are common to drug and
placebo subjects.

Table 13 The GA—CFS—based significant SNPs

Significant drug SNPs Significant placebo SNPs

1 ABC_SNP2 HIJ_SNP4 ORS_SNP6 1 ABC_SNP2 KLM_SNP1 OST_SNP3
2 ABC_SNP6 JGT_SNP2 OST_SNP4 2 ABC_SNP4 KLM_SNP5 PAT_SNP4
3 AUS_SNP1 JGT_SNP6 PAT_SNP1 3 AUS_SNP2 KLM_SNP6 PAT_SNP6
4 AUS_SNP2 JIT_SNP3 PAT_SNP2 4 AUS_SNP3 KQE_SNP2 QRS_SNP3
5 AUS_SNP5 JIT_SNP4 PAT_SNP4 5 AUS_SNP4 KQE_SNP4 QRS_SNP4
6 BRH_SNP2 KLM_SNP1 QRS_SNP2 6 AUS_SNP5 KQE_SNP5 QTS_SNP3
7 BRH_SNP6 KLM_SNP2 QRS_SNP4 7 BRH_SNP6 NBC_SNP1 RHN_SNP1
8 CBS_SNP1 KLM_SNP6 QRS_SNP5 8 CBS_SNP4 NBC_SNP2 RHN_SNP2
9 CBS_SNP2 KQE_SNP3 QTS_SNP1 9 CBS_SNP5 NBC_SNP4 RHN_SNP4

10 CBS_SNP9 KQE_SNP7 RHN_SNP1 10 CBS_SNP6 NOP_SNP1 RHP_SNP2
11 CRH_SNP2 NBC_SNP1 RHP_SNP2 11 CDE_SNP2 NOP_SNP2 RHP_SNP3
12 CRH_SNP3 NBC_SNP4 STP_SNP6 12 CDE_SNP5 NOP_SNP3 STP_SNP4
13 CRH_SNP4 NOP_SNP1 TUV_SNP2 13 CRS_SNP3 NOP_SNP4 STP_SNP6
14 CRH_SNP5 NOP_SNP2 TUV_SNP3 14 CRS_SNP4 NOR_SNP2 TUV_SNP1
15 CRH_SNP6 NPR_SNP1 TUV_SNP4 15 DSS_SNP3 NOR_SNP3 TUV_SNP5
16 CRS_SNP3 NPR_SNP3 USP_SNP4 16 EFG_SNP1 ORH_SNP4 USP_SNP4
17 DSS_SNP4 ORH_SNP2 USP_SNP5 17 EFG_SNP4 ORS_SNP4 WXY_SNP2
18 EFG_SNP4 ORH_SNP5 USP_SNP7 18 GRE_SNP3 ORS_SNP5
19 GRE_SNP4 ORH_SNP6 WXY_SNP2 19 IND_SNP2 ORS_SNP7
20 HIJ_SNP1 ORS_SNP3 WXY_SNP4 20 IND_SNP5 ORS_SNP8
21 HIJ_SNP2 ORS_SNP4 WXY_SNP5 21 JIT_SNP5 ORS_SNP9
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Table 14 The GA—DTW-based significant SNPs

Significant drug SNPs Significant placebo SNPs

1 ABC_SNP2 IND_SNP2 ORH_SNP7 1 ABC_SNP4 GRE_SNP1 NOP_SNP4 RHP_SNP2
2 ABC_SNP3 IND_SNP3 ORS_SNP1 2 AUS_SNP1 GRE_SNP2 NOR_SNP3 RHP_SNP3
3 ABC_SNP5 JGT_SNP2 ORS_SNP3 3 AUS_SNP2 GRE_SNP3 NPR_SNP3 RHP_SNP6
4 ABC_SNP6 JGT_SNP4 ORS_SNP4 4 AUS_SNP3 GRE_SNP4 ORH_SNP1 RHP_SNP7
5 AUS_SNP2 JGT_SNP5 ORS_SNP7 5 BRH_SNP4 HIJ_SNP1 ORH_SNP2 STP_SNP4
6 AUS_SNP3 JGT_SNP6 OST_SNP2 6 BRH_SNP5 HIJ_SNP3 ORH_SNP3 STP_SNP5
7 AUS_SNP4 JIT_SNP1 OST_SNP4 7 BRH_SNP6 IND_SNP2 ORH_SNP4 STP_SNP6
8 AUS_SNP5 JIT_SNP4 PAT_SNP2 8 CBS_SNP1 IND_SNP3 ORH_SNP5 TUV_SNP2
9 AUS_SNP6 JIT_SNP5 QRS_SNP1 9 CBS_SNP4 IND_SNP5 ORS_SNP1 TUV_SNP3

10 BRH_SNP1 KLM_SNP1 RHN_SNP1 10 CBS_SNP5 JGT_SNP3 ORS_SNP2 TUV_SNP4
11 BRH_SNP2 KLM_SNP3 RHN_SNP4 11 CDE_SNP1 JGT_SNP5 ORS_SNP6 TUV_SNP5
12 CBS_SNP7 KQE_SNP3 RHN_SNP5 12 CDE_SNP3 JGT_SNP6 ORS_SNP7 USP_SNP1
13 CDE_SNP2 KQE_SNP5 RHP_SNP1 13 CDE_SNP4 JIT_SNP1 ORS_SNP8 USP_SNP2
14 CDE_SNP4 KQE_SNP7 RHP_SNP6 14 CRH_SNP2 JIT_SNP4 ORS_SNP9 USP_SNP3
15 CDE_SNP5 NBC_SNP1 STP_SNP2 15 CRH_SNP3 KLM_SNP1 OST_SNP1 USP_SNP4
16 CRH_SNP1 NBC_SNP3 STP_SNP6 16 CRH_SNP6 KLM_SNP5 OST_SNP3 USP_SNP7
17 CRS_SNP1 NBC_SNP4 TUV_SNP2 17 CRS_SNP2 KLM_SNP6 PAT_SNP1 WXY_SNP4
18 CRS_SNP3 NBC_SNP5 TUV_SNP4 18 CRS_SNP3 KLM_SNP7 PAT_SNP3 WXY_SNP5
19 CRS_SNP4 NOP_SNP3 USP_SNP5 19 CRS_SNP5 KQE_SNP3 PAT_SNP4
20 DSS_SNP2 NOP_SNP4 USP_SNP6 20 DSS_SNP1 KQE_SNP4 QRS_SNP3
21 DSS_SNP4 NPR_SNP3 USP_SNP7 21 DSS_SNP2 KQE_SNP5 QTS_SNP3
22 EFG_SNP2 ORH_SNP1 WXY_SNP1 22 DSS_SNP4 KQE_SNP6 RHN_SNP1
23 GRE_SNP1 ORH_SNP4 WXY_SNP3 23 EFG_SNP1 NBC_SNP2 RHN_SNP5
24 HIJ_SNP4 ORH_SNP6 WXY_SNP4 24 EFG_SNP4 NBC_SNP3 RHP_SNP1

Table 15 The GA—CFS—WDTGS-based significant SNPs

Significant drug SNPs Significant placebo SNPs

1 CRH_SNP2 NBC_SNP4 USP_SNP7 1 AUS_SNP2 NBC_SNP2
2 CRH_SNP3 ORS_SNP3 WXY_SNP2 2 AUS_SNP3 NBC_SNP4
3 CRH_SNP4 ORS_SNP4 WXY_SNP4 3 AUS_SNP4 ORS_SNP4
4 CRH_SNP5 ORS_SNP6 WXY_SNP5 4 AUS_SNP5 ORS_SNP5
5 CRH_SNP6 PAT_SNP1 5 CBS_SNP4 ORS_SNP7
6 KLM_SNP1 PAT_SNP2 6 CBS_SNP5 ORS_SNP8
7 KLM_SNP2 PAT_SNP4 7 CBS_SNP6 ORS_SNP9
8 KLM_SNP6 RHN_SNP1 8 KQE_SNP2 RHP_SNP2
9 KQE_SNP3 RHP_SNP2 9 KQE_SNP4 RHP_SNP3

10 KQE_SNP7 USP_SNP4 10 KQE_SNP5 WXY_SNP2
11 NBC_SNP1 USP_SNP5 11 NBC_SNP1

Table 16 Improvement in quality measures for the drug data set

Feature list Accuracy
(%)

Percent
increase in
accuracy

Number of
features

Percent
reduction
in features

Specificity
(%)

Percent
increase in
specificity

ALL 48.85 0.00 172 0.00 50.76 0.00
WDTGS 51.14 4.69 68 60.47 49.43 �2.63
GA—DTW 51.33 5.08 72 58.14 54.17 6.70
GA—CFS 53.23 8.97 63 63.37 52.57 3.57
GA—CFS—WDTGS 53.04 8.58 26 84.88 52.43 3.29
IG 50.19 2.74 63 63.37 49.61 �2.28
REG 52.66 7.80 39 77.33 52.06 2.55
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be explained by common significant genes/SNPs for
both placebo as well as drug subjects.

4.5.3. Placebo set
Similarly, the best approach for the placebo set was
the intersection approach of WDTGS and GA—CFS
(i.e., GA—CFS—WDTGS features set). The increase
in cross-validation accuracy over baseline for this
approach was 11.58% and the number of features
was reduced by 87.79% (Table 18). The specificity
had increased by 3.22% over the baseline. Table 18
and Fig. 5b explain the quality of each approach for
the placebo set.

The IG approach had cross-validation accuracy of
53.38%, which was between the WDTGS approach
and GA—DTW approach. The REG approach per-
formed worst than the baseline cross-validation
accuracy due to the elimination of quality features.
The specificity decreased by 7.38% over the baseline
measurement. The GA—CFS—WDTGS approach per-
formed far superior than both IG and REG
approaches in terms of all quality measures
(Table 18). The GA—CFS—WDTGS approach identi-
fied 4 and 8 more interesting gene/SNPs than IG and
REG, respectively (Table 17). Thus the GA was able
to uniquely identify some placebo gene/SNPs

Figure 5 Cross-validation and cross-testing results
using (a) drug knowledge and (b) placebo knowledge.

Table 17 Uniquely identified drug and placebo genes/SNPs by the GA—CFS—WDTGS approach

No. Drug data set: SNPs uniquely identified by
GA—CFS—WDTGS over

Placebo data set: SNPs uniquely identified by
GA—CFS—WDTGS over

IG REG IG REG

1 ORS_SNP4 CRH_SNP3 ORS_SNP3 USP_SNP4 AUS_SNP2 AUS_SNP2 ORS_SNP4
2 USP_SNP4 CRH_SNP6 ORS_SNP4 USP_SNP7 ORS_SNP5 KQE_SNP2 ORS_SNP7
3 USP_SNP7 KLM_SNP1 PAT_SNP1 WXY_SNP2 ORS_SNP7 KQE_SNP5 ORS_SNP8
4 KQE_SNP7 PAT_SNP4 WXY_SNP5 RHP_SNP2 NBC_SNP4 RHP_SNP3
5 NBC_SNP1 RHN_SNP1

Table 18 Improvement in quality measures for the placebo data set

Feature list Accuracy
(%)

Percent
increase in
accuracy

Number of
features

Percent
reduction
in features

Specificity
(%)

Percent
increase in
specificity

ALL 51.05 0.00 172 0.00 55.69 0.00
WDTGS 52.11 2.08 57 66.86 50.41 �9.48
GA—DTW 55.06 7.86 90 47.67 57.08 2.51
GA—CFS 56.96 11.58 59 65.70 57.92 4.01
GA—CFS—WDTGS 56.96 11.58 21 87.79 57.48 3.22
IG 53.38 4.56 59 65.70 54.84 �1.52
REG 50.63 �0.82 41 76.16 51.57 �7.38
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that were not identified by the traditional app-
roaches.

Two important sample rules for the placebo set
are as follows:

RULE 1: IF AUS_SNP4 ¼ C_C AND ORS_SNP5 ¼
C_T THEN Decision ¼ P_GOOD
RULE 2: IF KQE_SNP2 ¼ C_C AND CBS_SNP6 ¼
C_C AND KQE_SNP5 ¼ G_G AND ORS_SNP5 ¼ T_T
THEN Decision ¼ P_BAD

5. Conclusion

Three different approaches for selection of sig-
nificant genes/SNPs were presented. The identi-
fied significant genes may lead to improvement of
drug effectiveness. For the data sets considered in
this paper, the number of features was reduced by
85% and the cross-validation accuracy was
increased by 10% over the baseline measurements.
The specificity increased by 3.2%. The proposed
approach has substantially enriched the knowl-
edge base. Bagging, boosting, meta-decision-mak-
ing, and other approaches can be used to further
increase the cross-validation accuracy and speci-
ficity. The GA—CFS—WDTGS approach performed
far better than the IG and REG approach in terms
of all three-quality measures, i.e., cross-valida-
tion accuracy, specificity, and the number of
significant genes/SNPs. The GA—CFS—WDTGS
approach uniquely identified some gene/SNPs that
could not be identified by the IG and REG
approaches.

Incorporating traditional feature selection
approaches could further enhance the significant
feature set. A modification of the inclusion proce-
dure of features in the significant feature set is
needed, e.g., weights (% decline/increase of the
accuracy and specificity and the reduction in the
number of features) could be used.

Various drug and diseases related analyses would
benefit from the proposed approaches. They will
ultimately lead to customized treatment protocols
and medications.
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