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(Segalet al., 2003). In this paper, we propose to develop a Mar-
kov random field (MRF)-based method for identifying the DEs and
the subnetworks that are related to the phenotypes, where the MRF
model is used to capture the dependency of the differential expres-
sion patterns for genes on the networks. Our method combines the
two-group empirical Bayes method of Newtonet al. (2003) and
Kendziorskiet al. (2003) with a MRF model to model the depen-
dency of the differential expression patterns. In our model and those
of Newtonet al. (2003) and Kendziorskiet al. (2003), each gene
is either DE or equally expressed. Those genes which are EE pre-
sent data according to some background Gamma distribution, and
those which are DE present data according to a different distribu-
tion. The specific forms of these distributions arise by another layer
of mixing over the latent mean expression level for each gene and
the latent means follow another Gamma distribution. Such empiri-
cal Bayes approaches allow a level of information sharing amongst
genes.

The rest of the paper is organized as follows. We first intro-
duce the model assumptions and a MRF model. We then provide
an iterative conditional mode algorithm (ICM) of Besag (1986) for
parameter estimation and for identifying the DE genes. We present
simulation studies to demonstrate the methods and to compare the
results with other commonly used methods for DE gene identifica-
tion. Finally, we present results of applying the proposed method to
two breast cancer gene expression datasets in order to identify the
genes and the subnetworks that are related to breast cancer recur-
rence or death due to breast cancer. We conclude the paper with a
brief discussion of the results and methods.

STATISTICAL MODELS AND METHODS

Notation and Assumptions
Given microarray gene expression profiling data under two conditi-
ons, we want to determine which genes are differentially expressed.
Each gene can have two states, labeled 0 and 1, representing equally
expression (EE) and DE, respectively. An arbitrary state assignment
of gene setS will be denoted byx = (x1, x2, · · · , xp), wherexi is
the corresponding state of genei and is 1 if genei is differentially
expressed (i.e., DE) and 0 otherwise. We writex∗ for the true but
unknown gene state and interpret this as a particular realization of
a random vectorX = (X1, X2, · · · , Xp), whereXi assigns state
to genei. We let theyi denote the observed mRNA expression level
of genei andy the corresponding vector, interpreted as a realiza-
tion of a random vector,Y = (Y1, Y2, · · · , Yn), whereYi itself
is a vectoryi = (yi1, yi2, · · · , yim; yi(m+1), · · · , yi(m+n)), com-
posed of them replicates under one condition andn replicates for
the other. We further introduce the notationyi.m =

∑m
j=1 yij and

yi.n =
∑m+n

j=m+1 yij .
In order to specify the joint distribution ofY , we make the follo-

wing assumptions:

Assumption 1. Given any particular realizationx, the random varia-
blesY = (Y1, Y2, · · · , Yp) are conditionally independent and each
Yi has the same unknown conditional density functionf(yi|xi),
dependent only onxi. The conditional density of the observed gene
expressiony, given,x, is simply,

l(y|x) =

p∏
i=1

f(yi|xi).

Assumption 2. The true statex∗ is a realization of a locally depen-
dent discrete MRF with a specified distribution{p(x)}, which is
defined in the next Section.

Gamma-Gamma model for gene expression data
In this section, we first briefly review the Gamma-Gamma model
for gene expression data introduced in Newtonet al. (2003) and
Kendziorskiet al. (2003). We definef(.|µi), which characterizes
fluctuations in repeated measurements under the same condition
from a genei having latent mean expression levelµi, andπ(µi),
which describes fluctuations in these means among genes. We
assume that the observationyi is a sample from a gamma distribu-
tion having shape parameterα > 0 and a mean valueµi; thus, with
scale parameterλi = α/µi. The corresponding density function
can be written as

f(y|µi) =
λα

i yα−1exp{−λiy}
Γ(α)

for measurementy > 0. Note that the coefficient of variation in
this distribution is1/

√
α, taken to be constant across genesi. Follo-

wing Newtonet al. (2003), we takeπ(µi) to be an inverse gamma.
More specifically, fixingα, the quantityλi = α/µi has a gamma
distribution with shape parameterα0 and scale parameterv. Let
θ = (α, α0, v) be the parameters used to specify these two distri-
butions. The joint predictive density for the replicatesyi of genei
under the same condition is

f(yi) =

∫ 
 ∏

y∈yi

f(y|µi)


 π(µi)dµi.

Under this general model, we have for the first condition

f(yi1, · · · , yim) = K1

(
∏m

j=1 yij)
α−1

(v + yi.m)mα+α0
,

where

K1 =
vα0Γ(mα + α0)

Γm(α)Γ(α0)
,

and for the second condition

f(yi(m+1), · · · , yi(m+n)) = K2

(
∏m+n

j=m+1 yij)
α−1

(v + yi.n)nα+α0
,

where

K2 =
vα0Γ(nα + α0)

Γn(α)Γ(α0)
.

Therefore, given the differential expression statexi, we have

f(yi|xi; θ) = [f(yi1, · · · , yim) ∗ f(yi(m+1), · · · , yin)]xi

×[f(yi1, · · · , yim, yi(m+1), · · · , yin)](1−xi)

=


K1K2

(∏m+n
j=1 yij

)α−1

(v + yi.m)mα+α0 (v + yi.n)nα+α0




xi

×


K

(∏m+n
j=1 yij

)α−1

(v + yi.m + yi.n)(m+n)α+α0




1−xi

,
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where

K =
vα0Γ((m + n)α + α0)

Γm+n(α)Γ(α0)
.

Then based on the assumption 1, the conditional density of allp
genes can be written as

l(y|x; θ) =

p∏
i=1

f(yi|xi; θ). (1)

Discrete local MRF model for joint differential
expression states
The gene differential expression statesx′is are not independent.
For example, if a gene is DE, it is more likely that its upstream
regulators are also DE and that these regulators in turn affect their
downstream-regulated genes. In order to explicitly account for such
dependency of differential expression patterns over genes on the
networks, we propose to use the known biological network informa-
tion compiled in the form of pathways. Examples of such pathways
include the KEGG pathway (Kanehisa and Goto, 2002) and BioCyc
pathways (http://biocyc.com/). In our model, the network is expres-
sed as an undirected graph with the nodes for genes and edges for
connections on the network. Consider thep genes on the network,
let x = (x1, x2, · · · , xp) be the vector of unobserved differen-
tial expression states for thep genes. We propose to model the
dependency ofx = (x1, x2, · · · , xp) using a MRF with parameter
Φ = (γ0, γ1, β). Specifically, we assume

p(x; Φ) ∝ exp(γ0n0 + γ1n1 − βn01),

wheren0 =
∑p

i (1− xi) is the number of genes at state 0,n1 =∑p
i xi is the number of genes at state 1 andn01 is the number of

edges linking two genes with different states. Theγ0 and γ1 are
arbitrary parameters and we require thatβ > 0, which discourages
neighboring genes to have different differential expression states.
By considering any two realizations which differ only at genei, it
follows that the conditional probability of statek occurring for gene
i, given the states of all other genes is

pi(k|¦) ∝ exp(γk − βui(1− k)), (2)

whereui(1− k) denotes the number of neighbors of genei having
state(1 − k), k = 0, 1 (Besag, 1986). Maximum likelihood esti-
mation ofΦ, however, is computationally intractable. In general, it
is the constant of proportionality inp(x; Φ) which cannot be eva-
luated. A simple alternative to maximum likelihood estimation for
a local Markov random field is provided by the “coding method”
(Besag, 1986), where the estimateΦ̂ is chosen to maximize the
conditional likelihood,

l(x; Φ) =

p∏
i

pi(xi|x∂i; Φ) (3)

=

p∏
i

exp[(1− xi)(γ0 − βui(1)) + xi(γ1 − βui(0))]

exp[γ0 − βui(1)] + exp[γ1 − βui(0)]
,

wherex∂i represents the neighbors of genei.

In order to account for different numbers of neighbors for diffe-
rent genes on the network, we propose to modify the conditional
probability (2) as

pi(k|¦) ∝ exp(γk − βu∗i (1− k)), (4)

whereu∗i (1− k) = ui(1− k)/di for k = 0, 1 anddi is the number
of neighbors for theith gene. The conditional likelihood function (3)
can be modified accordingly by replacingui(1−k) with u∗i (1−k).

Parameter estimation using ICM and identification of
subnetworks
When inferring the true differential expression statex∗ for the p
genes, the parameter estimation must be carried out simultaneously.
We propose the following algorithm based on the ICM algorithm
of Besag (1986) to estimate the parameterθ in the Gamma-Gamma
model for gene expression data and the parameterΦ in the MRF
model. The algorithm involves the following iterative steps:

1. Obtain an initial estimatêx of the true statex∗, using a simple
two sample t-test.

2. Estimateθ by the valueθ̂ which maximizes the likelihood
l(y|x̂; θ) (see Equation 1).

3. EstimateΦ by the valueΦ̂ which maximizes the conditional
likelihood l(x̂; Φ) ( see Equation 3) based on currentx̂.

4. Carry out a single cycle of ICM based on the currentx̂, θ̂ and
Φ̂, to obtain a neŵx. Specifically, fori = 1 to p, updatexi which
maximizes

P (xi|y, x̂S/i) ∝ f(yi|xi; θ̂)pi(xi|x̂∂i; Φ̂),

subject toxi = 1 or xi = 0.
5. Go to step 2 for a fixed number of cycles or until approximate

convergence of̂x.
The converged̂x are then taken to be the estimate of the true diffe-

rential expression states. These estimates can then be mapped back
to the network to identify the subnetworks, which are defined as
those connected genes that show differential expressions between
the two experimental conditions.

SIMULATION STUDIES
We first present simulation results to demonstrate our proposed
methods. To simulate the data, we first obtained the network
structure of 33 human regulatory pathways from the KEGG data-
base (December 2006 version). We are only interested in gene-
gene regulatory relations and any non-gene-gene interactions, e.g.,
compound-gene relations, compound-compound relations, were
excluded from our analysis. The remaining gene-gene regulatory
data are represented as an undirected graph where each node is a
gene and two nodes are connected by an edge if there is a regulatory
relation between them. Loops (nodes connected to themselves) were
eliminated. This results in a graph with 1668 nodes and 8011 edges.

To simulateX, the gene expression states, we initialized the
genes in theK pathways to be DE and the rest of genes to be EE,
which gives us the initialX0. Then we performed sampling five
times based onX0, according to Equation (3), withγ0 = 1, γ1 =
1, β = 2. We choseK = 5, 9, 13, 17, so that we have different
percentages of genes in DE states. Next, givenX, we simulated the
gene expression levelY according to GG model (Equation (1)) for
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Table 1. Comparison of performance for the proposed MRF approach (MRFGG), the Gamma-Gamma model (GG) of Kendiziorskiet al. and standard two-
sample t-test applied to the simulated data. Summaries are averaged over 100 simulations; standard errors are shown in parentheses. tTest1: two-sample t-test
usingp-value of 0.05 as cutoff point; tTEST2: two-sample t-test for FDR=0.05 using the procedure of Benjamini and Hochberg.

% of DE
in simulated data Model Sensitivity Specificity FDR

MRFGG 0.682(0.064) 0.999(0.001) 0.013(0.011)
p=0.115(0.005) GG 0.640(0.035) 0.998(0.001) 0.023(0.015)

tTEST1 0.495(0.033) 0.966(0.005) 0.347(0.037)
tTEST2 0.007(0.009) 1.000(0.000) 0.014(0.075)

MRFGG 0.743(0.067) 0.997(0.003) 0.018(0.014)
p=0.189(0.008) GG 0.664(0.027) 0.996(0.002) 0.023(0.012)

tTEST1 0.495(0.029) 0.966(0.005) 0.229(0.029)
tTEST2 0.010(0.010) 1.000(0.000) 0.009(0.041)

MRFGG 0.793(0.037) 0.991(0.006) 0.020(0.011)
p=0.357(0.009) GG 0.698(0.020) 0.990(0.004) 0.024(0.008)

tTEST1 0.497(0.020) 0.966(0.005) 0.110(0.017)
tTEST2 0.019(0.012) 1.000(0.000) 0.008(0.023)

MRFGG 0.835(0.036) 0.975(0.011) 0.030(0.012)
p=0.486(0.008) GG 0.718(0.018) 0.982(0.006) 0.025(0.008)

tTEST1 0.496(0.017) 0.966(0.006) 0.068(0.012)
tTEST2 0.026(0.014) 1.000(0.001) 0.011(0.022)

1668 genes in two conditions, having three replicates in each con-
dition. We took model parameters similar to those in Newtonet al.
(α = 10, α0 = 0.9 andv = 0.5). Simulations were repeated 100
times to assess the sensitivity, specificity, and false discovery rates
of the proposed MRF GG model (MRFGG). We used the conditio-
nal probability (2) and the conditional likelihood (3) in our analysis.
As a comparison, we also performed analysis on the simulated data
sets using the standard two sample t-test which doesn’t consider any
prior information at all, and the empirical Bayesian GG model of
Kendziorskiet al. (2003).

The results over 100 replications are presented in Table 1, where
the sensitivity is calculated as the average over the 100 replicati-
ons of the fraction of DE genes correctly identified by the method;
specificity is the average of the EE genes correctly identified; and
the false discovery rate (FDR) is the average of the ratio of the
number of false positives to the number of the genes identified as
DE. For t-tests, a cut-value of 0.05 was used for declaring a gene
to be the DE. We observed that overall specificity is high for all
three procedures and the MRFGG model resulted in higher sensiti-
vity than the GG model while the FDRs are similar. As expected,
using ap-value of 0.05 can result in substantially higher FDRs. On
the other hand, if the FDR controlling procedure of Benjamini and
Hochberg (1995) was used, the two sample t-test resulted in very
low sensitivity. The gain in sensitivity over the GG model is greater
when there are more DE genes. These results demonstrated that by
incorporating the network structure information, we can indeed gain
sensitivity in identifying the DE genes.

APPLICATION TO REAL DATASETS
We present results from application of the proposed methods to two
breast cancer microarray gene expression studies in order to iden-
tify the subnetworks that are related to breast cancer metastasis or
survival from breast cancer. We used the modified conditional pro-
bability (4) and the corresponding conditional likelihood function in
the following analyses.

Application to the breast cancer gene expression dataset
of Wang et al.

Wanget al. (2005) reported a large Affymetrix-based gene expres-
sion profiling for 286 patients with lymph-node-negative primary
breast cancer. These patients were treated between 1980-1995 with
age at surgery ranging 26-86 years and a median age at surgery of 52
yrs. No patient received any adjuvant therapy. During the follow-up
period, 179 of these patients were relapse-free at 5 yrs, and 107 of
them developed distant metastasis. Gene expression profiling using
Affymetrix HG-133A was performed on all these patients, inclu-
ding 17,819 transcripts that were present in two or more samples.
We merge the gene expression data with the 33 KEGG regulatory
pathways and identified 1533 genes on the U133A array that can be
found in the 1668-node KEGG network with 8011 edges. Our goal
is to identify which genes and which subnetworks of the KEGG
network of 33 pathways are related to breast cancer metastasis.

Two-sample t-tests identified only 8 DE genes for FDR of 0.05
using the Benjamini and Hochberg’s procedure. As a comparison,
our proposed procedure identified 72 DE genes. The parameter esti-
mates wereγ0 = 2.64, γ1 = 0.71 andβ = 1.24 in the MRF model.
Figure 1 shows 17 of these genes that are mapped to the KEGG
pathways, where the largest connected subnetwork includes six
genes on the Cytokine-cytokine receptor interaction pathway. This
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Fig. 1. Results from analysis of gene expression dataset of Wanget al. (2005). DE genes identified by the MRFGG method linked to the KEGG pathways,
where genes in red are over-expressed and those in blue are under-expressed in cancer cells with breast cancer metastasis.

subnetwork, centered around interleukin 8 receptor Beta (IL8RB), is
down-regulated in cancer with relapse. In addition, the chemokine
receptor (CCR6) and chemokine (C-C motif) ligand 20 (CCL20)
are also down-regulated in cancers with relapse, indicating that a
chemokine pathway is down-regulated in cancers with relapse. In
addition, CCL20/CCR6 involvement in the neoplastic progression
and metastatic spread was reported in several tumor types (Rubieet
al., 2006), including breast cancer metastasis (Mulleret al., 2001).

Another subnetwork includes 4 genes on the Wnt signaling
pathway, including WNT4, WNT11 and secreted frizzled-related
protein 1 (SFRP1), which were down-regulated in cancer with meta-
stasis. SFRPs are secreted Wnt antagonists that directly interact with
the Wnt ligand to inhibit signaling and members of the SFRP class
bind directly to Wnts, thereby altering their ability to bind to the Wnt
receptor complex. In particular, the SFRP1 gene is found at chro-
mosome 8p21, a site of frequent loss of heterozygosity in human
tumors and is down-regulated in cervical carcinoma, breast carci-
noma and ovary and kidney carcinomas (Shulewitzet al., 2006).
Wnt5b partially inhibits the canonical Wnt/beta-catenin signaling
pathway. These findings agree with current knowledge of the invol-
vement of the Wnt signaling pathway in breast cancer progression
(Barker and Clevers, 2006).

We also found that the fibroblast growth factor 3 (FGF-3) and
fibroblast growth factor 14 (FGF-14) are up-regulated in breast can-
cers with metastasis, while the fibroblast growth factor receptor-4
(FGFR4) is down-regulated. These three genes are connected on the
MAPK signaling pathway. The four closely related human FGFRs

and their more than 20 known ligands control a multitude of cellu-
lar processes, including cell growth, differentiation, and migration,
and it has been shown that the FGF/FGFR system plays a critical
role in cancer development due to its angiogenic potential or direct
enhancement of tumor growth (Burkeet al., 1998).

Finally, recent study by Souazeet al. (2006) supports the con-
tribution of neurotensin receptor (NTSR) in human breast cancer
progression and pointed out the utility to develop therapeutic mole-
cules targeting the neurotensin or NT1 receptor signaling cascade.
We found that NTS and NTSR in the neuroactive ligand-receptor
interaction pathway are linked and are both up-regulated in breast
cancer with metastasis.

Application to the breast cancer gene expression dataset
of Miller et al.

Miller et al.(2005) reported a gene expression profiling study of 251
primary breast cancer tissues resected in Uppsala County, Sweden
from January 1, 1987 to December 31, 1989, using Affymetrix Chip
HG-133A and HG-133B (GEO Accession No. GSE3494). The aut-
hors identified an expression signature for p53 which can be used
for predicting the mutation status, transcriptional effects, and pati-
ent survival. Among these patients, 236 of them had follow-up
information in terms of time and event of disease-specific survi-
val. Different from the previous dataset, these patients included both
lymph-negative and lymph-positive patients.

In single gene analysis using t-tests, we obtained only four genes
that are DE for FDR=0.05 using the Benjamini and Hochberg’s FDR
proedure. The GG methods of Kendziorskiet al. (2003) identified
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Fig. 2. Results from analysis of gene expression dataset of Milleret al. (2005). DE genes identified by the MRFGG method linked to the KEGG pathways,
where genes in red are over-expressed and those in blue are under-expressed in cancer cells from the patients who died of breast cancer.

82 genes and our MRFGG method identified 103 genes. The para-
meter estimates wereγ0 = 2.54, γ1 = 0.38 andβ = 0.55 in the
MRF model. Figure 2 shows several of the connected subnetworks
that were identified by the MRFGG method. Similar to the previous
example, we found the genes in the WNT pathway (WNT4, SFRP4
and FZD7), genes related to the chemokine pathway (CCR7 and
CCL19) and neurotensin and its receptor (NTS and NTSR2) are
related to survival from breast cancer. We also found that Caveolin-
1, Caveolin-2 (CAV1 and CAV2) are down-regulated in cancers in
patients who died of breast cancer. A recent study by Sagaraet al.
(2004) indicated that a reduced CAV1 mRNA level was significantly
associated with increasing tumor size and negative estrogen receptor
status. There was also a significant association between low CAV2
mRNA level and negative progesterone receptor status. Sagaraet al.
(2004) further indicated that CAV1 suppression correlated closely
with that of CAV2 in breast cancer, that CAV1 level was inver-
sely correlated with tumor size, and that CAV1 and CAV2 levels
were correlated with hormonal receptor status. Therefore, CAV1
and CAV2 play an important role in tumor progression in breast
cancer patients.

The largest subnetwork identified includes 6 genes on the GAP
Junction pathway, of which five genes (CDC25B, CDC2, TUBA1,
PRKACB and RAP1B) are up-regulated in cancer samples from
individuals who died of cancer. Interestingly, the gap junction mem-
brane channel protein alpha 1 (GJA1) is, however, down-regulated.
GJA1 has been reported to suppress cell proliferation (Yuet al.,
2006) and therefore its down-regulation can lead to more cancer cell

proliferation and increase the chance of death from breast cancer. In
addition, we also observed over-expression of the tight junction pro-
teins claudin-3 (CLDN3) and claudin-8 (CLDN8). Claudin-3 and
claudin-4 are frequently over-expressed in several neoplasias, inclu-
ding ovarian, breast, pancreatic, and prostate cancers (Morin 2005;
Hewitt et al., 2006).

We also observed over-expression of genes related to Cyclin
B1 (CCNB1) and B2 (CCNB2), together with over-expression of
STRATIFIN (SFN) in cancer samples from individuals who died of
cancer. These three genes are on the cell cycle pathway. Cyclins
are a family of regulatory proteins that play a key role in control-
ling the cell cycle. Abnormalities of cell cycle regulators, including
cyclins and cyclin-dependent kinases, have been reported in various
malignant tumors. Zhaoet al. (2006) observed significantly grea-
ter cyclin B1 expression in invasive cervical cancer than in normal
cervical tissue and indicated that aberrant expression of cyclin B1
might play an important role in cervical carcinogenesis. In addition,
CCNB1 expression was highly correlated with the labeling index for
antigen identified by mAb ki067 (Ki067, associated with increased
tumor cell proliferation), which suggests a key role for CCNB1 in
the regulation of neuroendocrine tumor cell proliferation (Igarashi
et al., 2004; Lahadet al., 2005).

Other genes related to breast cancer survival include genes invol-
ving ECM-receptor interaction and cell communication pathway
(COL2A1,SDC2, TNN, LAMA2, LAMA3 and SV2B), and genes
in the insulin signaling pathway (GYS2,PPP1CAACACB, SREBF1
and PFKP).
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CONCLUSION AND DISCUSSION
We have proposed a MFR-based procedure that uses information
of interaction networks in identification of DE genes. The proposed
method utilizes the structure information of the interaction networks
in order to capture the dependency of differential expression pat-
terns for genes on the network. By doing so, we can expect to obtain
results that are not found by single-gene analysis. Simulation studies
and application to several real microarray gene expression data sets
demonstrated that our methods are more sensitive in identifying the
DE genes than some of the commonly used methods while maintai-
ning low false discovery rates. Results from analysis of two breast
cancer microarray gene expression datasets identified several sub-
networks that are related to breast metastasis or death from breast
cancer. Some of the subnetworks were reported in the literature.

We make several assumptions for the proposed methods. First,
our proposed methods depend on the reliability of the structure
of the interaction networks. We used KEGG interaction networks
made of 33 regulatory pathways in our analysis of the breast can-
cer gene expression data. The edges of the networks include both
protein-protein and DNA-protein interactions. Our methods treat all
interactions equally, regardless of type and direction. However, if
different types of interactions can be clearly defined, we can modify
our method to allow for different dependency parameters for diffe-
rent interaction types. Important future research is to refine network
structures and to extend our MFR models to more complex and
refined network structures. Second, we used the Gamma-Gamma
model of Newtonet al. (2003) and Kendziorskiet al. (2003) for
modeling the gene expression data. Alternatively, one can assume
a log-normal-normal model for the gene expression data. However,
as shown in Kendziorskiet al. (2003), the Gamma-Gamma model
is quite robust to model misspecification. Third, in our model for-
mulation, for each gene, we only consider its immediate neighbors
on the network as its neighbors (i.e., first degree neighbors). Howe-
ver, if the differential expression patterns are dependent in neighbors
centered at this gene with a radiusr, we may want to include as its
neighbors all the genes in this ball. This can potentially increase the
sensitivity of identifying more DE genes.

In this paper, we have focused on the problem of identifying the
differentially expressed genes between two experimental conditi-
ons. The MRF-methods can however be extended in several ways.
First, it can be easily extended for identifying genes that show dif-
ferential expressions among multiple groups using replicated gene
expression profiles following the parametric empirical Bayes setup
of Kendziorskiet al.(2003). Second, the methods can also be exten-
ded to deal with other phenotypes such as continuous or censored
survival phenotypes by considering whether a gene is related to the
phenotype as a latent state and using the MFR for modeling such
latent states. Third, the methods can also be extended to microarray
time course gene expression data in order to identify subnetworks
that change their expression states during a biological time course
such as cancer initiation and progression. We are currently working
on these extensions. Finally, important future research will include
how to represent and assess the uncertainly of the inference of the
true differential expression statesx∗.

In summary, we have proposed a Markov random field model for
identifying differentially expressed genes between two experimental
conditions in order to utilize the network structure information. As

more and more networks become available, we expect more appli-
cations of such methods for identifying genes and pathways that are
related to various phenotypes.
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