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ABSTRACT

Motivation: A central problem in genomic research is the identifica-
tion of genes and pathways involved in diseases and other biological
processes. The genes identified or the univariate test statistics are
often linked to known biological pathways through gene set enrich-
ment analysis in order to identify the pathways involved. However,
most of the procedures for identifying differentially expressed genes
do not utilize the known pathway information in the phase of iden-
tifying such genes. In this paper, we develop a Markov random field
(MRF)-based method for identifying genes and subnetworks that are
related to diseases. Such a procedure models the dependency of the
differential expression patterns of genes on the networks using a local
discrete MRF model.

Results: Simulation studies indicated that the method is quite effec-
tive in identifying genes and subnetworks that are related to disease
and has higher sensitivity and lower false discovery rates than the
commonly used procedures that do not use the pathway struc-
ture information. Applications to two breast cancer microarray gene
expression datasets identified several subnetworks on several of the
KEGG transcriptional pathways that are related to breast cancer
recurrence or survival due to breast cancer.

Conclusions: The proposed MRF-based model efficiently utilizes the
known pathway structures in identifying the differentially expressed
genes and the subnetworks that might be related to phenotype. As
more biological networks are identified and documented in databa-
ses, the proposed method should find more applications in identifying
the subnetworks that are related to diseases and other biological
processes.

Contact: Hongzhe Li, email: hongzhe@mail.med.upenn.edu.

INTRODUCTION

Identification of genes and pathways involved in diseases and other
biological processes is one of the important problems in genomic
research. Microarray technology makes it possible to measure the
expression levels of almost all human genes and therefore faci-
litate the identification of genes and pathways that are related to
disease initiation and development. In a typical experiment, several
phenotypes are compared, with a certain number of biological rep-
licates for each phenotype. The goal is to identify the differentially
expressed (DE) genes among the different phenotype groups.

There are many novel statistical methods that have been develo-
ped for identifying the DE genes. A general approach is to conduct
a hypothesis test at each gene and then correct for multiple testing.
Most of the statistics used are ¢ statistics and differ primarily in the
estimation of the variance (Dudoit et al., 2002; Tusher et al., 2001).

Other methods include the empirical Bayes methods that can effec-
tively pool data from different genes (Efron et al., 2001; Lonnstedt
and Speed, 2002; Newton et al., 2003; Kendziorski et al., 2003).
These DE genes identified are often linked to a pre-defined list of
groups of genes such as known pathways in order to identify which
groups include more DE genes than expected by chance using a
hypergeometric distribution. Alternatively, the gene set enrichment
analysis (GSEA) (Subramanian et al., 2005; Tian et al., 2005) can be
used. For such a GSEA, one starts with a pre-defined list of groups
of genes and assigns every such group a score that is essentially
the average of the univariate test statistics of its member genes. The
groups with high scores are more likely to be DE and p-values can
be obtained by permutation methods.

One limitation of the commonly used methods of identifying the
DE genes or the GSEA is that network structures are not utilized
in the analysis. However, the interaction network is a more pre-
cise way to represent information than lists of genes or pathways,
as it describes which genes are closely connected within a given
pathway. Hence it has the potential to detect more subtle chan-
ges of gene expressions, such as local disturbances within known
pathways. Rahnenfiihrer et al. (2004) demonstrated that the sensiti-
vity of detecting relevant pathways can be improved by integrating
information about pathway topology. In Sivachenko et al. (2005),
a network topology extracted from literature was used jointly with
microarray data to find significantly affected pathway regulators.
Nacu et al. (2006) proposed an interesting permutation-based test
for identifying subnetworks from a known network of genes that are
related to phenotypes. The method is essentially based on a spatial
scan statistic treating genes collected on the networks as neighbors.
However, their method does not explicitly utilize the dependency
of gene differential expression patterns on the network. Rapaport
et al. (2007) proposed to first smooth the gene expression data on
the network based on the spectral graph theory and then to use
the smoothed data for classification. The method explicitly assu-
mes that the true gene expression levels should be similar for genes
that are neighbors on the networks. However, this assumption may
be questionable due to both activating and inhibiting effects of gene
regulations.

Markov random field (MRF) models have been widely used in
image analysis in order to account for the local dependency of the
observed pixel intensities (Besag, 1986) and have also been applied
for functional prediction of proteins in order to account for the local
dependency of protein functions in the protein-protein interaction
networks (Deng et al., 2002; Deng et al., 2004; Letovsky and Kasif,
2003). The MRF model has also be applied for discovering mole-
cular pathways from protein interaction and gene expression data

© The Author (2007). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions @ oxfordjournals.org



Wei and Li

(Segalet al, 2003). In this paper, we propose to develop a Mar- Assumption 2The true state:™ is a realization of a locally depen-

kov random field (MRF)-based method for identifying the DEs anddent discrete MRF with a specified distributigp(z)}, which is

the subnetworks that are related to the phenotypes, where the MRfefined in the next Section.

model is used to capture the dependency of the differential eXpreEamma-Gamma model for gene expression data

sion patterns for genes on the networks. Our method combines th

two-group empirical Bayes method of Newtet al. (2003) and  In this section, we first briefly review the Gamma-Gamma model

Kendziorskiet al. (2003) with a MRF model to model the depen- for gene expression data introduced in Newsral. (2003) and

dency of the differential expression patterns. In our model and thosKendziorskiet al. (2003). We definef(.|u;), which characterizes

of Newtonet al. (2003) and Kendziorsket al. (2003), each gene fluctuations in repeated measurements under the same condition

is either DE or equally expressed. Those genes which are EE prédtom a genei having latent mean expression leyel, and (),

sent data according to some background Gamma distribution, an@hich describes fluctuations in these means among genes. We

those which are DE present data according to a different distribuassume that the observatignis a sample from a gamma distribu-

tion. The specific forms of these distributions arise by another layetion having shape parameter> 0 and a mean valug;; thus, with

of mixing over the latent mean expression level for each gene angcale parametek; = «/u;. The corresponding density function

the latent means follow another Gamma distribution. Such empirican be written as

cal Bayes approaches allow a level of information sharing amongst N A%y Lezp{— iy}

genes. fylps) = T(a)
The rest of the paper is organized as follows. We first intro-

duce the model assumptions and a MRF model. We then providéor measuremeny > 0. Note that the coefficient of variation in

an iterative conditional mode algorithm (ICM) of Besag (1986) for this distribution isl /1/«, taken to be constant across gend=ollo-

parameter estimation and for identifying the DE genes. We preserwing Newtonet al. (2003), we taker(u;) to be an inverse gamma.

simulation studies to demonstrate the methods and to compare thdore specifically, fixinge, the quantity\; = a/u; has a gamma

results with other commonly used methods for DE gene identificadistribution with shape parameter, and scale parameter. Let

tion. Finally, we present results of applying the proposed method td = (o, ao,v) be the parameters used to specify these two distri-

two breast cancer gene expression datasets in order to identify tHautions. The joint predictive density for the replicaggsof gene:

genes and the subnetworks that are related to breast cancer recunder the same condition is

rence or death due to breast cancer. We conclude the paper with a

brief discussion of the results and methods. Flyi) = / H Fylps) | m(u)dps.

STATISTICAL MODELS AND METHODS e
Notation and Assumptions

Given microarray gene expression profiling data under two conditi-

ons, we want to determine which genes are differentially expressed. Flyia,---
Each gene can have two states, labeled 0 and 1, representing equall

expression (EE) and DE, respectively. An arbitrary state assignment€ré

of gene sef5 will be denoted byr = (z1, z2,- - - , zp), Wherex; is o — v*°T(ma + o)
the corresponding state of gehand is 1 if gene is differentially L= "m ()T(ag)
expressed (i.e., DE) and 0 otherwise. We writefor the true but B

unknown gene state and interpret this as a particular realization Gind for the second condition

Under this general model, we have for the first condition

(T yig)

,yim)ZKIW’

a random vectoX = (X1, X», -, X,), whereX; assigns state (17 i) ™!

to genei. We let they; denote the observed mRNA expression level — f(Yi(m+1):* "+ » Yi(mtn)) = Kzﬁm7

of genei andy the corresponding vector, interpreted as a realiza- Yin

tion of a random vectory” = (Y1,Y2,---,Y,), whereY; itself where

is a vectory; = (Yi1, Yiz, " » Yim; Yi(m+1)y " " * 7yi(m+n))! com- ao

posed of then replicates under one condition andeplicates for K> = W

the other. We further introduce the notatign.. = >7", y:; and @)t iao

Yin = Z?:ZLH Yij- Therefore, given the differential expression statewe have
In order to specify the joint distribution &f, we make the follo- ) — _ _ T

wing assumptions: flyilzs;0) = [f(yir, -, yim) * f(Yiomtr),  Yin)]

, . . o , XL Wits s Yims Yigmenys 5 Yin)]
Assumption 1Given any particular realization, the random varia- ot o
blesY = (Y1,Ys,---,Y,) are conditionally independent and each (H;’;ﬁ” yij>
Y; has the same unknown conditional density functjtfy;|z;), = |KiK> Py maToo
dependent only om;. The conditional density of the observed gene (v +yim) (v+yin)
expressiory, given,z, is simply, . .

» . (H;njln yij)
>< ?
l(y|l’) = H f(yz|171) ('U + Yim + yi'n)(mﬁ»n)a«kao

i=1
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where In order to account for different numbers of neighbors for diffe-
N rent genes on the network, we propose to modify the conditional
KoY °T'((m + n)a + ao) probability (2) as
1“m+n(a)1"(a0) :
pi(kl.) oc exp(yx — Bu; (1 - k)), 4

Then based on the assumption 1, the conditional density of all

genes can be written as whereu} (1 — k) = u;(1 — k)/d; for k = 0,1 andd; is the number
of neighbors for théth gene. The conditional likelihood function (3)
can be modified accordingly by replacing(1 — k) with u; (1 — k).

p
Uyle;0) = [ f(uilzi; 0). (1) S o
i=1 Parameter estimation using ICM and identification of
subnetworks

Discrete local MRF model for joint differential . . . . )
. When inferring the true differential expression statefor the p
expression states . . . .
_ _ ) _ genes, the parameter estimation must be carried out simultaneously.
The gene differential expression stateis: are not independent. e propose the following algorithm based on the ICM algorithm
For example, if a gene is DE, it is more likely that its upstream of Besag (1986) to estimate the paramétar the Gamma-Gamma
regulators are also DE and that these regulators in turn affect theffodel for gene expression data and the parametar the MRF

downstream-regulated genes. In order to explicitly account for suchihodel. The algorithm involves the following iterative steps:
dependency of differential expression patterns over genes on the

networks, we propose to use the known biological network informa- 1 QOptain an initial estimate of the true state:*, using a simple
tion compiled in the form of pathways. Examples of such pathwaysyyg sample t-test.

include the KEGG pathway (Kanehisa and Goto, 2002) and BioCyc 2. Estimated by the valued which maximizes the likelihood
pathways (http://biocyc.com/). In our model, the network is expres(y|i; 0) (see Equation 1).

sed as an undirected graph with the nodes for genes and edges for3, Estimate® by the valued which maximizes the conditional
connections on the network. Consider hgenes on the network, |ikelihood(#; ®) ( see Equation 3) based on current

let x = (z1,22,---,2p) be the vector of unobserved differen- 4. Carry out a single cycle of ICM based on the currerd and
tial expression states for the genes. We propose to model the &, to obtain a new. Specifically, fori = 1 to p, updatez; which
dependency of = (x1, 2, - ,zp) USing a MRF with parameter maximizes

® = (40,71, B). Specifically, we assume

P(xily, ds/i) o f(yilzis 0)pi (x| doi; ),
p(; @) o exp(yono + mm1 — Bno),
subjecttar; = 1 orz; = 0.

whereng = Y 7 (1 — ;) is the number of genes at staterQ), = 5. Go to step 2 for a fixed number of cycles or until approximate
>-Px; is the number of genes at state 1 and is the number of  convergence of.
edges linking two genes with different states. Theand~; are The converged: are then taken to be the estimate of the true diffe-

arbitrary parameters and we require that- 0, which discourages rential expression states. These estimates can then be mapped back
neighboring genes to have different differential expression stateso the network to identify the subnetworks, which are defined as
By considering any two realizations which differ only at gené those connected genes that show differential expressions between
follows that the conditional probability of stakeoccurring for gene  the two experimental conditions.
1, given the states of all other genes is

SIMULATION STUDIES

pi(kls) o< exp(yi — Bui(1l — k), @) We first present simulation results to demonstrate our proposed
methods. To simulate the data, we first obtained the network
structure of 33 human regulatory pathways from the KEGG data-
) ) : ‘ _ base (December 2006 version). We are only interested in gene-
mation of®, however, is computationally intractable. In general, it gene regulatory relations and any non-gene-gene interactions, e.g.,
is the constant of proportionality in(z; ®) which cannot be eva- compound-gene relations, compound-compound relations, were
luated. A simple alternatiye tg maximum likelihood e;timation for excluded from our analysis. The remaining gene-gene regulatory
a local Markov random field is provided by the “coding method” yat4 are represented as an undirected graph where each node is a
(Besag, 1986), where the estimateis chosen to maximize the  yene and two nodes are connected by an edge if there is a regulatory
conditional likelihood, relation between them. Loops (nodes connected to themselves) were

v eliminated. This results in a graph with 1668 nodes and 8011 edges.
I(z;®) = Hpi(xi\xm@) A3) To S|_mulateX, the gene expression states, we initialized the

; genes in thek pathways to be DE and the rest of genes to be EE,

» which gives us the initialX,. Then we performed sampling five

- 1I exp[(1 — zi)(y0 — Bui(1)) + =i(n1 — Bui(0))]  times based ok, according to Equation (3), withy = 1,1 =

whereu; (1 — k) denotes the number of neighbors of germaving
state(1 — k), k = 0,1 (Besag, 1986). Maximum likelihood esti-

exp[yo — Bui(1)] + exp[y1 — Bui(0)] " 1,8 = 2. We choseK = 5,9,13,17, so that we have different
percentages of genes in DE states. Next, gi¥enwe simulated the
wherez; represents the neighbors of gene gene expression levél according to GG model (Equation (1)) for
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Table 1. Comparison of performance for the proposed MRF approach (MRFGG), the Gamma-Gamma model (GG) of Kenelizbimkd standard two-
sample t-test applied to the simulated data. Summaries are averaged over 100 simulations; standard errors are shown in parentheses. tTestl: two-sample t-t
usingp-value of 0.05 as cutoff point; tTEST2: two-sample t-test for FDR=0.05 using the procedure of Benjamini and Hochberg.

% of DE

in simulated data Model Sensitivity Specificity FDR
MRFGG 0.682(0.064) 0.999(0.001) 0.013(0.011)

p=0.115(0.005) GG 0.640(0.035) 0.998(0.001) 0.023(0.015)
tTEST1  0.495(0.033) 0.966(0.005) 0.347(0.037)
tTEST2 0.007(0.009) 1.000(0.000) 0.014(0.075)
MRFGG 0.743(0.067) 0.997(0.003) 0.018(0.014)

p=0.189(0.008) GG 0.664(0.027) 0.996(0.002) 0.023(0.012)
tTEST1  0.495(0.029) 0.966(0.005) 0.229(0.029)
tTEST2 0.010(0.010) 1.000(0.000) 0.009(0.041)
MRFGG 0.793(0.037) 0.991(0.006) 0.020(0.011)

p=0.357(0.009) GG 0.698(0.020) 0.990(0.004) 0.024(0.008)
tTEST1  0.497(0.020) 0.966(0.005) 0.110(0.017)
tTEST2 0.019(0.012) 1.000(0.000) 0.008(0.023)
MRFGG 0.835(0.036) 0.975(0.011) 0.030(0.012)

p=0.486(0.008) GG 0.718(0.018) 0.982(0.006) 0.025(0.008)
tTEST1 0.496(0.017) 0.966(0.006) 0.068(0.012)
tTEST2 0.026(0.014) 1.000(0.001) 0.011(0.022)

1668 genes in two conditions, having three replicates in each corAPPLICATION TO REAL DATASETS

dition. We took model parameters similar to those in Nev&0al.  \ye present results from application of the proposed methods to two
(@ = 10,00 = 0.9andv = 0.5). Simulations were repeated 100 preast cancer microarray gene expression studies in order to iden-
times to assess the sensitivity, specificity, and false discovery ratggy the subnetworks that are related to breast cancer metastasis or
of the proposed MRF GG model (MRFGG). We used the conditio-gryival from breast cancer. We used the modified conditional pro-

nal probability (2) and the conditional likelihood (3) in our analysis. papility (4) and the corresponding conditional likelihood function in
As a comparison, we also performed analysis on the simulated datfg following analyses.

sets using the standard two sample t-test which doesn’t consider any
prior ir)form.ation at all, and the empirical Bayesian GG model of Application to the breast cancer gene expression dataset
Kendziorskiet al. (2003). f\Wana et al

The results over 100 replications are presented in Table 1, wher2 9 )
the sensitivity is calculated as the average over the 100 replicatiVanget al. (2005) reported a large Affymetrix-based gene expres-
ons of the fraction of DE genes correctly identified by the method;sion profiling for 286 patients with lymph-node-negative primary
specificity is the average of the EE genes correctly identified; andPreast cancer. These patients were treated between 1980-1995 with
the false discovery rate (FDR) is the average of the ratio of thetge at surgery ranging 26-86 years and a median age at surgery of 52
number of false positives to the number of the genes identified a¥rs. No patient received any adjuvant therapy. During the follow-up
DE. For t-tests, a cut-value of 0.05 was used for declaring a gengeriod, 179 of these patients were relapse-free at 5 yrs, and 107 of
to be the DE. We observed that overall specificity is high for all them developed distant metastasis. Gene expression profiling using
three procedures and the MRFGG model resulted in higher sensit2ffymetrix HG-133A was performed on all these patients, inclu-
vity than the GG model while the FDRs are similar. As expected, ding 17,819 transcripts that were present in two or more samples.
using ap-value of 0.05 can result in substantially higher FDRs. On\We merge the gene expression data with the 33 KEGG regulatory
the other hand, if the FDR controlling procedure of Benjamini andPathways and identified 1533 genes on the U133A array that can be
Hochberg (1995) was used, the two sample t-test resulted in verfpund in the 1668-node KEGG network with 8011 edges. Our goal
low sensitivity. The gain in sensitivity over the GG model is greateris to identify which genes and which subnetworks of the KEGG
when there are more DE genes. These results demonstrated that B§twork of 33 pathways are related to breast cancer metastasis.

incorporating the network structure information, we can indeed gain Two-sample t-tests identified only 8 DE genes for FDR of 0.05
sensitivity in identifying the DE genes. using the Benjamini and Hochberg’s procedure. As a comparison,

our proposed procedure identified 72 DE genes. The parameter esti-
mates wereyy = 2.64,~; = 0.71 andg = 1.24 in the MRF model.
Figure 1 shows 17 of these genes that are mapped to the KEGG
pathways, where the largest connected subnetwork includes six
genes on the Cytokine-cytokine receptor interaction pathway. This
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Fig. 1. Results from analysis of gene expression dataset of Waag (2005). DE genes identified by the MRFGG method linked to the KEGG pathways,
where genes in red are over-expressed and those in blue are under-expressed in cancer cells with breast cancer metastasis.

subnetwork, centered around interleukin 8 receptor Beta (IL8RB), iand their more than 20 known ligands control a multitude of cellu-
down-regulated in cancer with relapse. In addition, the chemokinédar processes, including cell growth, differentiation, and migration,
receptor (CCR6) and chemokine (C-C motif) ligand 20 (CCL20)and it has been shown that the FGF/FGFR system plays a critical
are also down-regulated in cancers with relapse, indicating that eole in cancer development due to its angiogenic potential or direct
chemokine pathway is down-regulated in cancers with relapse. llenhancement of tumor growth (Burkeal., 1998).
addition, CCL20/CCR6 involvement in the neoplastic progression Finally, recent study by Souaz# al. (2006) supports the con-
and metastatic spread was reported in several tumor types (Bubie tribution of neurotensin receptor (NTSR) in human breast cancer
al., 2006), including breast cancer metastasis (Mudteal., 2001). progression and pointed out the utility to develop therapeutic mole-
Another subnetwork includes 4 genes on the Wnt signalingcules targeting the neurotensin or NT1 receptor signaling cascade.
pathway, including WNT4, WNT11 and secreted frizzled-relatedWe found that NTS and NTSR in the neuroactive ligand-receptor
protein 1 (SFRP1), which were down-regulated in cancer with metainteraction pathway are linked and are both up-regulated in breast
stasis. SFRPs are secreted Wnt antagonists that directly interact witancer with metastasis.
the Wnt ligand to inhibit signaling and members of the SFRP classA lication to the b t ion dataset
bind directly to Wnts, thereby altering their ability to bind to the Wnt PP _|ca lon to the breast cancer gene expression datase
receptor complex. In particular, the SFRP1 gene is found at chro(-)]c Miller et al.
mosome 8p21, a site of frequent loss of heterozygosity in humamiller et al.(2005) reported a gene expression profiling study of 251
tumors and is down-regulated in cervical carcinoma, breast carciprimary breast cancer tissues resected in Uppsala County, Sweden
noma and ovary and kidney carcinomas (Shulewital, 2006).  from January 1, 1987 to December 31, 1989, using Affymetrix Chip
Wnt5b partially inhibits the canonical Wnt/beta-catenin signaling HG-133A and HG-133B (GEO Accession No. GSE3494). The aut-
pathway. These findings agree with current knowledge of the involhors identified an expression signature for p53 which can be used
vement of the Wnt signaling pathway in breast cancer progressiofor predicting the mutation status, transcriptional effects, and pati-
(Barker and Clevers, 2006). ent survival. Among these patients, 236 of them had follow-up
We also found that the fibroblast growth factor 3 (FGF-3) andinformation in terms of time and event of disease-specific survi-
fibroblast growth factor 14 (FGF-14) are up-regulated in breast canval. Different from the previous dataset, these patients included both
cers with metastasis, while the fibroblast growth factor receptor-4ymph-negative and lymph-positive patients.
(FGFR4) is down-regulated. These three genes are connected on thdn single gene analysis using t-tests, we obtained only four genes
MAPK signaling pathway. The four closely related human FGFRsthat are DE for FDR=0.05 using the Benjamini and Hochberg’s FDR
proedure. The GG methods of Kendziorskial. (2003) identified
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Fig. 2. Results from analysis of gene expression dataset of Metl@l. (2005). DE genes identified by the MRFGG method linked to the KEGG pathways,
where genes in red are over-expressed and those in blue are under-expressed in cancer cells from the patients who died of breast cancer.

82 genes and our MRFGG method identified 103 genes. The pararoliferation and increase the chance of death from breast cancer. In
meter estimates werg, = 2.54,v; = 0.38 and3 = 0.55 in the addition, we also observed over-expression of the tight junction pro-
MRF model. Figure 2 shows several of the connected subnetworkeins claudin-3 (CLDN3) and claudin-8 (CLDNS8). Claudin-3 and
that were identified by the MRFGG method. Similar to the previousclaudin-4 are frequently over-expressed in several neoplasias, inclu-
example, we found the genes in the WNT pathway (WNT4, SFRP4ling ovarian, breast, pancreatic, and prostate cancers (Morin 2005;
and FzZD7), genes related to the chemokine pathway (CCR7 anHewitt et al, 2006).
CCL19) and neurotensin and its receptor (NTS and NTSR2) are We also observed over-expression of genes related to Cyclin
related to survival from breast cancer. We also found that CaveolinB1 (CCNB1) and B2 (CCNB2), together with over-expression of
1, Caveolin-2 (CAV1 and CAV2) are down-regulated in cancers inSTRATIFIN (SFN) in cancer samples from individuals who died of
patients who died of breast cancer. A recent study by Saggaah  cancer. These three genes are on the cell cycle pathway. Cyclins
(2004) indicated that a reduced CAV1 mRNA level was significantlyare a family of regulatory proteins that play a key role in control-
associated with increasing tumor size and negative estrogen receptarg the cell cycle. Abnormalities of cell cycle regulators, including
status. There was also a significant association between low CAV2yclins and cyclin-dependent kinases, have been reported in various
mMRNA level and negative progesterone receptor status. Sagaka  malignant tumors. Zhaet al. (2006) observed significantly grea-
(2004) further indicated that CAV1 suppression correlated closelyter cyclin B1 expression in invasive cervical cancer than in normal
with that of CAV2 in breast cancer, that CAV1 level was inver- cervical tissue and indicated that aberrant expression of cyclin B1
sely correlated with tumor size, and that CAV1 and CAV2 levels might play an important role in cervical carcinogenesis. In addition,
were correlated with hormonal receptor status. Therefore, CAVICCNB1 expression was highly correlated with the labeling index for
and CAV2 play an important role in tumor progression in breastantigen identified by mAb ki067 (Ki067, associated with increased
cancer patients. tumor cell proliferation), which suggests a key role for CCNBL1 in
The largest subnetwork identified includes 6 genes on the GARhe regulation of neuroendocrine tumor cell proliferation (lgarashi
Junction pathway, of which five genes (CDC25B, CDC2, TUBAL, et al,, 2004; Lahackt al,, 2005).
PRKACB and RAP1B) are up-regulated in cancer samples from Other genes related to breast cancer survival include genes invol-
individuals who died of cancer. Interestingly, the gap junction mem-ving ECM-receptor interaction and cell communication pathway
brane channel protein alpha 1 (GJA1) is, however, down-regulateCOL2A1,SDC2, TNN, LAMA2, LAMA3 and SV2B), and genes
GJA1 has been reported to suppress cell proliferation dtval., in the insulin signaling pathway (GYS2,PPP1CAACACB, SREBF1
2006) and therefore its down-regulation can lead to more cancer cedind PFKP).
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CONCLUSION AND DISCUSSION more and more networks become available, we expect more appli-

We have proposed a MFR-based procedure that uses informatiditions of sugh methods for identifying genes and pathways that are
of interaction networks in identification of DE genes. The proposedelated to various phenotypes.

method utilizes the structure information of the interaction networks
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