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Supplementary Text 

Section 1. Decomposition of null hypothesis using intersection-union test (IUT) 

We test the null hypothesis H0: 𝛽𝜃 = 0. If we have only one genetic variant, then 𝛽𝜃 

would be a scalar and the classic methods for testing mediation effects, such as the 

Sobel test, under the framework of Baron and Kenny can be applied. Since we focus on 

the joint (from multiple genetic variants) mediation effects, 𝛽𝜃 is thus a vector in our 

setup. The null hypothesis again is H0: 𝛽𝜃 = 0, versus the alternative hypothesis 

H1: 𝛽𝜃 ≠  0. The hypothesis is divided into two sub-hypotheses, H0
𝜃: 𝜃 = 0 versus 

H1
𝜃: 𝜃 ≠  0 and H0

𝛽
: 𝛽 = 0 versus H1

𝛽
: 𝛽 ≠  0. Thus, we have 

 H0 = H0
𝜃 ∪ H0

𝛽
 (1) 

 H1 = H1
𝜃 ∩ H1

𝛽
 (2) 

 

This can be conveniently solved by the intersection-union test (IUT). Suppose the p 

value for testing H0
𝜃 versus H1

𝜃  is 𝑝1; and the p value for testing H0
𝛽
 versus H1

𝛽
 is 𝑝2. Then 

the p value for testing the overall H0 versus H1 applying IUT is the maximum of 𝑝1 and 
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𝑝2. In the following sections, we use the SMUT strategy to test 𝜃 and 𝛽 separately to 

obtain 𝑝1 and 𝑝2. 

Section 2. Testing 𝛉 in the Outcome Model 

The outcome model is also high dimensional with multiple genetic effects and the 

mediator. Classic regression models tend to fail for such models. As a solution, we 

employ the following mixed effects model to reduce the dimension of parameters.  

 {

𝛾𝑗~𝑖.𝑖.𝑑. 𝑁(𝜇𝛾 , 𝜎𝛾
2)

𝜖𝑖~𝑖.𝑖.𝑑. 𝑁(0, 𝜎𝜖
2)

𝑌𝑖|(𝛾1, … , 𝛾𝑞 , 𝐺)  = 𝛼1 + 𝑀𝑖𝜃 + 𝛴𝑗=1
𝑞 𝐺𝑖𝑗𝛾𝑗 + 𝜖𝑖

 (3) 

We first write out the log-likelihood function for model (3) and then derive the Rao’s 

score statistic (Radhakrishna Rao and Bartlett, 1948; Engle, 1984) for testing 𝜃. Next, 

we apply Expectation–maximization (EM) algorithm to obtain maximum likelihood 

estimate (MLE) under the null hypothesis (Dempster et al., 1977; McCulloch et al., 

2008). Finally, the score statistic is evaluated at MLE.  

The log-likelihood for outcome 𝑌 is 

 

ℓ𝑌 ≔  −
1

2
log(det(2𝜋𝑉)) 

−
1

2
(𝑌 − 𝛼11𝑛 − 𝑀𝜃 − 𝐺1𝑞𝜇𝛾)

𝑇
𝑉−1(𝑌 − 𝛼11𝑛 − 𝑀𝜃 − 𝐺1𝑞𝜇𝛾) 

 

(4) 

where 𝑉 ≔ 𝐶𝑜𝑣(𝑌) = 𝜎𝛾
2𝐺𝐺𝑇 + 𝜎𝜖

2𝐼 and 1𝑘 ≔ (1,1, … ,1)𝑇 is a vector of 𝑘 copies of 1.   

The Rao’s score statistic for testing 𝜃 is  
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𝑆𝐶(𝜃) =

[
𝜕ℓ𝑌
𝜕𝜃

]
2

𝐹𝑖𝑠ℎ𝑒𝑟(𝜃)
 

(5) 

where 𝐹𝑖𝑠ℎ𝑒𝑟(𝜃) = 𝐸 (−
𝜕2ℓ𝑌

𝜕𝜃2 ) − 𝐸 (−
𝜕2ℓ𝑌

𝜕𝜃𝜕𝜉
)

𝑇

[𝐸 (−
𝜕2ℓ𝑌

𝜕𝜉𝜕𝜉𝑇)]
−1

𝐸 (−
𝜕2ℓ𝑌

𝜕𝜃𝜕𝜉
) , 𝜉 = (𝛼1, 𝜇𝛾 , 𝜎𝛾

2, 𝜎𝜖
2)

𝑇
 

Derivations can be found in (McCulloch et al., 2008). The following are the first and 

second derivatives of ℓ𝑌.  

First derivatives 

 
𝜕ℓ𝑌

𝜕𝜃
= (𝑌 − 𝛼11𝑛 − 𝑀𝜃 − 𝐺1𝑞𝜇𝛾)

𝑇
𝑉−1𝑀 (6) 

 
𝜕ℓ𝑌

𝜕𝛼1
= (𝑌 − 𝛼11𝑛 − 𝑀𝜃 − 𝐺1𝑞𝜇𝛾)

𝑇
𝑉−11𝑛 (7) 

 
𝜕ℓ𝑌

𝜕𝜇𝛾
= (𝑌 − 𝛼11𝑛 − 𝑀𝜃 − 𝐺1𝑞𝜇𝛾)

𝑇
𝑉−1𝐺1𝑞  (8) 

 

𝜕2ℓ𝑌

𝜕𝜎𝜖
2 = −

1

2
[𝑡𝑟(𝑉−1)

− (𝑌 − 𝛼11𝑛 − 𝑀𝜃 − 𝐺1𝑞𝜇𝛾)
𝑇

𝑉−2(𝑌 − 𝛼11𝑛 − 𝑀𝜃 − 𝐺1𝑞𝜇𝛾)] 

(9) 

 

𝜕2ℓ𝑌

𝜕𝜎𝛾
2 = −

1

2
[𝑡𝑟(𝑉−1𝐺𝐺𝑇)

− (𝑌 − 𝛼11𝑛 − 𝑀𝜃 − 𝐺1𝑞𝜇𝛾)
𝑇

𝑉−1𝐺𝐺𝑇𝑉−1(𝑌 − 𝛼11𝑛 − 𝑀𝜃

− 𝐺1𝑞𝜇𝛾)] 

(10) 

 

Expected value of second derivatives  

 𝐸 (−
𝜕2ℓ𝑌

𝜕𝜃2 ) = 𝑀𝑇𝑉−1𝑀 (11) 

 
𝐸 (−

𝜕2ℓ𝑌

𝜕𝛼1
2 ) = 1𝑛

𝑇 𝑉−11𝑛 (12) 
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𝐸 (−

𝜕2ℓ𝑌

𝜕𝜇𝛾
2 ) = (𝐺1𝑞)

𝑇
𝑉−1𝐺1𝑞  (13) 

 
𝐸 (−

𝜕2ℓ𝑌

𝜕(𝜎𝛾
2)

2) =
1

2
𝑡𝑟(𝑉−1𝐺𝐺𝑇𝑉−1𝐺𝐺𝑇) (14) 

 
𝐸 (−

𝜕2ℓ𝑌

𝜕(𝜎𝜖
2)2

) =
1

2
𝑡𝑟(𝑉−2) (15) 

 
𝐸 (−

𝜕2ℓ𝑌

𝜕𝜃𝜕𝛼1
) = 1𝑛

𝑇 𝑉−1𝑀 (16) 

 
𝐸 (−

𝜕2ℓ𝑌

𝜕𝜃𝜕𝜇𝛾
) = (𝐺1𝑞)

𝑇
𝑉−1𝑀 (17) 

 
𝐸 (−

𝜕2ℓ𝑌,𝑍

𝜕𝜃𝜕𝜎𝛾
2) = 0 (18) 

 
𝐸 (−

𝜕2ℓ𝑌

𝜕𝜃𝜕𝜎𝜖
2

) = 0 (19) 

 
𝐸 (−

𝜕2ℓ𝑌

𝜕𝛼1𝜕𝜇𝛾
) = (𝐺1𝑞)

𝑇
𝑉−11𝑛 (20) 

 
𝐸 (−

𝜕2ℓ𝑌

𝜕𝛼1𝜕𝜎𝛾
2) = 𝐸 (−

𝜕2ℓ𝑌

𝜕𝛼1𝜕𝜎𝜖
2) = 0 (21) 

 
𝐸 (−

𝜕2ℓ𝑌

𝜕𝜇𝜕𝜎𝛾
2) = 𝐸 (−

𝜕2ℓ𝑌

𝜕𝜇𝜕𝜎𝜖
2) = 0 (22) 

 
𝐸 (−

𝜕2ℓ𝑌

𝜕𝜎𝛾
2𝜕𝜎𝜖

2) =
1

2
𝑡𝑟(𝑉−2𝐺𝐺𝑇) (23) 

 

Under the null hypothesis 𝜃 = 0, this score statistic 𝑆𝐶(𝜃) asymptotically follows a Chi-

squared distribution with one degree of freedom when MLE under the null is plugged in. 

This assumes at least some of the direct effects 𝛾𝑗(𝑗 = 1,2, … , 𝑞) are nonzero. When 

there are no direct effects, the variance component 𝜎𝛾
2 is on the boundary. The 
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asymptotic Chi-square distribution works well in simulations (Supplementary Fig. S1 

and S2). 

We leverage the EM algorithm to obtain MLE under the null. When applying EM 

algorithm to mixed effects model, random effects 𝛾 are treated as missing data. The 

complete data comprise the observed outcome data and random effects. The log-

likelihood for complete data (𝑌, 𝛾) is 

 𝐿𝐿(𝑌, 𝛾|𝐺; 𝜉) ≔ log[𝑝(𝑌, 𝛾|𝐺; 𝜉)] = log[𝑝(𝑌|𝛾, 𝐺; 𝜉)] + log[𝑝(𝛾|𝐺; 𝜉)] (24) 

 

= −
𝑛

2
log(2𝜋𝜎𝜖

2) −
1

2𝜎𝜖
2

(𝑌 − 𝛼1 − 𝐺𝛾)𝑇(𝑌 − 𝛼1 − 𝐺𝛾) −
𝑞

2
log(2𝜋𝜎𝛾

2)

−
1

2𝜎𝛾
2 (𝛾 − 𝜇𝛾)

𝑇
(𝛾 − 𝜇𝛾) 

(25) 

where 𝜉 = (𝛼1, 𝜇𝛾 , 𝜎𝛾
2, 𝜎𝜖

2)
𝑇
 

Derivations for E-step and M-step can be found in (McCulloch et al., 2008). 

E-step of EM algorithm is  

 𝜂̂(𝑡) = 𝐸(𝛾|𝑌) = 1𝑞𝜇𝛾
(𝑡)

+ 𝜎𝛾
2(𝑡)

𝐺𝑇𝑉(𝑡)−1
(𝑌 − 𝛼1

(𝑡)
1𝑛 − 𝐺1𝑞𝜇𝛾

(𝑡)
) (26) 

 

𝐸 ((𝛾 − 𝜇𝛾)
𝑇

(𝛾 − 𝜇𝛾)|𝑌) 

= 𝑞𝜎𝛾
2(𝑡)

+ 𝜎𝛾
4(𝑡)

{(𝑌 − 𝛼1
(𝑡)

1𝑛 − 𝐺1𝑞𝜇𝛾
(𝑡)

)
𝑇

𝑉(𝑡)−1
𝐺𝐺𝑇𝑉(𝑡)−1

(𝑌 − 𝛼1
(𝑡)

1𝑛

− 𝐺1𝑞𝜇𝛾
(𝑡)

) − 𝑡𝑟(𝐺𝑇𝑉−1𝐺)} 

(27) 

 𝐸((𝑌 − 𝛼1 − 𝐺𝛾)𝑇(𝑌 − 𝛼1 − 𝐺𝛾)|𝑌) = 𝐸(𝜖𝑇𝜖|𝑌) (28) 
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= 𝑛𝜎𝜖
2(𝑡)

+ 𝜎𝜖
4(𝑡)

{(𝑌 − 𝛼1
(𝑡)

1𝑛 − 𝐺1𝑞𝜇𝛾
(𝑡)

)
𝑇

𝑉(𝑡)−1
𝑉(𝑡)−1

(𝑌 − 𝛼1
(𝑡)

1𝑛 − 𝐺1𝑞𝜇𝛾
(𝑡)

)

− 𝑡𝑟(𝑉−1)} 

 

M-step of EM algorithm is  

 𝛼1
(𝑡+1)

= 𝐸 (
1

𝑛
𝛴𝑖=1

𝑛 [𝑌𝑖 − 𝛴𝑗=1
𝑞 𝐺𝑖𝑗𝛾𝑗]|𝑌) =

1

𝑛
𝛴𝑖=1

𝑛 [𝑌𝑖 − 𝛴𝑗=1
𝑞 𝐺𝑖𝑗𝜂̂𝑗

(𝑡)
] (29) 

 𝜇𝛾
(𝑡+1)

= 𝐸 (
1

𝑞
𝛴𝑗=1

𝑞 𝛾𝑗|𝑌) =
1

𝑞
𝛴𝑗=1

𝑞 𝜂̂𝑗
(𝑡)

 (30) 

 

𝜎𝛾
2(𝑡+1)

= 𝐸 (
1

𝑞
(𝛾 − 𝜇𝛾)

𝑇
(𝛾 − 𝜇𝛾)|𝑌) 

= 𝜎𝛾
2(𝑡)

+
1

𝑞
𝜎𝛾

4(𝑡)
{(𝑌 − 𝛼1

(𝑡)
1𝑛 − 𝐺1𝑞𝜇𝛾

(𝑡)
)

𝑇
𝑉(𝑡)−1

𝐺𝐺𝑇𝑉(𝑡)−1
(𝑌 − 𝛼1

(𝑡)
1𝑛

− 𝐺1𝑞𝜇𝛾
(𝑡)

) − 𝑡𝑟(𝐺𝑇𝑉−1𝐺)} 

(31) 

 

𝜎𝜖
2(𝑡+1)

= 𝐸 (
1
𝑛

(𝑌 − 𝛼1 − 𝐺𝛾)𝑇(𝑌 − 𝛼1 − 𝐺𝛾)|𝑌) 

= 𝜎𝜖
2(𝑡)

+
1

𝑛
𝜎𝜖

4(𝑡)
{(𝑌 − 𝛼1

(𝑡)
1𝑛 − 𝐺1𝑞𝜇𝛾

(𝑡)
)

𝑇
𝑉(𝑡)−1

𝑉(𝑡)−1
(𝑌 − 𝛼1

(𝑡)
1𝑛 − 𝐺1𝑞𝜇𝛾

(𝑡)
)

− 𝑡𝑟(𝑉−1)} 

(32) 

Convergence criterion for EM algorithm is  

 max (|𝜎𝛾
2(𝑡+1)

− 𝜎𝛾
2(𝑡)

| , |𝜎𝜖
2(𝑡+1)

− 𝜎𝜖
2(𝑡)

|) ≤ 1 × 10−6 (33) 

If convergence is not reached, iteration stops when the number of iterations exceeds a 

pre-specified large number. 

As for the starting values of EM algorithm, the intercept 𝛼1 is randomly generated from 

uniform distribution 𝑈𝑛𝑖𝑓(−1,1). And 𝜇𝛾 is also randomly generated from uniform 
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distribution 𝑈𝑛𝑖𝑓(−1,1). The variance components 𝜎𝛾
2 and 𝜎𝜖

2 are independently 

generated from uniform distribution 𝑈𝑛𝑖𝑓(0,1). 

Section 3. Robustness with Alternative Testing Strategies 

As aforementioned, the true causal SNPs were drawn from common (MAF  1%) SNPs 

and by default all common SNPs were simultaneously modeled and tested. Thus the set 

of testing SNPs include all the causal SNPs. Alternatively, we considered two other 

testing strategies: (1) eQTL SNPs only; and (2) SNPs with MAF  5% only. Under (1), 

our observations above regarding Type-I error and power remained largely the same: 

namely SMUT remained valid and more powerful than alternative methods 

(Supplementary Fig. S3 and S4). In addition, adapted Huang et al. was more powerful 

using testing strategy (1) than testing all common SNPs in the default setting in most 

scenarios. For example, with sparse causal SNPs and 𝑐𝛽 = 0.05, 𝜃 = 0.15, adapted 

Huang et al. had 25% and 96% power using the default and testing strategy (1) while 

SMUT had 36% and 97% power (Supplementary Fig. S5). 

Because SMUT and adapted Huang et al. had protected Type-I error, we evaluated only 

their performance under alternative setting (2). Using testing strategy (2) where only 

SNPs with MAF  5% were tested, both SMUT and adapted Huang et al. had inflated 

Type-I error (Supplementary Fig. S6 and S7). This might be due to the violation of 

confounding assumptions for mediation analysis (VanderWeele, 2016), because shared 

SNPs became mediator-outcome confounders when absent in models.  

Section 4. All the graphs are generated using the R package ggplot2 (Wickham, 2016) 

and RColorBrewer (Harrower and Brewer, 2003). 
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Fig. S1. Power and Type-I error under sparse causal SNPs scenario and no direct 

effects (𝜸𝒋 is zero, 𝒋 = 𝟏, 𝟐, … , 𝒒). X-axis and y-axis are the same as in Figure 2. The 

candidate SNPs tested in the mediator and outcome model are the 2,891 SNPs with 

MAF ≥ 1%.  
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Fig. S2. Power and Type-I error under dense causal SNPs scenario and no direct 

effects (𝜸𝒋 is zero, 𝒋 = 𝟏, 𝟐, … , 𝒒). X-axis and y-axis are the same as in Figure 2. The 

candidate SNPs tested in the mediator and outcome model are the 2,891 SNPs with 

MAF ≥ 1%.  
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Fig. S3. Power and Type-I error under sparse causal SNPs scenario and 

alternative setting (1) testing eQTL SNPs only. X-axis and y-axis are the same as in 

Figure 2. 
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Fig. S4. Power and Type-I error under dense causal SNPs scenario and alternative 

setting (1) testing eQTL SNPs only. X-axis and y-axis are the same as in Figure 2. 
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Fig. S5. Example of power gain when the true eQTL SNPs are known. Under this 

situation, with the knowledge on eQTL SNPs helps increase power for SMUT, adaptive 

LASSO and adaptive Huang et al.’s method.  
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Fig. S6. Power and Type-I error under sparse causal SNPs scenario and 

alternative setting (2) testing SNPs with MAF  5% only. X-axis and y-axis are the 

same as in Figure 2. 
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Fig. S7. Power and Type-I error under dense causal SNPs scenario and alternative 

setting (2) testing SNPs with MAF  5% only. X-axis and y-axis are the same as in 

Figure 2. 
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