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ABSTRACT
We have established a method for systematic integration
of multiple microarray datasets. The method was applied
to two different sets of cancer profiling studies. The change
of gene expression in cancer was expressed as ’effect
size’, a standardized index measuring the magnitude of
a treatment or covariate effect. The effect sizes were
combined to obtain the estimate of the overall mean. The
statistical significance was determined by a permutation
test extended to multiple datasets. It was shown that
the data integration promotes the discovery of small but
consistent expression changes with increased sensitivity
and reliability. The effect size methods provided the
efficient modeling framework for addressing interstudy
variation as well. Based on the result of homogeneity
tests, a fixed effects model was adopted for one set of
datasets that had been created in controlled experimental
conditions. By contrast, a random effects model was
shown to be appropriate for the other set of datasets
that had been published by independent groups. We also
developed an alternative modeling procedure based on
a Bayesian approach, which would offer flexibility and
robustness compared to the classical procedure.
Contact: jkchoi@kaist.ac.kr
Keywords: microarray, meta-analysis, effect size,
Bayesian meta-analysis

INTRODUCTION
One of the most challenging tasks microarray analysts
face is how to extract, compare, and integrate informa-
tion from an enormous amount of accumulating data.
However, complicated experimental variables embedded
in microarray data act as an obstacle to this end. The
lack of standards for microarray experiments generates
heterogeneous datasets of which direct comparison is not
possible. The reasonable approach, in this situation, is to
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combine results of individual studies. For this purpose,
Rhodes et al. (2002) recently applied a meta-analytic
approach to microarrays. Here we introduce the most
developed meta-analytic method, which expresses the
result in the form of effect size.

An effect size approach has desirable features to be
applied to microarray data:

1. It provides a standardized index. At present, the
measure of expression levels is not interchange-
able, in particular between oligo chips and cDNA
chips. cDNA microarrays report only the relative
change compared to a reference, which is rarely
standardized. Obtaining effect sizes offers the direct
comparison between the results from different
measures.

2. It is based on a well-established statistical frame-
work for combining different results. The main pur-
pose of calculating effect sizes rather than traditional
statistics is to draw a synthetic conclusion from mul-
tiple studies. We can efficiently integrate microarray
data scattered across a multitude of applications.

3. It is superior to other meta-analytic methods in that
it has the ability to handle the variability between
studies. Appropriate modeling of the interstudy
variation is a key factor for successful meta-analysis,
especially in an area such as microarray analysis
which is prone to study-to-study differences.

By virtue of a wide utility of effect size indices,
the method is generally applicable to many types of
microarray studies. Here we applied it to differential
gene expression studies of clinical tumors where multiple
datasets were available. They had been generated with a
common objective to make comparisons between the gene
expression profiles of tumor and non-tumor tissues. The
goal of our meta-analysis was to draw a consensus among
the datasets taking into account interstudy variation. With
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appropriate modeling, it is expected that the increased
sample size enhances the statistical power. To this end, the
excellent features of the effect size model will be explicitly
presented throughout this paper.

SETS OF DATASETS
Two different sets of microarray datasets were used in this
study. One set contains our own four cDNA microarray
datasets on hepatocellular carcinoma, which were gener-
ated independently but in controlled experimental condi-
tions. They share a common clone set and the same ref-
erence except for one experiment. The other set is com-
prised of four publicly available prostate cancer datasets,
which are completely independent. Two datasets are from
cDNA technology (Dhanasekaran et al., 2001; Luo et al.,
2001), while the others are from oligo-based technology
(Magee et al., 2001; Welsh et al., 2001). This set was used
in the previous meta-analysis study which ignored inter-
study variation (Rhodes et al., 2002). We denote the for-
mer LC (liver cancer) datasets and the latter PC (prostate
cancer) datasets.

MEASURING EFFECT SIZE
Meta-analysis can be adapted to various types of microar-
ray analyses as there are many kinds of metrics that can be
used to measure effect sizes. Discovering differentially ex-
pressed genes as in this study might be the most frequent
application. If one needs to identify genes whose expres-
sion correlates with a quantitative parameter, such as the
drug dose in a series of drug treatment experiments, effect
size can be defined in terms of the Pearson correlation co-
efficient. Another no less important application using the
correlation coefficient is measuring the gene-to-gene cor-
relation. In contrast to the former cases, it does not require
the condition of sharing a common study design. Further-
more, conventional t , F , and χ2 statistics can be easily
converted to effect size indices.

For the measure of differential expression of a gene, a
standardized mean difference was obtained as an effect
size index. A well-established estimator for the standard-
ized mean difference, found in Hedges and Olkin’s (1985)
work, was used as

d = X̄ t − X̄n

Sp
.

X̄ t and X̄n represent the means of the tumor and normal
group, respectively and Sp indicates an estimate of the
pooled standard deviation. When a study consists of n
samples, the unbiased estimate is obtained as d ′ = d −
3d/(4(n − 2) − 1), which indicates the correction for
sample size bias. Meanwhile, the estimated variance of the
unbiased effect size is given as

σ̂ 2
d = (n−1

t + n−1
n ) + d2(2(nt + nn))

−1,

where nt and nn are the sample sizes of each group and
d is the unbiased effect size (Hedges and Olkin 1985). It
indicates the precision of the measure each study provides.

EFFECT SIZE MODELS
Let µ be the overall mean, typically the parameter of
interest, and yi be the observed effect size for independent
studies i = 1, 2, . . . , k. The general model is given
hierarchically as

yi = θi + εi , εi ∼ N (0, s2
i ),

θi = µ + δi , δi ∼ N (0, τ 2),

where between-study variance τ 2 represents the variability
between studies while within-study variance s2

i represents
the sampling error conditioned on the i th study. In
this application, yi and s2

i are given by d and σ̂ 2
d

described above. Therefore, µ means the average measure
of differential expression across the datasets for each gene.

A fixed-effects model (FEM) assumes that the differ-
ences of observed effect sizes are from sampling error
alone. Thus τ 2 = 0, and consequently yi ∼ N (µ, s2

i ). On
the other hand, a random-effects model (REM) postulates
that each effect size is a draw from a distribution with
a study-specific mean θi and variance s2

i . Furthermore,
each θi is assumed to be a draw from some superpop-
ulation with the overall mean µ and variance τ 2. Thus
yi ∼ N (θi , s2

i ) and θi ∼ N (µ, τ 2). Therefore, the FEM
can be considered as a special case of the REM.

The question of which model is appropriate for given
studies can be addressed by testing for the homogeneity of
study effects. It is equivalent to assessing the hypothesis
that τ 2 is actually zero. Cochran (1954) proposed a now
widely-used test of homogeneity based on the statistic

Q =
∑

wi (yi − µ̂)2,

where wi = s−2
i , and µ̂ = (

∑
wi yi )/

∑
wi is the

weighted least squares estimator which ignores between-
study variance. Under the hypothesis of homogeneity, it
follows a χ2

k−1 distribution. A large observed value of the
statistic Q relative to this distribution indicates rejection
of the hypothesis of homogeneity, which should indicate
the appropriateness of the REM. For microarray studies,
the genes can be treated as independent samplings and
the homogeneity can be explored over all the genes.
The quantile-quantile plots of the observed vs. expected
Q values are shown in Figure 1. They strongly suggest
that the PC datasets, created independently without any
experimental control, generate significantly variable
results. By contrast, the effect sizes from the LC datasets
can be considered as samples from a common population
with the sampling error alone.
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Fig. 1. Gene by gene testing for the homogeneity of study effects. Overall test results are shown by the plot of the observed vs. expected Q
quantiles for the (a) LC datasets (Q = 2.91, s2

Q = 5.45) (b) PC datasets (Q = 6.27, s2
Q = 30.59). In the LC datasets, the sample mean and

variance as well as the observed Q values are very close to their expected values. In both cases, the genes observed in all four datasets were
used in the test. The expected Q values are from the χ2

3 distribution.

It is standard (Cooper and Hedges, 1994) when estimat-
ing µ to use a point estimate for τ 2 in

µ̂(τ 2) =
∑

(s2
i + τ 2)−1 yi∑

(s2
i + τ 2)−1

,

and

Var[µ̂(τ 2)] = 1∑
(s2

i + τ 2)−1
.

DerSimonian and Laird (1986) developed a method of
moments estimator for τ 2 from the expected value of Q:

τ̂ 2
DL = max

{
0,

Q − (k − 1)

S1 − (S2/S1)

}
,

where Sr = ∑
wr

i . Note that it is given for the more
general case where the errors εi and δi do not follow a
normal distribution. If they do, µ̂(τ 2) is the minimum
variance unbiased estimator of µ (Mood et al., 1995).
The z statistic was computed as a ratio of µ̂(τ 2) over its
standard error. The FEM is treated the same way except
that τ 2 = 0. Statistically significant genes were chosen
by comparing the z statistic assigned to each gene with
a given threshold zth. To assess the statistical significance
not assuming a normal distribution, empirical distributions
were generated by random permutations. In addition, we
applied a Bayesian approach to the REM under normal
assumption for εi and δi . The main goal of the Bayesian
meta-analysis was to obtain posterior distributions for the
overall mean µ and for the study-specific mean θi as well.

STATISTICAL SIGNIFICANCE OF COMBINED
RESULTS
The effect sizes were combined under the FEM for
the LC datasets and the REM using τ̂ 2

DL for the PC
datasets. The z score of the average effect size, z j ,
was obtained from yi j and si j , for i = 1, 2, . . . k,
studies and j = 1, 2, . . . , p genes. We could estimate
the statistical significance addressing the multiple testing
problem by adapting the core algorithm of SAM (Tusher
et al., 2001) to our meta-analysis. It introduced into
microarray the concept of false discovery rate (FDR)
recently proposed by Benjamini and Hochberg (1995).
Column-wise permutations were performed within each
dataset, not allowing the expression data to be mixed
between the studies. For each permutation b = 1, 2, . . . B,
randomized data were created to generate y∗b

i j , s∗b
i j . From

these values, the overall mean µ∗b
j and the variance

were estimated to produce z∗b
j . The order statistics z( j)

(z(1) � · · · � z(p)) and z∗b
( j) (z∗b

(1) � · · · � z∗b
(p)) were

obtained. FDR was estimated by

FDR = (1/B)
∑

b
∑

( j) I (|z∗b
( j)| � zth)∑

( j) I (|z( j)| � zth)
,

where I (·) is the indicator function equaling 1 if the con-
dition in parentheses is true, and 0 otherwise. The denom-
inator represents the number of genes called significant in
real data. The numerator is the expected number of falsely
significant genes and given by the mean number across B
permuted data. Median may be used instead of mean. For
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Fig. 2. Integration-discovery rate (IDR) for the (a) LC datasets (b) PC datasets. IDR was computed for z > 0 and z < 0 separately. zth values
were set from the ordered z values. Out of the genes where |z| � zth, the genes were counted if |zi | < zth for all i = 1, . . . , k.

the sake of illustration, using median and B = 300, the
LC datasets identified 167 genes with a FDR of 2.39% for
zth = 3.29(P = 0.001) and the PC datasets identified 285
genes with a FDR of 0.18% for zth = 3.89 (P = 0.0001).

To validate our method in terms of expression data, the
expression patterns of the identified genes were obtained.
They can be visualized at http://centi.kribb.re.kr/MMA.
The gene list for the PC datasets was compared with
the result of Rhodes et al. (2002) and the difference was
discussed.

INTEGRATION-DRIVEN DISCOVERY
We define integration-driven discovery (IDD) as

z � zth and
∑k

i=1
I (zi � zth) = 0, for z > 0

or

z � −zth and
∑k

i=1
I (zi � −zth) = 0, for z < 0.

In other words, while a gene is identified as being
significantly changed in expression level according to the
meta-analysis result, it might be significant in none of the
individual studies (with the same statistical significance).
Integration-driven discovery rates (IDRs), the ratios to
total discoveries, were computed and plotted for given
zth values (Fig. 2). The more significant the average
effect was, the higher proportion of total discoveries were
accounted for by IDDs. Interestingly, the most significant
discoveries yielded IDRs up to 1.0. For the more realistic
threshold, for example zth = 3.0, the PC datasets yielded
an IDR of 0.44 and the LC datasets yielded an IDR of 0.63.
In other words, about 44–63% of the significant genes
were identified purely by the meta-analysis.

It should be noted that IDDs occur when combining the
‘small but consistent’ effect sizes. The weak but certainly
present effects are brought together to make a result with
high statistical confidence. As far as individual studies
are concerned, they are potential false negatives. This
decrease of false negatives for a fixed α (Type I error), that
is to say, an increase of statistical power, is attributable
to an increase in overall sample size. In other words, by
gathering separate datasets we gain the same effect of
increasing sample size. For the selection of a particular
number of significant genes, meta-analysis allows us to
use a smaller α than individual analyses, decreasing the
chance of false positives.

Another important aspect of IDD is the consistency of
individual study effects. It assures us that the separate
results have been validated through comparative anal-
ysis. This interstudy validation does more than simply
increasing sample size, because it provides validation
through the replicated experiments differing experimental
variables and conditions. On the whole, the integration of
microarray datasets contributed to achieving more reliable
results with increased sensitivity overcoming the artifacts
of single analyses.

BIOLOGICAL IMPLICATION
To demonstrate that our model translates statistics into
biology, we performed a KEGG pathway database query
(Ogata et al., 1999) using significant genes selected in
the PC datasets. Using 7342 genes present in at least
two studies, zth = 3.0 identified 697 genes containing
248 IDD genes yielding a FDR of 1.5%. Among the
405 up-regulated genes, non-IDD genes were mapped
into 70 pathways while the IDD genes were mapped into
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Fig. 3. Biochemical pathway of purine biosynthesis. Genes identi-
fied as over- or under-expressed by our effect size model are shown
in red and green, respectively. In addition to the adenine biosynthe-
sis pathway, our method identified the guanine biosynthesis path-
way. The genes in blue boxes indicate newly discovered genes ac-
cording to our method. Dephosphrylation processes of monophos-
phates controlled by NT5E are shown separately below. Monophos-
phates are shown by gray circles. All the gene names were repre-
sented by gene symbols.

51 pathways. Remarkably, in about 70% (35 pathways)
among the 51 pathways, the IDD genes appeared along
with at least one of the non-IDD genes. This finding
implies that the IDD genes enriched the gene set involved
in particular pathway-dysregulation in prostate cancer. In
other words, IDD would be helpful for building a network
of genes dysregulated in related biological processes, by
providing sensitive discoveries.

As an illustration, we examined the purine biosynthe-
sis pathway that had been provided as biological evidence
in Rhodes et al. (2002). It is well known that nucleotide
biosynthesis is necessary for DNA synthesis in cell di-
vision. As Figure 3 shows, our model detected a consid-
erable number of up-regulated genes and one important
down-regulated gene involved in this pathway. The genes
we discovered include all the genes found in the previous
study without exception (Rhodes et al., 2002) and six addi-
tional genes (blue boxes in Fig. 3). Furthermore, discovery
of these genes extended the network to include the gua-
nine monophosphate biosynthesis pathway as well. Two
of them (GART and GUK1) were IDD genes. Especially,
GART is a multifunctional enzyme working in the three
consecutive steps linking the pentose phosphate pathway
to the adenine phosphate pathway.

For the LC datasets, we found several interesting IDD
genes, which called for further investigation. The genes
will appear in a separate paper with discussion of the
biological implications of up- or down-regulated genes in
association with hepatocellular carcinoma.

BAYESIAN META-ANALYSIS
Bayesian methods go naturally with the concept of meta-
analysis. Additionally, the hierarchical formulation of a
REM would be extended for Bayesian interpretations
(DuMouchel and Harris, 1983; Morris and Normand,
1992; Smith et al., 1995; Normand, 1999). We can
write the kernel of the joint posterior density of V =
{µ, θ1, . . . , θk, τ

2} as

p(V |y, s2) = p(θ |y, s2)p(µ, τ 2|θ)

∝
∏

i

p(θi |yi , s2
i )p(θi |µ, τ 2)π(µ)π(τ 2),

where y = (y1, . . . , yk), s2 = (s2
1 , . . . , s2

k ) and θ =
(θ1, . . . , θk). π(µ) and π(τ 2) are non-informative priors
given as µ ∼ N (0, 106) and 1/τ 2 ∼ gamma(0.001, 0.001).
At first, we assumed that the study effects (θi ) of the
PC datasets arise from a Student’s t distribution with
3 degrees of freedom in order to permit the tails to be
heavier than a normal distribution. Estimators were given
by

τ̂ 2
B =

∫
τ 2 p(V |y, s2)dθi dµdτ 2,

µ̂B =
∫

µp(V |y, s2)dθi dτ 2dµ,

θ̂B
i =

∫
θi p(V |y, s2)dθ j dµdτ 2dθi ,

where j = 1, . . . , k, j �= i . We evaluated the integrals
numerically using Markov chain Monte Carlo (MCMC)
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Fig. 4. Comparison of the Bayesian approach and the method of moments. Scatter plot between two estimates for the (a) average effect size
µ (b) between-study variance τ2 (c) z score of the average effect size.
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Fig. 5. Comparison of the Bayesian t model and the normal model. Scatter plot between two estimates for the (a) between-study variance τ2

(b) z score of the average effect size.

via the BUGS (Spiegelhalter et al., 1995) software pack-
age. The estimates were compared gene by gene with the
estimates obtained using τ̂ 2

DL (Fig. 4). The estimates for
the average effect size almost completely coincided with
one another (Fig. 4a). But the method of moments esti-
mator tended to underestimate τ 2 relative to the Bayesian
(Fig. 4b) and consequently overestimate the final z score
(Fig. 4c). Whereas, as expected, the normal model for
θi overestimated the variance τ 2 relative to the t model
(Fig. 5a) and slightly underestimated the z score (Fig. 5b).

Therefore, the Bayesian t model could be considered as
a compromise between the Bayesian normal model and the
classical method. It could correct z outliers overestimated

in the DerSimonian and Laird’s method by integrating
them into the prior distribution. Simultaneously, it seems
that the t model could handle large variability more prop-
erly than the normal model. This capability is important in
the respect that the variability is a hallmark of microarray
data created from a multitude of experimental variables.

Here we used a Student’s t with 3 degrees of freedom.
As degrees of freedom of the t prior increases, the
result will become similar to the normal model. With
appropriate prior information and more detailed modeling,
incorporating a multivariate normal model if desired, the
Bayesian approach would offer a more flexible and robust
modeling strategy.
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CONCLUSIONS
An explosion of microarray studies has been calling for
a method of systematic integration of multiple studies.
Moreover, as presented in this paper, microarray is one
of the fields that is able to make the most of meta-
analysis. Thousands of tests for the homogeneity of study
effects can easily reveal overall study-to-study variation.
Replication of experiments, carefully designed if possible,
would increase the statistical power to detect small
effects that may be false negatives in single analyses.
Completely independent datasets, with different measures
and platforms, would offer interstudy validation to detect
consistent effects across different types of experiments.
A Bayesian approach, a natural and promising way to
combine information from multiple studies, would appear
to offer a more flexible and robust modeling strategy.
To apply multivariate meta-analysis, taking account of
possible interactions and correlations amongst genes, may
be the next challenge of meta-analysis on microarrays.
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