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Abstract

Motivation: Single-cell RNA sequencing (scRNA-seq) methods make it possible to reveal gene expression patterns
at single-cell resolution. Due to technical defects, dropout events in scRNA-seq will add noise to the gene-cell ex-
pression matrix and hinder downstream analysis. Therefore, it is important for recovering the true gene expression
levels before carrying out downstream analysis.

Results: In this article, we develop an imputation method, called scTSSR, to recover gene expression for scRNA-seq.
Unlike most existing methods that impute dropout events by borrowing information across only genes or cells,
scTSSR simultaneously leverages information from both similar genes and similar cells using a two-side sparse
self-representation model. We demonstrate that scTSSR can effectively capture the Gini coefficients of genes and
gene-to-gene correlations observed in single-molecule RNA fluorescence in situ hybridization (smRNA FISH). Down-
sampling experiments indicate that scTSSR performs better than existing methods in recovering the true gene ex-
pression levels. We also show that scTSSR has a competitive performance in differential expression analysis, cell
clustering and cell trajectory inference.

Availability and implementation: The R package is available at https://github.com/Zhangxf-ccnu/scTSSR.

Contact: zhangxf@mail.ccnu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The development of single-cell RNA sequencing (scRNA-seq) tech-
nologies provides the measurements of gene expression at single-cell
level, which paves the way for studying cellular heterogeneity (Tang
et al., 2009). However, dropout events, where a gene is expressed in
a cell but not detected, are often observed in scRNA-seq experi-
ments. The resulting gene-cell expression matrix will include many
false zeros caused by dropout events, which will corrupt the bio-
logical signal and impede downstream analyses, such as cell cluster-
ing, data visualization, cell trajectory inference and differential
expression analysis. Therefore, it would be useful to impute dropout
events in scRNA-seq data before performing downstream analyses.

Several imputation methods designed specifically for scRNA-seq
data have been developed recently (Chen et al., 2018; Eraslan et al.,
2019; Huang et al., 2018; Kwak et al., 2018; Li and Li, 2018;
Linderman et al., 2018; van Dijk et al., 2018; Zhang et al., 2019).

The existing methods can be mainly divided into two categories
according to how the information from the observed data is used.
The first type of methods imputes dropout values by borrowing in-
formation from similar genes (Arisdakessian et al., 2019; Eraslan
et al., 2019; Huang et al., 2018). That is, the imputed value for a
gene is estimated by the observed expression levels of other similar
genes in the same cell (Fig. 1A). The second type of methods recov-
ers the expression levels by borrowing information from similar cells
(Chen and Zhou, 2018; Kwak et al., 2018; Li and Li, 2018; van
Dijk et al., 2018). The predicted expression value of a gene in a cell
is obtained by pooling the observed data across similar cells
(Fig. 1B). The imputation methods based on similar genes do not
make full use of the information shared across cells, while the meth-
ods based on similar cells do not take into account similarities
among genes. These two types of methods may be suboptimal when
the dropout rate is high. For example, the methods based on similar
genes cannot make accurate imputation for a cell when the observed
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expression levels of most similar genes in the cell are zeros. The
methods based on similar cells do not perform well if the similar
cells contain many dropout values for the target gene of interest.

By assuming that the underlying true gene-cell expression matrix
is low rank, several low-rank matrix approximation based imput-
ation methods have been proposed to simultaneously leverage infor-
mation across cells and genes (Chen et al., 2018; Elyanow et al.,
2020; Linderman et al., 2018; Zhang and Zhang, 2018). However,
the low-rank assumption is quite strong and does not hold in some
situations. If the data consist of discrete cell clusters, it may be low
rank. If the clusters are not present and cells are placed on continu-
ous developmental trajectories, the low-rank assumption may not be
satisfied and the imputation procedure may produce misleading
results (Zhu et al., 2019).

In this study, we propose a new imputation method to recover
gene expression for scRNA-seq using a two-side sparse self-
representation (scTSSR) model. scTSSR simultaneously learns two
non-negative sparse self-representation matrices to capture the gene-
to-gene and cell-to-cell similarities. The dropout values are imputed
by a bilinear combination of similar genes and cells (Fig. 1C).
Following the method of Huang et al. (2018), we also couple
scTSSR to a Bayesian hierarchical model, where the final imputed
value is obtained by a weighted average of the value imputed by
scTSSR and the raw read count. To assess the performance of the
proposed method, we carry out comprehensive real scRNA-seq data
analyses. We first evaluate the accuracy by comparing the imputed
data to the data derived from single-molecule RNA fluorescence in
situ hybridization (smRNA FISH). scTSSR performs better than the
compared methods in terms of recovering Gini coefficient of genes
and preserving gene–gene correlations. Next, we carry out down-
sampling experiments and find that scTSSR has a competitive per-
formance in recovering the true expression levels. The comparable
performance of scTSSR is also demonstrated in terms of differential
expression analysis, cell clustering and cell trajectory inference.
These results indicate that scTSSR is a powerful tool for enhancing
biological discovery in scRNA-seq data analysis.

2 Materials and methods

2.1 Model
The input to our method is an m�n normalized expression matrix
X with rows and columns representing genes and cells, respectively
(In this study, library size normalization and log-transformation are
implemented on the raw read count matrix. For details, refer to
Supplementary Section S3.1). The goal of this study is to construct
an imputed matrix X̂ from X so that the dropout values in X can be
recovered accurately.

We use the self-representation models to impute the data. Self-
representation models aim to find a combination of other data
points to represent each target data point in the dataset (Elhamifar
and Vidal, 2013). Given the normalized expression matrix X, we
can represent the expression level of gene g in cell c using the expres-
sion levels of gene g in all other cells following previous studies
(Fig. 1B) (Chen and Zhou, 2018; Li and Li, 2018). Mathematically,
Xgc can be represented as

Xgc ¼
X
c0 6¼c

Xgc0Bc0c þ Egc; (1)

where Bc0c is the representation coefficient and Egc is noise. Bc0c can
capture the similarity between cells c0 and c and be interpreted as the
predictive effect of cell c0 on cell c. Let B̂c0c be the estimate of Bc0c,
then we can compute the imputed value for gene g in cell c as
X̂gc ¼

P
c0 6¼c Xgc0 B̂c0c. In doing so, only expression levels of gene g in

cells similar to the target cell c are leveraged to impute the data, and
expression levels of other genes similar to the target gene g are
neglected.

To leverage information shared across genes, we can also repre-
sent the expression level of gene g in cell c using other genes in cell c
(Fig. 1A) (Huang et al., 2018)

Xgc ¼
X
g0 6¼g

Agg0Xg0c þ Egc; (2)

where Agg0 is the representation coefficient and can capture the simi-
larity between genes g and g0. After obtaining the estimated repre-
sentation coefficient Âgg0 , we can compute the imputed value for
gene g in cell c as X̂gc ¼

P
g0 6¼g Âgg0Xg0c. This representation method

only uses expression levels of genes in the same cell, and expression
levels of genes in other cells are not considered.

Equations (1) and (2) are one-side self-representation models.
Equation (1) focuses on representing the data matrix according to
cells (the columns of X), and only uses information across cells to
impute dropout values. Equation (2) represents the data matrix
according to genes (the rows of X) and only uses similar genes to re-
cover the data. To make full use of the information shared across
genes and across cells, we propose a two-side sparse self-
representation model for recovering scRNA-seq data (scTSSR)

Xgc ¼
X
g0 6¼g

Agg0Xg0c þ
X
c0 6¼c

Xgc0Bc0c

X
g0 6¼g

X
c0 6¼c

Agg0Xg0c0Bc0c þ Egc; (3)

where Agg0 is the similarity between genes g and g0, and Bc0c is the
similarity between cells c0 and c. Here, we use a summation of three
terms to represent the expression level of gene g in cell c (Fig. 1C).
The first term is a weighted summation of the expression levels of all
other genes in the same cell. The second term is a weighted summa-
tion of the expression levels of the same gene across all other cells.
The third term is a weighted summation of the expression levels of
all other genes across all other cells. To reduce the complexity of the
model, the similarity between Xg0c0 and Xgc is set to Agg0Bc0c. Here,
we assume that if genes g and g0 are similar and cells c and c0 are
also similar, the expression level of gene g0 in cell c0 would be similar
to the expression level of gene g in cell c. Therefore, we use the prod-
uct Agg0Bc0c to capture the similarity between Xgc and Xg0c0 , follow-
ing the method of previous link prediction studies (Zhao et al.,
2017). Here, we prefer scTSSR to be a sparse model since we expect
only a small set of cells and genes to be informative for imputing a
target dropout value, which means most values of Agg0 and Bc0c
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Fig. 1. Different strategies for imputing a dropout value, Xgc. Here, Xgc denotes the

expression level of gene g in cell c. The colored blocks represent the expression val-

ues that are used to estimate the dropout value by different strategies. (A) The first

type of methods only uses the expression levels of genes in the same cell (the blocks

filled with orange) to impute the dropout value and does not consider expression

levels of genes in other cells. The imputed value can be obtained by a linear or non-

linear function of the expression levels of genes in the same cell,

X̂gc ¼ f 1
gcðX1c; . . . ;XmcÞ. (B) The second type of methods only uses the expression

levels of gene g in cells similar to the target cell c (the blocks filled with purple) to

compute the imputation value and does not take into account expression levels of

other genes similar to the target gene g. The imputed value is computed by a linear

or non-linear function of the expression levels of gene g in the other cells,

X̂gc ¼ f 2
gcðXg1; . . . ;XgnÞ. (C) Our method uses the whole expression matrix to com-

pute the imputed value, which simultaneously leverages the expression levels of all

other genes in the target cell c (the orange-colored blocks), the expression levels of

the target gene g in all other cells (the purple-colored blocks) and the expression lev-

els of all other genes in all other cells (the green-colored blocks). The imputed value

can be obtained by a bilinear function of all values in the expression matrix. Agg0 is

the predictive effect of gene g0 on gene g, and Bc0c is the predictive effect of cell c0 on

cell c. (Color version of this figure is available at Bioinformatics online.)
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would be zeros. Once we obtain the estimates of Âgg0 and B̂c0c, the
imputed value can be predicted as

X̂gc ¼
X
g0 6¼g

Âgg0Xg0c þ
X
c0 6¼c

Xgc0 B̂c0c þ
X
g0 6¼g

X
c0 6¼c

Âgg0Xg0c0 B̂c0c: (4)

Note that Huang et al. (2018), Chen and Zhou (2018) and Li
and Li (2018) also assume that the relationships between genes or
cells are linear. For example, by assuming the count of each gene in
each cell follows a Poisson-gamma mixture, Huang et al. (2018) es-
timate the prior mean parameters using a Poisson LASSO regression,
where the expression levels of other genes are used as predictors,
and the posterior mean is used to impute dropout values. Li and Li
(2018) first compute the dropout probability of each gene in each
cell, then use a penalized linear model to impute the dropout values.
Chen and Zhou (2018) first use the lasso regression to select a small
set of candidate cells and compute the dropout probabilities, then
apply the quadratic programming algorithm for final imputation.
When using the regression models to capture the linear relationships
between genes or cells, Huang et al. (2018) only use the first term of
our model to compute the prior mean, and Chen and Zhou (2018)
and Li and Li (2018) only use the second term of our model to make
predictions. Here, we use a summation of the two terms so that the
expression levels of all other genes in the target cell and the expres-
sion levels of the target gene in all other cells are used. In addition,
we also use the third term to borrow information from all other
genes across all other cells Xg0c0 (g0 6¼ g; c0 6¼ c). The predictive effect
of Xg0c0 on Xgc is Âgg0 B̂c0c.

We estimate the representation coefficients Âgg0 and B̂c0c from
the normalized expression data using a penalized least square
method. The optimization problem in the matrix form is

minA;B kX� ðAXþXBþ AXBÞk2F þ kðkAk1 þ kBk1Þ
subject to A � 0; B � 0; diagðAÞ ¼ 0; diagðBÞ ¼ 0:

(5)

Here, A and B represent the row and column representation co-
efficient matrices of X, and are used to capture the gene similarities
and cell similarities, respectively. k � kF and k � k1 are the Frobenious
norm and elementwise ‘1 norm of a matrix. The first term is the
square representation error, and the second term uses the element-
wise ‘1 norm to promote sparsity of the representation coefficient
matrices. k is a non-negative tuning parameter. We use the con-
straints A � 0 and B � 0 to make sure that the representation coeffi-
cients are non-negative so that they can be naturally interpreted as
imputation weights (Chen and Zhou, 2018; Li and Li, 2018). Note
that negative associations between cells or genes also exist and can
be used. Here, we only consider non-negative associations so that
the product Agg0Bc0c can naturally define the similarity between Xg0c0

and Xgc. diagð�Þ 2 Rn is the vector of the diagonal elements of a ma-
trix. The constraints diagðAÞ ¼ 0 and diagðBÞ ¼ 0 are used to elim-
inate the trivial solution of representing an expression level as a
linear combination of itself. We propose a coordinate descent algo-
rithm to solve the optimization problem (Section 2.2).

After obtaining the solution to (5), we can impute the data
according to (4). However, this method may be suboptimal since it
does not consider the predictability or provide a measure of uncer-
tainty for the estimated values. Therefore, we couple scTSSR to the
Bayesian model used in SAVER (Huang et al., 2018)
(Supplementary Section S3.2). SAVER assumes that the observed
count expression of each gene in every cell follows a negative bino-
mial distribution. A Bayesian method is used to calculate posterior
distribution of every observed count. The mean of the posterior dis-
tribution is treated as the final imputation value, which is a weighted
average of the scTSSR predicted value and the raw read count. All
parameters (expect for the prior mean) in the Bayesian model are
estimated using SAVER. The prior mean is estimated as l̂gc ¼ eX̂gc ,
where X̂gc is the scTSSR predicted value obtained from Equation
(4). We use the function saver in the R package SAVER with setting
“mu ¼l̂” to compute the final imputed values. Further data analysis
steps are then carried out based on the final imputed values.

2.2 Optimization algorithm
We develop a coordinate descent algorithm to solve the optimization
problem (5). At each iteration, we minimize the objective function
with respect to one representation coefficient matrix while keeping
the other one fixed. We first keep A fixed and minimize (5) with re-
spective to B. The optimization problem can be rewritten as

minB kðX� AXÞ � ðAþ IÞXBk2
F þ kkBk1

subject to B � 0; diagðBÞ ¼ 0:
(6)

This is a non-negative constrained sparse learning problem, and
Keras is used to solve it (Supplementary Section S3.3). Minimizing
(5) with respective to A can be rewritten as

minA kðX�XBÞ � AXðBþ IÞk2
F þ kkAk1

subject to A � 0; diagðAÞ ¼ 0:
(7)

This optimization problem can also be solved by the algorithm
used to solve (6). We cyclically update B and A by solving (6) and
(7) until the convergence condition is satisfied. The complete algo-
rithm is presented in Supplementary Section S3.3.

2.3 Tuning parameter selection
Our model (5) has a tuning parameter k that controls the sparsity
level of the estimated coefficient matrices. We determine k according
to a random-matrix-based technology called Gordon’s Theorem
(Vershynin, 2010). As suggested by this theorem, the proper
lasso penalty parameter k should be set at the order of the standard
deviation of the noises (Zhao and Yu, 2006). To choose the proper
k, we need to obtain the noise matrix first. We simply take the
mean of the normalized expression matrix X as the imputation
estimate of X (Note that the imputation estimate obtained by
more complex methods can be also used. Here, we use the simple
estimate for the sake of simplicity). So the noise matrix can be
calculated by X�meanðXÞ. Then the appropriate k is set as
k ¼ sdðX�meanðXÞÞ ¼ sdðXÞ, where sd(X) is the estimate of the
standard deviation of the noise. By selecting the tuning parameter
through this way, we can avoid the tedious procedure of trying
many different parameter values and to achieve a preferable
performance.

3 Results

We compare our method with eleven existing imputation methods
to evaluate the performance: ALRA (Linderman et al., 2018),
AutoImpute (Talwar et al., 2018), DrImpute (Kwak et al., 2018),
MAGIC (van Dijk et al., 2018), SAVER (Huang et al., 2018),
scImpute (Li and Li, 2018), SCRABBLE (Peng et al., 2019), scRMD
(Chen et al., 2018), scVI (Lopez et al., 2018), VIPER (Chen and
Zhou, 2018) and ZINB-WaVE (Risso et al., 2018). Due to the lack
of gold standard in evaluating the imputation of scRNA-seq using
real data, we conduct the following experiments to assess the accur-
acy: (i) comparison between imputed scRNA-seq data and smRNA
FISH data, (ii) down-sampling experiments, (iii) differential expres-
sion analysis, (iv) cell clustering and (v) pseudotime trajectory
analysis.

3.1 Evaluating imputation accuracy by comparing to

smRNA FISH data
smRNA FISH is a single-cell transcriptomic profiling method that is
complementary to scRNA-seq. Compared to scRNA-seq, smRNA
FISH has the advantage of measuring gene expression levels with
high accuracy. Therefore, the smRNA FISH can be used as a refer-
ence to evaluate the imputed scRNA-seq data (Huang et al., 2018).
We obtain a Drop-seq dataset and the corresponding smRNA FISH
dataset from a melanoma cell line (Torre et al., 2018). We pre-
process the data using the method from Huang et al. (2018). The
preprocessed Drop-seq data consists of 12 241 genes and 8498 cells,
and the smRNA FISH data contains 88 040 cells and 26 genes.
There are 15 genes common to the smRNA FISH and Drop-seq
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datasets. Since the cells included in the smRNA FISH and Drop-seq
datasets are different, we can only compare the distributions of
imputed scRNA-seq data to the distribution of smRNA FISH data.
Following Huang et al. (2018), we focus on two types of measures.
The first one is the Gini coefficient that is a measure of gene’s ex-
pression variability, which is useful for identifying rare cell types
and sporadically expressed genes. The second one is the gene-to-
gene correlations, which is important for gene network
reconstruction.

We run scTSSR and the 10 individual imputation methods
(ALRA, AutoImpute, DrImpute, MAGIC, SAVER, scImpute,
scRMD, scVI, VIPER and ZINB-WaVE) on the Drop-seq data and
calculate the Gini coefficients for the 15 genes common to the FISH
and Drop-seq datasets. We do not run SCRABBLE on the Drop-seq
data due to that the computation time is beyond 24 h on a computer
with 64GB RAM. Before calculating Gini coefficients, we filter and
normalize the data by a GAPDH factor as that performed in Huang
et al. (2018). We use Pearson correlation coefficient and root-mean-
square error (RMSE) between Gini coefficients calculated by the
imputed data (or Drop-seq data) and those by the smRNA FISH
data as the metrics to assess the recovery of Gini coefficients.
Figure 2 shows that ALRA performs best, and our scTSSR performs
better than the other nine compared methods and the observed
Drop-seq data. We also evaluate the quality of imputed data in
terms of the recovery of the gene-to-gene correlations observed in
smRNA FISH data. We calculate the gene-to-gene correlation ma-
trix using Pearson correlation coefficient. The Pearson correlation
coefficient between gene-to-gene correlation matrix calculated by
the imputed data (or Drop-seq data) and that by the smRNA FISH
data is used to quantify the performance. As can be seen from
Supplementary Figure S1, scTSSR outperforms all other imputation
methods with the highest Pearson correlation coefficient, while the
two low-rank approximation based methods, ALRA and scRMD,
lead to biased estimates of the true correlations. The correlations
derived from MAGIC results are much higher than those derived
from FISH, while AutoImpute and DrImpute underestimate the
gene-to-gene correlations. These results indicate that scTSSR can ac-
curately recover the true distributions observed in smRNA FISH but
dampened in Drop-seq.

3.2 Evaluating imputation accuracy through

down-sampling experiments
Since it is hard to obtain the gold standard of the true expression lev-
els, we carry out down-sampling experiments to evaluate the per-
formance of different imputation methods. Two down-sampling
experiments are conducted. The first one is the same to that con-
ducted by Huang et al. (2018), which evaluates the performance
using different measures (e.g. correlation with the reference data,
cell clustering and t-SNE visualization). The second one is conducted
following the method of Chen and Zhou (2018), which evaluates
the performance with different down-sampling rates.

We first carry out the down-sampling experiments implemented
in Huang et al. (2018). We use the four datasets used in Huang et al.
(2018) to evaluate the accuracy: Baron (Baron et al., 2016), Chen
(Chen et al., 2017), La Manno (La Manno et al., 2016), Zeisel
(Zeisel et al., 2015). Given a dataset, Huang et al. (2018) first
selected a subset of cells and genes with high expression to generate
a reference dataset, and generated a down-sampled observed dataset
from the reference dataset using down-sampling simulation. We
download the reference and observed data for the four datasets from
https://github.com/mohuangx/SAVER-paper/tree/master/SAVER-
data. We run the 12 imputation methods on each observed dataset
and evaluate the performance by comparing the imputed data with
the reference data using different measures. We first evaluate the
performance in terms of correlation with the reference data. The
Pearson gene-wise correlation across cells and the Pearson cell-wise
correlation across genes between the reference data and the imputed
data (or observed data) are calculated. Figure 3A shows that scTSSR
achieves the highest gene-wise correlations on the Baron dataset and
the La Manno dataset, and performs as the second best on the other
datasets. scTSSR also achieves the highest cell-wise correlations on
three out of the four datasets (e.g. the Baron dataset, the La Manno
dataset and the Zeisel dataset) and performs as the second best on
the Chen dataset. Next, we investigate the effect of different imput-
ation methods on cell clustering and visualization. We use the R
package Seurat (Butler et al., 2018) to carry out cell clustering and t-
SNE visualization, following the method used in SAVER (Huang
et al., 2018). We run clustering algorithm and t-SNE on the data
imputed by different methods, observed data and reference data.
The cell clusters derived from the reference data are treated as the
truth. The clustering accuracy is assessed in terms of the Jaccard
index and t-SNE visualization. The higher the Jaccard index, the
better the clustering performance. scTSSR achieves competitive
Jaccard index scores on all datasets (Fig. 3B and Supplementary Fig.
S2). From the t-SNE plots, we find that the data imputed by scTSSR
can provide a clear representation of the clusters identified from the
reference data.

We then carry out the down-sampling experiments implemented
in Chen and Zhou (2018) to evaluate the imputation performance
with different down-sampling rates. Three datasets used in Chen
and Zhou (2018) are considered: Grun (Grun et al., 2014), Cell
Type (Chu et al., 2016) and Time Course (Chu et al., 2016). Genes
that are expressed in <10% of the cells are filtered out. The down-
sampling method adopted here consists of two steps. Firstly, for
each gene in turn, we generate initial down-sampled data using a
multinomial distribution with smaller library sizes corresponding to
different down-sampling rates. Secondly, we set each down-sampled
entry of the initially generated data to zero according to its dropout
probability computed by a logistic model. After down-sampling, we
finally have zero values resulting from low expression values in the
original data and the subsequent multinomial down-sampling or the
extra dropout events (for detail, refer to Chen and Zhou, 2018). In
this experiment, the down-sampling rate, which represents the

Fig. 2. Comparison of the Gini coefficients computed from the imputed data (or Drop-seq data) to those computed from the smRNA FISH data
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down-sampled proportion of the original read depth, is set to 0.5,
0.6, 0.7, 0.8, 0.9 and 0.95. To assess the performance of each

method, we calculate the Pearson correlation across all entries be-
tween the original (reference) data and the imputed data. scTSSR

outperforms other imputation methods on all the three datasets with
all down-sampling rates (Fig. 3C).

3.3 Evaluating imputation accuracy through differential

expression analysis
Differential expression analysis, which can be used to identify genes

whose expression levels are changed between two conditions or cell
types, is useful for characterizing the molecular mechanisms under-
lying the change. The performance of differential analysis methods

will be deteriorated by the dropout events in scRNA-seq. We run the
differential analysis methods on the observed and imputed data to il-

lustrate the benefit of imputation. The experiments are conducted

following the methods of Eraslan et al. (2019), Li and Li (2018) and
Chen et al. (2018). Due to the lack of gold standard of differentially
expressed genes, the differentially expressed genes identified from
bulk RNA-seq data are considered as the reference. We consider
two real datasets. The first real dataset consists of both bulk RNA-
seq and scRNA-seq experiments on human embryonic stem cells
(ESC) and definitive endoderm cells (DEC) (Chu et al., 2016). The
scRNA-seq data include 138 DEC cells and 212 H1 ESC cells, and
the bulk RNA-seq data consists of 4 H1 ESC samples and 2 DEC
samples. The second real dataset consists of both bulk RNA-seq and
scRNA-seq experiments on human embryonic stem cells (ESC) and
endothelial cells (EC) (Chu et al., 2016). The scRNA-seq data
includes 105 EC cells and 212 H1 ESC cells, and the bulk RNA-seq
data consists of four H1 ESC samples and three EC samples. We use
edgeR (Robinson et al., 2010) to identify differentially expressed
genes after imputation, and all parameters are set as the default
values.
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Here, we only consider the 2000 highly variable genes identified
from the scRNA-seq data by the function FindVariableFeatures in
the R package Seurat (parameters are set to default values). Top 200
genes ranked by adjusted P values from the bulk data are considered
as the reference. We use the receiver operating characteristic (ROC)
curve to evaluate the performance of each imputation method,
where the differentially expressed genes identified from the imputed
(and observed) data with different adjusted P value thresholds are
compared with the reference. We first carry out the differential ex-
pression analysis on the first real dataset (H1 versus DEC).
Considering that some of the imputation methods may depend on
the random seeds, we run each imputation method 10 times and
compute the standard error of the performance metrics, and use
black interval to represent the result plus or minus standard error.
We plot the ROC curve for each method and calculate the area
under curve (AUC) score as well (Fig. 4A and Supplementary Fig.
S3). scTSSR outperforms all the other methods. In addition, we also
consider the top 400 genes ranked by adjusted P values from the
bulk data as the gold standard (Supplementary Fig. S4). scTSSR
achieves the highest AUC score among all imputation methods.
However, how to set the cutoff to define the reference will influence
the ROC analysis results. In order to reduce the uncertainty of the
results due to such influence, we calculate the Spearman correlation
coefficient between the adjusted P values calculated from the bulk
data and those from the imputed data (or observed data). Figure 4B
shows that scTSSR performs best on differential expression analysis.
We then carry out the differential expression analysis on the second
real dataset (H1 versus EC). scTSSR still performs best
(Supplementary Fig. S5). The results indicate that the differentially
expressed genes identified by scTSSR are consistent with the refer-
ence derived from the bulk data.

3.4 Evaluating imputation accuracy through cell

clustering
We run different imputation methods on scRNA-seq datasets whose
cell labels are well defined through extensive analysis. We consider
four datasets: Pollen (Pollen et al., 2014), iPSC (Gong et al., 2018),
Guo (Guo et al., 2015) and peripheral blood mononuclear cell
(PBMC) (Zheng et al., 2017). The Pollen data includes 23 794 genes
and 299 cells from 11 populations. The iPSC data includes 15 724
genes and 315 cells from five different cell types. The Guo data con-
sists of 23 787 genes and 317 cells from 19 different cell types. After
filtering out genes that are expressed in <5% of the cells, the Pollen
data, the Guo data and the iPSC data include 14 203, 14 898 and
11 960 genes, respectively. The PBMC data consists of 32 738 genes
and 5132 cells from five different cell types. We use function
FindVariableFeatures in the R package Seurat with default param-
eter settings to identify 2000 high variable genes of the PBMC data.
We first run different imputation methods on each observed dataset,

and then use SC3 (Kiselev et al., 2017) which is widely used to carry
out clustering analysis on the imputed or observed data. We use R
package SC3 to implement SC3, and the number of clusters is
chosen as the known number of cell types. Considering that some of
the imputation methods may depend on the random seeds, we run
each imputation method ten times on the iPSC dataset and compute
the standard error of the performance metric adjusted Rand index
(ARI), and use black interval to represent the result plus or minus
standard error (Fig. 5B).

We use the ARI as the metric to assess the clustering perform-
ance. A higher ARI score indicates a better performance. We observe
that the performance of different imputation methods depends on
the datasets (Fig. 5). We notice that, ALRA, which is based on the
low-rank matrix approximation, performs best on the first three
datasets, but obtains a lower ARI score on the PBMC dataset than
most of the methods, while the performance of scTSSR is robust and
always in the top two. Overall, scTSSR can improve the cell cluster-
ing through imputing the observed data.

3.5 Evaluating imputation accuracy through cell

trajectory inference
Reconstruction of lineage trajectories is important for determining the
pattern of a dynamic process. The appearance of dropout events will
impair the performance of pseudotime inference algorithms. We com-
pare the pseudotime inference derived with and without imputing the
dropout events to evaluate the performance of different imputation
methods. The experiments are conducted following the methods of
Kwak et al. (2018). We consider two published temporal scRNA-seq
datasets: Deng (Deng et al., 2014) and Petropoulos (Petropoulos et al.,
2016). The Deng data consist of the single cells from ten early mouse
developmental stages from zygote, 2-/4-/8-/16- cell stages to blastocyst.
The Petropoulos data include the single cells from five stages of human
preimplantation embryonic development from developmental Day (E)
3 to Day 7. The reported time labels represent the overall developmen-
tal trajectory and are treated as the gold standard to evaluate the per-
formance. We use TSCAN (Ji and Ji, 2016) and Monocle 2 (Qiu et al.,
2017) to infer pseudotime from the observed or imputed data, and all
parameters are set to the default values. Pseudo-temporal Ordering
Score (POS) and Kendall’s rank correlation score are considered as the
metrics to measure the consistency between the true time labels and
pseudotime orderings derived from the data.

Figure 6 shows the visualization of lineages reconstructed by
Monocle 2 from the Deng dataset, and the POS and Kendall’s rank
correlation scores are also provided. DrImpute outperforms all
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methods on the Deng dataset, while scTSSR is always in top two
(Fig. 6 and Supplementary Fig. S6). Also, considering that some of
the imputation methods may depend on the random seeds, we run
each imputation method ten times on the Deng dataset and compute
the standard error of the performance metrics (POS and Kendall’s
rank correlation score) (Supplementary Fig. S7). Due to that the im-
putation result obtained by AutoImpute contains many duplicate
columns, which results in inevitable errors in the process of using
Monocle 2, we do not run AutoImpute on the Petropoulos dataset.
scTSSR obtains the top three POS and Kendall’s rank correlation
score among all methods on the Petropoulos dataset, which are com-
petitive to the results derived from SAVER and scImpute
(Supplementary Fig. S8). It is interesting to observe that the two
low-rank matrix approximation based methods, ALRA and
scRMD, do not perform well on the Petropoulos dataset. This may
be explained by the fact that the cells are placed on a continuous tra-
jectory (Supplementary Fig. S8B), and the low-rank assumption of
the two methods is not satisfied. The pseudotime trajectory derived
from ALRA starts from E3 and ends at E6 and shows fluctuations
up and down in the tail of the pseudotime trajectory, which is not
consistent with the true time labels. The pseudotime trajectory
derived from scRMD starts from E3 and ends at E5, which is also
not accurate (Supplementary Fig. S8B). These results indicate that
the low-rank matrix approximation based method, ALRA, may
have competitive performance in cell clustering where the data ma-
trix is low rank, but it may not perform well in cell trajectory infer-
ence when the rank of the data matrix is high. Since our scTSSR
does not require the data matrix to be low rank, it performs well in
both cell clustering and trajectory inference.

4 Discussion

We have developed a new method to impute dropout events in
scRNA-seq data. Five experiments are conducted to evaluate the
performance of the proposed method on different real scRNA-seq
datasets in terms of different evaluation measures. We count the
rankings of all the twelve imputation methods in each experiment
(Supplementary Tables S1–S5), and plot the frequency of each
method ranking in the top three in five experiments (Supplementary
Fig. S9). Experiment results show that our method outperforms
other imputation methods in terms of recovery of the Gini coeffi-
cients of genes and gene-to-gene correlations, recovery of the true
expression levels, differential expression analysis, cell clustering and
pseudotime trajectory analysis.

We now discuss the time complexity of the proposed algorithm.
In this study, we use Keras (TensorFlow R package) to solve the
non-negative constrained sparse learning problem (Equations (6)
and (7)). In Keras, the stochastic gradient descent algorithm is used.
For m genes and n cells, solving Equations (6) and (7) involves

Oðk1mnÞ operations, where k1 is the number of epochs. The total
time complexity is Oðk1k2mnÞ, where k2 is the number of outer iter-
ations. To compare the running time, we run different imputation
methods on a workstation with Intel 1 CPU (3.40 GH) and 64 GB
RAM. The pbmc33k dataset is used to evaluate the efficiency since
it has a large number of cells. The dataset is downloaded from
https://support.10xgenomics.com/single-cell-gene-expression/data
sets/1.1.0/pbmc33k. We filter out genes expressed in <20% of cells,
leaving 1856 genes. From this dataset, we generate six subsampled
datasets ranging in size (100, 500, 1k, 5k, 10k and 20k cells). We
run each method three times on each subsampled dataset to com-
pute the average running time. Experiment results show that our
method is comparable to the three regression-based methods
(SAVER, scImpute and VIPER) in terms of computing time and can
deal with a dataset with 20000 cells within 200min (Supplementary
Fig. S10), which is affordable in practical applications. Note that the
space complexity of our method is Oðm2 þ n2 þmnÞ. As the num-
ber of cells is increasing, more memory will be required. To reduce
the space complexity, we will extend our method by first dividing
cells into different groups (dividing randomly or clustering) and run
our method on each group to impute dropout values.

The existing self-representation learning based imputation meth-
ods can be divided into two types. The first type (e.g. scImpute and
VIPER) represents the expression level of a gene in a cell using the
expression levels of the same gene across all other cells, and only
borrows the information shared across cells to impute a dropout
value. The second type (e.g. SAVER) uses the expression levels of all
other genes in the same cell to represent the target expression level,
and the information shared only across genes can be leveraged.
Unlike scImpute, VIPER and SAVER, scTSSR uses a two-side sparse
self-representation model (3). To impute the expression level of a
target gene in a target cell, scTSSR simultaneously leverages the ex-
pression levels of all other genes in the target cell, the expression lev-
els of the target gene in all other cells, and the expression levels of
all other genes in all other cells. That is, scTSSR takes advantage of
the whole expression matrix (except the entry corresponding to the
dropout event) rather than just the row or the column which con-
tains the dropout event. Low-rank matrix approximation based
methods can also borrow information from both genes and cells to
impute the data (Chen et al., 2018; Linderman et al., 2018; Zhang
and Zhang, 2018). However, the low-rank assumption cannot be
satisfied when the cells lie on continuous developmental trajectories.
scTSSR does not impose a very strong assumption on the underlying
data, and can be applied to data including both discrete cell clusters
and continuous trajectories.

A zero count in scRNA-seq data can be caused by a dropout
event (technical zero) or reflect a true biological non-expression
(biological zero). If we can estimate the dropout probability
(denoted as Pgc) of the zero count of gene g in cell c, we can incorp-
orate this information into our model to improve the accuracy of the
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estimated representation matrices Â and B̂ and the imputed data X̂.
We can rewrite the representation error term in Equation (5) as
kW �

�
X� ðAXþXBþAXBÞ

�
k2

F, where � is the Hadamard
product of matrices, and W is a weight matrix with element
Wgc ¼ 1� Pgc. According to the weighted least squares, only the
errors corresponding to non-zero values and biological zeros are
considered, and the errors corresponding to technical zeros are
excluded. In addition, in the imputation step, we can also impute
the technical zeros only and not change the biological zeros. Several
studies can be used to estimate the dropout probabilities of zero
counts using different probability models (Chen and Zhou, 2018; Li
and Li, 2018; Miao et al., 2019). In the future, we will combine our
method with these models to improve the accuracy of the imputed
data.

Besides the observed scRNA-seq data, scRNA-seq data collected
from other conditions, technologies and species (Wang et al., 2019),
bulk RNA-seq data obtained from the same cells/tissues (Peng et al.,
2019), smRNA FISH data and biological networks (Elyanow et al.,
2020) can also provide valuable information for imputing dropout
values. We will extend our model so that information from other
domains can be incorporated to improve the performance.
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