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Abstract

Population stratification may cause an inflated type‐I error and spurious as-

sociation when assessing the association between genetic variations with an

outcome. Many genetic association studies are now using exonic variants,

which captures only 1% of the genome, however, population stratification

adjustments have not been evaluated in the context of exonic variants. We

compare the performance of two established approaches: principal compo-

nents analysis (PCA) and mixed‐effects models and assess the utility of

genome‐wide (GW) and exonic variants, by simulation and using a data set

from the Framingham Heart Study. Our results illustrate that although the PCs

and genetic relationship matrices computed by GW and exonic markers are

different, the type‐I error rate of association tests for common variants with

additive effect appear to be properly controlled in the presence of population

stratification. In addition, by considering single nucleotide variants (SNVs)

that have different levels of confounding by population stratification, we also

compare the power across multiple association approaches to account for

population stratification such as PC‐based corrections and mixed‐effects
models. We find that while these two methods achieve a similar power for

SNVs that have a low or medium level of confounding by population stratifi-

cation, mixed‐effects model can reach a higher power for SNVs highly con-

founded by population stratification.

KEYWORD S

GWAS, mixed‐effects model, PCA, population stratification

1 | INTRODUCTION

Genome‐wide association studies (GWAS) have been
proven to be a useful tool to discover single nucleotide
variants (SNVs) associated with complex traits (Bush &
Moore, 2012; Spencer, Su, Donnelly, & Marchini, 2009;
Visscher, Brown, McCarthy, & Yang, 2012; Visscher
et al., 2017). Population stratification, which is the allele
frequency difference between cases and controls due to

ancestry difference, occurs when there are multiple po-
pulation groups within a sample (Hirschhorn et al., 2004),
which has become a common study design to discover
novel genetic variations and achieve higher statistical
power. The association test results can be affected by an
inflated type‐I error caused by population stratification.
Current methods for correcting population stratification
include principal components (PCs) of the genotypes
(Patterson, Price, & Reich, 2006; Price et al., 2006; Tucker,
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Price, & Berger, 2014), genomic control factor (Devlin &
Roeder, 1999; Wang, 2009), linear mixed‐effects (LME)
and generalized linear mixed‐effects (GLME) model using
an empirical kinship matrix (Chen et al., 2016; Kang
et al., 2008; Kang et al., 2010; Lippert et al., 2011;
Loh et al., 2015; Yang, Lee, Goddard, & Visscher, 2011;
Zhang et al., 2010; Zhou & Stephens, 2012), structured
association (Pritchard, Stephens, & Donnelly, 2000), and
PC‐AiR (Conomos, Miller, & Thornton, 2015) and
PC‐Relate (Conomos, Reiner, Weir, & Thornton, 2016) on
studies with family structure and cryptic relatedness.

PC correction has been widely used in GWAS.
Population stratification can be corrected by including
genetic PCs as covariates in a linear regression model for
continuous traits or a logistic regression model for bin-
ary traits. In contrast, in the genomic control method,
an overall inflation factor is used to adjust the associa-
tion test statistic at every SNV. Some SNVs have a bigger
difference in allele frequencies across different popula-
tions, while some SNVs are not affected by population
stratification. The overall inflation factor treats all SNVs
the same and hence it may over‐adjust SNVs with small
differentiation across ancestral populations and under‐
adjust SNVs with strong differentiation. Yet another
approach, mixed‐effects models, utilize a variance
component method to model genetic relationships. The
model includes an empirically estimated genetic relat-
edness matrix (GRM), which takes advantage of the
high‐density genotype information, and estimates the
variance parameters under the null model assuming
the effect of any given variant on the phenotype is very
small. The SNV effect is modeled as a fixed‐effect and a
random effect is included to model the relatedness
among study participants. The structured association
method adjusts for population stratification by assigning
samples to subpopulation clusters and combines the
association results of each cluster. This approach is
highly sensitive to the number of subpopulation clusters
and has intensive computational cost for large data sets,
such as GWAS. Lastly, PC‐AiR provides an accurate and
robust genetic ancestry inference in the presence of both
related and unrelated individuals. A subset of unrelated
individuals that is representative of all ancestries in the
sample is first identified through a computationally ef-
ficient algorithm. Then a PCA is performed on the
genotype data from this subset of unrelated ancestry
representative individuals, and PCs for all remaining
individuals are computed based on their genetic simi-
larities. PC‐Relate provides accurate estimates of genetic
relatedness by utilizing PCs calculated from PC‐AiR to
separate genetic correlations due to the sharing of recent
ancestors from the genetic correlations due to more
distant common ancestry.

These population stratification adjustment approaches
were developed in the context of GWAS, which include
common variants across the whole genome. However, the
performance of these methods in association analyses has
not been evaluated in studies with exonic variants. Whe-
ther exonic genotypes are sufficient to appropriately model
population stratification is a question in studies without
genome‐wide (GW) genotypes, when PCs and GRM can
only be computed using exonic variants.

Some studies have compared using exonic and GW
variants under various contexts. Belkadi et al. (2016)
found a strong correlation between PCs computed using
GW and Whole Exome Sequencing (WES) variants, and
that an accurate estimation of population stratification
can be obtained using high‐quality WES variants with
minor allele frequency (MAF) > 2%. However, they did
not compare type‐I error and power in association tests
with PC adjustment. Gazal et al. (2016) evaluated the
performance of linkage analysis using GW and WES
variants and showed that they had similar performance
in excluding genomic regions with false‐positive candi-
date causal variants. Smith et al. (2011) also demon-
strated that accurate genetic linkage mapping can be
performed using WES data. Kancheva et al. (2016)
showed that WES variants can provide high specificity
and sensitivity for the detection of homozygous regions in
consanguineous families when using GW variants as re-
ference. Eu‐Ahsunthornwattana et al. (2014) compared
kinship matrices computed using different numbers of
SNVs and different software in 348 Brazilian families,
and found that the kinship coefficients computed using
∼50,000 SNVs were highly similar to those computed
using ∼545,000 SNVs.

In this paper, we focus on the PC‐based and mixed‐
effects‐model‐based population stratification adjustment
methods as genomic control and structured association
have been shown not to be effective (Holland et al., 2006;
Kang et al., 2008; Zhao et al., 2007). There are two con-
cerns with models using exome‐computed PCs and GRM:
(a) The PCs and GRM can only capture the genetic
information in exons and off‐target variants near exons,
while PCs and GRM computed using GW variants are able
to capture the genetic information contained on the whole
genome, hence they should be more accurate than exome‐
computed PCs and GRM; and (b) because the number of
variants in exons is usually smaller than that in whole
genome, exome‐computed PCs and GRM may contain less
information than GW‐computed PCs and GRM due to the
inclusion of fewer markers in the computation. The po-
tential loss of using exonic variants can lead to insufficient
adjustment for population stratification.

Our goals are to compare PCs and GRM computed
using GW and exonic variants, to examine the effect of
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the two sets of PCs and GRM on association analysis
results of common SNVs with additive effect, and to
evaluate performance of PC‐based and LME/GLME
models. We use simulations to compare GW‐ or exome‐
computed PCs and GRM in terms of genomic control
factor, type‐I error rate and power in association ana-
lyses. A real data application using data from the
Framingham Heart Study (FHS) is used to compare the
association results between height and rs2322659, an
association known to be caused by population stratifica-
tion in the LCT gene (Groop et al., 2005).

2 | METHODS

2.1 | Genotypes

We use the genotypes from the 1000 Genome Project
Phase 3 (Auton et al., 2015) data set. GW variants are
selected based on Illumina HumanHap300K BeadChip
which is designed using the International HapMap
Project (International HapMap Consortium, 2003) data
of individuals from Northern and Western Europeans
from Utah (CEU; Collins, 2007). Exonic variants are
annotated using the EPACTS Version 3.2.6 (http://
genome.sph.umich.edu/wiki/EPACTS) annotation fun-
ction based on GENCODE V7 transcripts. We first ap-
ply the following quality control (QC) filters on all
selected GW and exonic SNVs in the 1000G data set
(combining all ancestries): MAF ≥ 1%, call rate ≥ 99%,
Hardy–Weinberg equilibrium p‐value > .0001. Variants
passing these QC filters are used for evaluation of the
type‐I error rate in association tests. For PCs and GRM
computation, we then select a subset of these SNVs
based on the additional QC criterion: MAF ≥ 5% and
only one SNV of each pair of SNVs with LD r2 > .5 in a
50 SNVs window.

2.2 | PCs and GRM computation

PCs and two types of GRM, identity‐by‐state (IBS)
and Balding–Nichols (BN) kinship matrix (Eu‐
Ahsunthornwattana et al., 2014) are computed using
three sets of variants: (a) GW variants; (b) exonic var-
iants; and (c) a randomly selected subset of GW variants
that has the same number of variants as the exonic set.
The inclusion of the third set of variants above is to
eliminate the difference in the number of variants used in
PCs and GRM calculation. IBS kinship matrix measures
the proportion of alleles IBS between each pair of parti-
cipants. In BN kinship matrix, the genetic relationship
between individuals i and j is estimated through
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number of variants, xk,i and xk,j are the genotypes of in-
dividuals i and j and p̂k is the MAF of the kth variant.
This is equivalent to multiplying by ½ the GRM com-
puted in GCTA (Yang et al., 2011). All PCs and GRM are
computed using EIGENSTRAT (Price et al., 2006) and
EMMAX (Kang et al., 2010), respectively.

2.3 | Simulation of study participants

We select founders from the 1000G Phase 3 data set to
generate simulated data from two ethnic groups: European
ancestry (EA) and African ancestry (AA). EA founders are
from five cohorts: Finnish in Finland (FIN), Utah Re-
sidents with Northern and Western European Ancestry
(CEU), British in England and Scotland (GBR), Iberian
Population in Spain (IBS), and Toscani in Italy (TSI). AA
founders are from seven cohorts: Americans of African
Ancestry in Southwest USA (ASW), African Caribbean in
Barbados (ACB), Luhya in Webuye, Kenya (LWK), Esan in
Nigeria (ESN), Gambian in Western Divisions in the
Gambia (GWD), Mende in Sierra Leone (MSL), and Yor-
uba in Ibadan, Nigeria (YRI). We then separately compute
PCs on two sets of study participants: (a) using both EA
and AA founders (EA+AA); and 2) restricting our ana-
lysis to EA founders only (EA only) to generate a data set
with more subtle ancestry differences between sub-
populations. Based on the clustering pattern (Figure 1), we
divide the combined EA+AA 1000G founders into six
groups (Group 1 = FIN; Group 2 =CEU+GBR; Group
3 = IBS+ TSI; Group 4 =ASW+ACB; Group 5 = LWK;
and Group 6 =ESN+GWD+MSL+YRI), while we do
not combine cohorts in the analysis restricted to EA only,
and simply refer to FIN, CEU, GBR, IBS, and TSI as
groups 1–5, respectively. Next, within each group, we
generate genotypes for 333 simulated individuals for the
combined EA+AA analysis for each group and 400 in-
dividuals in each group for EA only analysis while main-
taining the same linkage disequilibrium (LD) pattern as
observed in each population between variants using the
software Hapgen2 (Su, Marchini, & Donnelly, 2011).
While one chromosome is simulated at a time, the soft-
ware utilizes the Li‐Stephens model (Li & Stephens, 2003)
which relates the distribution of sampled haplotypes to the
recombination rate. Through a Hidden Markov Model,
each simulated haplotype is generated as an imperfect
mosaic of the known haplotypes in the 1000 Genome and
haplotypes that have already been simulated. To recon-
stitute the simulated haplotypes using mosaic fragments,
the probability of change in the mosaic pattern is com-
puted using the recombination rate estimates (Spencer
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et al., 2009). In total, 1,998 (six groups of 333) and 2,000
(five groups of 400) individuals are generated for the
EA+AA, and EA only analyses, respectively.

2.4 | Comparison of PCs and GRM
generated using GW and exonic variants

To compare PCs, we first consider a plane developed by
the first two PCs because in the analysis with EA and
AA samples, the top two PCs explain 7.52% and 0.31% of
the variance, with corresponding eigenvalues equal to
84.37 and 3.50. Although these eigenvalues drop to 4
and 1.8 when considering EA samples only and they
explain 0.8% and 0.35% of the total variance, the top two
PCs still explain far more variance than other PCs. A
centroid is defined by the mean vector of the first two
PCs for each subgroup. Then the Euclidean distance
from the group‐specific centroid to each simulated
sample is computed and the Wilcoxon signed‐rank test
is performed to compare the distance difference
computed using GW variants, exonic variants, and the
subset of GW variants which has the same number of
variants as the exonic set. To compare GRMs, we com-
pute the Pearson correlation between the kinship coef-
ficients contained in the GRM.

2.5 | Comparison of genomic control
factor and Type‐I error rate

To examine genomic control factor, λGC, defined as the
ratio of the median observed test statistic to the ex-
pected test statistic under the null hypothesis, and
Type‐I error rate, the continuous phenotype values are
assigned based on a prespecified group‐specific mean
level. A random error term which follows a normal
distribution is then added to the assigned mean levels.
In the test of a binary outcome, a total of 999 or 1,000
randomly selected cases are generated for EA and AA,
and EA only data, respectively. The prevalence of the
simulated disease are set to 2%, 5%, 8%, 10%, 15%, and
18% for the six EA and AA groups, while they are 2%,
5%, 8%, 10%, and 15% for the five EA groups. The
continuous and binary phenotypes are not associated
with any simulated SNVs. We perform association
analyses on all GW and exonic variants with MAF ≥ 1%
regardless of whether or not they are included in the
PC calculation to mimic what is typically done in
GWAS. Variants with MAF < 1% are not included due
to low statistical power to detect an association with
low‐frequency SNVs as well as inflated significance for
binary traits with unbalanced designs (Ma, Blackwell,
Boehnke, Scott, & GoT2D investigators, 2013). PCs and

FIGURE 1 Population structure in 1000G Phase 3 data. The grouping in EA+AA samples is: Group 1 = FIN; Group
2 = CEU+GBR; Group 3 = IBS + TSI; Group 4 =ASW+ACB; group 5 = LWK; Group 6 = ESN+GWD+MSL+ YRI. The grouping
in EA only samples is: Group 1 = FIN; Group 2 = CEU; Group 3 =GBR; Group 4 = IBS; Group 5 = TSI. AA, African ancestry; ACB,
African Caribbean in Barbados; ASW, Americans of African Ancestry in Southwest USA; CEU, Utah Residents with Northern and
Western European Ancestry; EA, European ancestry; ESN, Esan in Nigeria; FIN, Finnish in Finland; GBR, British in England and
Scotland; GWD, Gambian in Western Divisions in the Gambia; IBS, Iberian Population in Spain; LWK, Luhya in Webuye, Kenya;
MSL, Mende in Sierra Leone; TSI, Toscani in Italy; YRI, Yoruba in Ibadan, Nigeria
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GRM computed using GW and exonic SNVs are used
for population stratification adjustment.

Four linear/logistic regression models are performed:
(a) Y∼ SNV, an unadjusted model; (b) Y∼ SNV+Group,
a model adjusted for the true group assignment, which is
used as the gold standard; (c) Y∼ SNV+ PCsGW, a model
adjusted for first 10 PCs (Price et al., 2006; Reed
et al., 2015) computed from GW variants; and (d)
Y∼ SNV+ PCsExome, a model adjusted for the first 10 PCs
computed from exonic variants. Besides these four fixed‐
effect models, four LME/GLME models, Y ~ SNV+
KinGW/Exome, IBS/BN, with IBS/BN kinship matrix com-
puted using GW/exonic variants are also performed. In
addition, we also include PCs in the GLME models,
Y ~ SNV+ PCsGW/Exome + KinGW/Exome, IBS/BN, for binary
outcome to evaluate the performance of using both PCs
and GRM to adjust for population stratification. The as-
sociation analyses are repeated 500 times and performed
using PLINK (Purcell et al., 2007) for PC‐adjusted mod-
els, EMMAX and the R package GENESIS (Conomos
et al., 2019) for mixed‐effects models of continuous and
binary traits, respectively.

2.6 | Power evaluation

To evaluate power, we select two sets of 30 SNVs
(Table A1 in Appendix) to be associated with the phe-
notype for EA+AA and EA only analysis, respectively.
The SNVs are selected based on their level of confound-
ing from population stratification, as indicated by their
PC weights for PC1 (EA+AA), or PC1 and PC2 (EA
only). We consider PC1 alone in the analysis with EA+
AA samples because PC1 explains far more variance than
the rest of the PCs, as described above, whereas both PC1
and PC2 are considered as the population stratification is
more subtle in the analysis restricted to EA samples only.
To select the 30 SNVs, we first rank the absolute value of
the weight of the first PC (EA+AA) or the weights of the
first two PCs (EA only) in GW and exonic sets separately
for each SNV present in both GW and exonic set. Then
the ranks are added up and the top five SNVs, the bottom
five SNVs, and five SNVs at each of the four percentiles:
25th, 50th, 75th, and 90th of the added rank are selected
to have an effect on the simulated phenotypes. We refer
the top five SNVs (higher rank and hence lower PC
weights) as SNVs at 0th percentile of the added rank to
indicate that they are not confounded by population
stratification, and refer the bottom five SNVs (lower rank
and hence higher PC weights) as SNVs at 100th percen-
tile of the added rank to indicate that they are highly
confounded.

By setting the proportion of the phenotypic variance
explained by a SNV to R2 = 0.5%, the effect size β is set to
be equal in all studies and it is computed using

β= R

p p2 (1 − )

2

, where p is the MAF obtained across all

groups. A normally distributed random error term is
added to the linear combination of β's and genotypes,
with a group‐specific mean and variance equal to 1. The
associated binary trait is then generated by assigning
samples whose continuous trait value is above the 90th
percentile of all samples as cases to achieve a 10% po-
pulation prevalence. We evaluate the same analysis
models used for the Type‐I error rate evaluation at α level
of 1 × 10−3.

2.7 | Comparison using FHS GW and
exome chip data

In 1948, FHS enrolled its first participants, the Original
Cohort with 5,209 individuals, from the town of
Framingham, MA. These participants were aged between
30 and 62 at baseline and underwent a detailed physical
examination, lifestyle interviews, and laboratory tests
every 2 years to discover the risk factors of cardiovascular
disease. The Offspring cohort comprised of 5,124 parti-
cipants was recruited in 1971. These participants consist
of the children and spouses of the children of the Original
Cohort participants and attended physical exams ap-
proximately every 4 years. The third generation (Gen3)
Cohort, which consists of the grandchildren of the Ori-
ginal Cohort and children of the Offspring cohort, was
enrolled in 2002.

We perform a comparison using FHS GW and exome
chip data with height as the outcome. Height was collected
at Exam 1 for all individuals in the three cohorts.
FHS participants in the SNP Health Association
Resource (SHARe) were genotyped using the Affymetrix
500 K+ 50K MIPS chip. As part of the Cohorts for Heart
and Aging Research in Genomic Epidemiology
Consortium, exome chip (EC) variants were genotyped
with the Illumina HumanExome BeadChip (Grove
et al., 2013). The same filtering criteria are used to select
variants for PC and GRM computation: MAF≥ 5%, call
rate ≥ 99%, Hardy–Weinberg equilibrium p‐value > .0001
and only one SNV of each pair of SNVs with LD r2 > .5 in a
50 SNVs window. Unrelated individuals are selected based
on known family structures to compute the PC weights of
each SNV, then PCs are projected on related participants
(Price, Zaitlen, Patterson, & Reich, 2010). We test the as-
sociation between 299,610 SNVs with MAF≥ 5% in the
SHARe genome‐wide variants set and the residual of
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height computed with adjustment for sex, age, age2, and a
cohort indicator to account for the difference in mean
phenotype across cohorts. We also report the result for
SNV rs2322659, which is known for its spurious associa-
tion with height due to population stratification. Two
linear regression models, Y∼ SNV+ PCsGW and Y∼
SNV+ PCsEC, and four mixed‐effects models using GW‐
computed or EC‐computed IBS and BN kinship matrix,
respectively, are performed with adjustment for the first 10
PCs. In addition, we also apply PC‐AiR, a robust popula-
tion stratification inference in the presence of known or
cryptic relatedness, and PC‐Relate, measures of recent
genetic relatedness in the presence of unspecified struc-
ture, to the GW and EC data sets. We use the KING‐robust
estimator in the PC‐AiR calculation and then provide the
PC‐AiR results to the PC‐Relate algorithm to get a GRM
adjusted for population stratification. We include two
mixed‐effects models using GW‐ or EC‐computed PC‐AiR
and PC‐Relate GRM. We then compare the effect size es-
timate and p‐value for each model.

3 | RESULTS

We select 498 unrelated EA individuals from five popu-
lations and 657 unrelated AA individuals from seven
populations in 1000G Phase 3 data set (Table 1) as the
reference sample in our simulations. We generate a total
sample size of ~2,000 subjects in each simulation re-
plicate. A total of 439,601 SNVs with MAF≥ 1% for
EA+AA, and 516,250 for EA only, pass the QC filters for
Type‐I error evaluation. Among 439,601 SNVs in the
EA+AA analysis, 180,472 SNVs in the GW set and
66,166 SNVs in the exonic set pass the additional filtering
criteria for including in the computation of PCs and GRM
calculation. A total of 172,330 SNVs in the GW set and
57,584 SNVs in the WES set are included to compute PCs
and GRM in the EA only analysis.

We make a pairwise comparison on distance difference
computed using GW variants, exonic variants (referred to
as Exome below) and a randomly selected subset of GW
variants which has the same number of variants as the
exonic set (referred to as Random below) using the Wil-
coxon signed‐rank test on the Euclidean distance from the
group‐specific centroid for each simulation iteration.
Among 500 iterations, p‐values of the Wilcoxon signed‐
rank test when comparing PCs computed from GW versus
exonic variants, and GW versus Random are highly sig-
nificant: The largest p‐values (least significant) are
2.9 × 10−12 and 1.6 × 10−17 in the EA+AA data set, and
2.1 × 10−4 and 0.01 in the EA only data set, for the dif-
ference between GW and Exome, and GW and Random,
respectively, which indicates that GW‐computed PCs are

significantly different from both exome‐computed PCs and
PCs computed using Random. However, when restricting
the GW set to have the same number of SNVs as the
exonic set (comparing Random vs. Exome), the p‐values
are much less significant: only 100 iterations for EA+AA
analysis and 26 for EA only analysis have p‐value < .05,
and 35 iterations for EA+AA analysis and five for EA
only analysis have p‐value < .01. These results show that
the differences between GW‐computed and exome‐
computed PCs are mainly due to the number of variants
included in the calculation.

In the comparison of kinship coefficients (Figure 2),
Pearson correlations demonstrate that kinship measures
computed using GW and exonic variants are highly cor-
related when there are only EA samples, as shown in the
right panel. In the presence of EA and AA samples, the
kinship coefficients form three clusters corresponding to
EA‐EA, EA‐AA, and AA‐AA pairs. The correlation be-
tween Exome and GW, and Exome and the randomly
selected set of GW markers is ~0.72 in the IBS kinship
matrix, while the rest of the correlation coefficients are
above 0.9. When the analysis is restricted to EA samples
only, the two clusters are formed based on whether or not
the kinship coefficient represents a pair of individuals
from the same group. In the right panel, the within‐group
refers to kinship coefficients computed using individuals
from the same group (Fin‐Fin, CEU‐CEU, etc.) and the
between‐group refers to kinship coefficients computed
using individuals from different groups (Fin‐CEU,
Fin‐GBR etc.).

In both the EA+AA and EA only data set, the
genomic control factor λGC of the unadjusted model

TABLE 1 1000 Genome individuals used for genotype
simulation

EA population N AA population N

FIN 99 ASW 61

CEU 95 ACB 96

GBR 90 LWK 97

IBS 107 ESN 99

TSI 107 GWD 113

Total 498 MSL 84

YRI 107

Total 657

Abbreviations: AA, African ancestry; ACB, African Caribbean in Barbados;
ASW, Americans of African Ancestry in Southwest USA; CEU, Utah
Residents with Northern and Western European Ancestry; EA, European
ancestry; ESN, Esan in Nigeria; FIN, Finnish in Finland; GBR, British in
England and Scotland; GWD, Gambian in Western Divisions in the Gambia;
IBS, Iberian Population in Spain; MSL, Mende in Sierra Leone; LWK, Luhya
in Webuye, Kenya; TSI, Toscani in Italy; YRI, Yoruba in Ibadan, Nigeria.
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Y∼ SNV indicates that there is population stratification
present in the data, while in PC‐adjusted models and
LME/GLME models, λGC falls within an acceptable range
except in GLME models using IBS kinship matrix alone:
Y ~ SNV+KinGW,IBS and Y ~ SNV+KinExome,IBS with
binary outcome (Table 2). This indicates that PCs and BN

GRM computed using either GW or exonic variants can
correct the population stratification in both the binary
and continuous data, whereas there is a slightly inflated
λGC when using IBS GRM alone on a binary trait.

To examine Type‐I error, we use 439,601 SNVs
(EA+AA) and 516,250 SNVs (EA only) in each iteration

FIGURE 2 Pair‐wise comparison of kinship coefficients computed using genome‐wide and exonic SNVs. Left: kinship
coefficients in the combined EA and AA samples. Right: kinship coefficients in EA samples only. Plots below the diagonal are the
scatterplots of the kinship coefficients. Plots above the diagonal are the Pearson correlations between them. GW IBS and GW BN
represent the IBS and BN kinship matrix with GW markers, Exome IBS and Exome BN are the IBS and BN kinship matrix with
exonic markers, Random IBS and Random BN indicate the IBS and BN kinship matrix computed using a randomly selected subset of
GW markers that has the same number of markers as the exonic set. AA, African ancestry; BN, Balding–Nichols; EA, European
ancestry; GW, genome‐wide; IBS, identity‐by‐state; SNVs, single nucleotide variants

TABLE 2 Simulation result of
median λGC

Model

Binary Continuous

EA+AA EA only EA+AA EA only

Y ~ SNV 43.98 6.117 16.15 2.783

Y ~ SNV+Group 1.003 1.003 1.000 0.999

Y ~ SNV+ PCsGW 1.006 1.007 0.999 0.999

Y ~ SNV+ PCsExome 1.007 1.007 1.000 0.999

Y ~ SNV+KinGW, IBS 1.087 1.105 1.009 1.018

Y ~ SNV+KinExome, IBS 1.063 1.087 1.003 1.005

Y ~ SNV+KinGW, BN 1.012 1.010 1.004 1.004

Y ~ SNV+KinExome, BN 1.000 1.007 1.008 1.013

Y ~ SNV+ PCsGW+KinGW, IBS 1.004 1.001 – –

Y ~ SNV+ PCsExome + KinExome, IBS 1.003 1.001 – –

Y ~ SNV+ PCsGW+KinGW, BN 1.001 1.001 – –

Y ~ SNV+ PCsExome + KinExome, BN 1.002 1.000 – –

Abbreviations: AA, African ancestry; BN, Balding–Nichols; EA, European ancestry; GC, genomic control;
GW, genome‐wide; IBS, identity‐by‐state; PCs, principal components; SNVs, single nucleotide variants.
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and repeat 500 times for a total of 219,800,500 (EA +AA)
and 258,125,000 (EA only) unassociated SNVs. Type‐I
error rate is computed under four different significance
levels: 0.05, 1 × 10−3, 1 × 10−4, and 1 × 10−6 (Figures 3
and 4). For the binary outcome, there is a deflation in
Type‐I error rate in all models except the unadjusted
model and GLME models using the IBS kinship matrix
alone. However, the rest of the models have similar Type‐
I error rate as the gold standard model, which shows that
they can also correctly control the Type‐I error. For the
continuous outcome, the PC‐adjusted models correctly
control Type‐I error. In LME models, GRM computed
using exonic markers has higher Type‐I error rate than
GRM computed using GW markers. While the relative
Type‐I error rates of both the GW‐ and exome‐computed
GRMs fall in an acceptable range at significance level
0.05, 1 × 10−3, and 1 × 10−4, there is a small inflation in
exome‐computed IBS GRM when the threshold is
1 × 10−6. The extent of inflation in the EA+AA analysis
is less than that in the EA only analysis, which indicates
that the IBS GRM may not be sufficient to correct Type‐I
error when the population stratification is more subtle. In
either the binary or the continuous outcome, models
including PCs computed using GW or exonic variants do
not show different Type‐I error rate.

Power is evaluated using 30 SNVs that have different
levels of confounding by population stratification and are

associated with the simulated continuous or binary
phenotypes (Figures 5 and 6). In GLME models for bin-
ary outcome, we focus on using the BN kinship matrix
due to the inflated Type‐I error rate found in models with
the IBS kinship matrix. For the same reason, we do not
include the unadjusted model in our power evaluation.
We do not include the GLME models with PC adjustment
in Figure 5 because the results are very similar to results
from models using PC adjustment alone (Figure A1 in
Appendix). We first compare power using GW‐computed
PCs/GRM versus exome‐computed PCs/GRM. The
empirical power evaluations are very similar using
GW‐computed PCs/GRM and exome‐computed PCs/
GRM. Then we evaluate the performance of the
PC‐adjusted and LME/GLME models when testing SNVs
that have different levels of confounding by population
stratification. In PC‐adjusted models (binary or quanti-
tative outcomes) and GLME models with PC adjustment
(binary outcome, Figure A1 in Appendix), power is
higher to detect low and medium weight SNVs (0th, 25th,
50th, and 75th percentile of PC weights, not or medium
confounded by population stratification) than high
weight SNVs (90th and 100th percentile of PC weights,
highly confounded by population stratification) in gen-
eral. This is expected because high weight SNVs con-
tribute more to PCs than low and medium weight SNVs
and hence the PCs can explain some of the phenotypic

FIGURE 3 Relative Type‐I error rate in simulation studies with binary outcome. A ratio of observed Type‐I error rate to expected
Type‐I error rate for various p‐value thresholds are presented. A ratio > 1 shows inflation and a ratio < 1 shows deflation. The
unadjusted model Y ~ SNV has relative Type‐I error rate 16, 645, 5724, and 449000 in the EA+AA analysis and 9, 179, 1101, and
42400 in the EA only analysis at α= 0.05, 1 × 10−3, 1 × 10−4, and 1 × 10−6, respectively. AA, African ancestry; BN, Balding–Nichols;
EA, European ancestry; GW, genome‐wide; IBS, identity‐by‐state; PCs, principal components; SNVs, single nucleotide variants
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variance when testing high weight SNVs, which in turn
decreases power in association tests. In mixed‐effects
models, high weight SNVs achieve similar or higher
power than low and medium weight SNVs. This pattern
is consistent across simulations with binary and

continuous outcomes, and of EA and AA samples, and
EA samples only. Finally, we directly compare the per-
formance of PC‐based versus LME/GLME models. When
considering high weight SNVs which are at 90th and
100th percentile of PC weights, LME and GLME models

FIGURE 4 Relative Type‐I error rate in simulation studies with continuous outcome. A ratio of observed Type‐I error rate to
expected Type‐I error rate for various p‐value thresholds are presented. A ratio > 1 shows inflation and a ratio < 1 shows deflation.
The unadjusted model Y ~ SNV has relative Type‐I error rate 13, 383, 2840, and 147000 in the EA+AA analysis and 5, 48, 190, and
3026 in the EA only analysis at α= 0.05, 1 × 10−3, 1 × 10−4, and 1 × 10−6, respectively. AA, African ancestry; BN, Balding–Nichols;
EA, European ancestry; GW, genome‐wide; IBS, identity‐by‐state; PCs, principal components; SNVs, single nucleotide variants

FIGURE 5 Power result from simulations with binary outcome when α= 1 × 10−3. AA, African ancestry; BN, Balding–Nichols;
EA, European ancestry; GW, genome‐wide; IBS, identity‐by‐state; PCs, principal components; SNVs, single nucleotide variants
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using GRM alone outperform PC‐based models in both
the analysis with EA and AA individuals and the analysis
restricted to EA individuals. For low and medium weight
SNVs that are at 0th, 25th, 50th, and 75th percentile of PC
weights, PC‐based and LME models have similar power
in general for both binary and continuous phenotypes. In
addition, GLME models using both GRM and PC ad-
justment have similar power to the PC‐based models for
binary outcome.

In the application to FHS data, a subset of 122,233
GW SNVs and 18,107 exome chip SNVs pass the filtering
criteria. A total of 2,464 unrelated individuals are selected
to compute PC weights based on the known pedigree
structures. The association analyses include 7,269 in-
dividuals of European ancestry. The genomic control
factors are well‐controlled except in the unadjusted
model (Table 3). p‐values for association between the
LCT SNV rs2322659 and height in the unadjusted model

FIGURE 6 Power result from simulations with quantitative outcome when α= 1 × 10−3. AA, African ancestry; BN,
Balding–Nichols; EA, European ancestry; GW, genome‐wide; IBS, identity‐by‐state; PCs, principal components; SNVs, single
nucleotide variants

TABLE 3 Association analysis result in FHS real data example

Model β SE p‐value λGC

Adjusted height ~ SNV −.1343 0.017 1.6×10−15 2.79

Adjusted height ~ SNV+KinPedigree .0893 0.042 .03 1.053

Adjusted height ~ SNV+KinPedigree + PCsGW .0031 0.046 .95 1.004

Adjusted height ~ SNV+KinPedigree + PCsEC −.0019 0.046 .97 1.004

Adjusted height ~ SNV+KinGW,IBS .0220 0.020 .27 1.039

Adjusted height ~ SNV+KinEC,IBS .0248 0.019 .19 1.045

Adjusted height ~ SNV+KinGW,BN .0190 0.020 .34 1.020

Adjusted height ~ SNV+KinEC,BN .0186 0.019 .33 1.045

Adjusted height ~ SNV+ PC‐AiRGW+KinPC‐Relate −.0108 0.020 .60 1.009

Adjusted height ~ SNV+ PC‐AiREC +KinPC‐Relate −0.0061 0.019 .75 1.013

Abbreviations: EC, exome chip; GC, genomic control; GW, genome‐wide; FHS, Framingham Heart Study; IBS, identity‐by‐state; PCs, principal components; SE,
standard error; SNV, single nucleotide variant.
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and LME model with a kinship matrix computed using
the known family structure are 1.6 × 10−15 and 0.03, re-
spectively, which indicates SNV rs2322659 is associated
with height when not adjusting for population structure.
However, this association is no longer statistically sig-
nificant in PC‐adjusted models, LME models using an
empirical kinship matrix, and LME models using PCs
and GRM computed by PC‐AiR and PC‐Relate (Table 3).
This confirms that the spurious association in the un-
adjusted model is due to population stratification. Kin-
ship matrix based on known pedigree structures is not
sufficient to capture population stratification, whereas
empirical kinship matrices based on genotypes are able to
correct for both the family structure and population
stratification. p‐values of the PC‐adjusted models and
LME models using an empirical kinship matrix are all
above 0.05, which shows that the adjustment using
exome chip variants can also alleviate the spurious as-
sociation due to population stratification in practice.

4 | DISCUSSION AND
CONCLUSION

We compare PCs and GRM computed using GW and
exonic SNVs, and evaluate model performance of PC‐
based and mixed‐effects‐model‐based methods in terms
of Type‐I error rate and power in association tests of
common variants with additive effect. Intuitively, in
studies with exonic data, adjustment for potential popu-
lation stratification may not be achieved because exonic
SNVs only contain ancestry information within the
exome. Exome‐computed PCs and GRM may not be able
to capture all information available in whole genome
data. In addition, the smaller number of exonic variants
may lead to insufficient adjustment of population strati-
fication because the best ancestry estimates are usually
obtained using a very large number of random markers
(Price et al., 2010). However, our simulation and real data
example showed that exonic markers can achieve a si-
milar performance as GW markers for population strati-
fication adjustment.

Through the comparison between PCs computed
from GW and exonic markers using the Wilcoxon signed‐
rank test, we found that the significant difference was
due to the difference in the number of GW and exonic
SNVs included in PCA. When we used the same number
of GW and exonic variants to compute PCs, the difference
diminished. Comparison among kinship demonstrated
that the BN GRM showed consistent high correlation
(∼0.99) between GW and exonic markers, while GW‐ and
exome‐computed IBS GRMs were less correlated (∼0.72).
This suggests that the exome‐computed IBS GRM may

not perform as well as the GW‐computed IBS GRM in
association testing, which was verified in our Type‐I error
simulations.

Genomic control factor is often used to examine the
inflation at the median of the null distribution, while
Type‐I error rate is used to examine the tail of the null
distribution. We compared both quantities through si-
mulation and drew different conclusions about the an-
cestry adjustment using exonic variants. The genomic
control factor showed no evidence of inflation in models
using either GW‐ or exome‐computed PCs or GRM (ex-
cept IBS GRM in binary trait). However, a slightly in-
flated Type‐I error rate was found in LME models
(continuous trait) with exome‐computed IBS GRM at the
α= 1 × 10−6 significance level in the EA only analysis. In
contrast to the exome‐computed IBS GRM, the exome‐
computed BN GRM and the GW‐computed IBS/BN GRM
showed no inflation in the Type‐I error rate and had
similar performance as the PC‐adjusted models in terms
of λGC and Type‐I error. These results reflect the mod-
erate correlation ∼0.72 between GW‐ and exome‐
computed IBS kinship coefficients. Due to the inflated
λGC and Type‐I error rate in models with IBS GRM, we
recommend the use of BN GRM in LME/GLME models.

Our power evaluation was conducted using 30 SNVs
that have different levels of confounding by population
stratification. The power of using exome‐computed PCs/
GRM was very close to GW‐computed PCs/GRM, which
indicates that it is appropriate to use exonic data to detect
SNVs with true effect. We acknowledge that our as-
sumption of R2 = 0.5% is large. This assumption was
made due to computational constraints which necessi-
tated a modest sample size for simulations. However, we
could achieve the same power with a lower R2 but larger
sample size.

PC‐adjusted models had higher power for SNVs not
confounded by population stratification and lower power
for SNVs highly confounded by population stratification.
High weight SNVs contributed more to PCs than low and
medium weight SNVs and hence PCs can explain part of
the phenotypic variance when testing high weight SNVs,
which in turn decreases the power in association ana-
lyses. For both continuous and binary outcomes, mixed‐
effects models had similar power as PC‐based models in
tests of low and medium weight SNVs, and higher power
when testing high weight SNVs. Hence, they are more
appropriate in association analyses on high weight SNVs
due to their better performance.

Although using GW variants to compute PCs should
be the preferred approach because this approach captures
variation over the whole genome, exome‐computed PCs
are sufficient to control inflated Type‐I error due to po-
pulation stratification and provide similar power to
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approaches adjusting for GW‐computed PCs. LME/
GLME models should be preferred over PC‐adjusted
models if associated SNVs are highly confounded with
population stratification, such as SNVs in the HLA re-
gions, which are associated with many autoimmune
traits but also show signs of population stratification.
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APPENDIX
See Figure A1 and Table A1

FIGURE A1 Power result of GLME models with PC adjustments from simulations with binary outcome when α= 1 × 10−3. AA,
African ancestry; BN, Balding–Nichols; EA, European ancestry; GLME, generalized linear mixed‐effects; GW, genome‐wide; IBS,
identity‐by‐state; PCs, principal components; SNVs, single nucleotide variants
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TABLE A1 List of SNVs used in
simulation studies of power

EA+AA EA only

PC weight
percentile RS ID CHR:POS:REF:ALT RS ID CHR:POS:REF:ALT

0th rs11084445 19:56823708:C:A rs1047406 8:22570935:T:C

rs6480463 10:72517837:C:T rs2276232 21:43291997:C:A

rs1130169 4:15850685:C:T rs3745009 18:43262359:G:A

rs3019086 8:101393896:A:G rs161557 5:143200053:C:T

rs3814018 1:95086778:C:T rs3746619 20:54823805:C:A

25th rs1041316 14:57099859:G:A rs1061409 3:145917761:T:C

rs10815567 9:733049:G:A rs12442757 15:65689267:T:C

rs4531246 1:2362020:G:T rs2072409 7:31746837:C:T

rs3814055 3:119500035:C:T rs12460981 19:10628548:A:G

rs6574791 14: 20731130:C:T rs677595 18:65541451:G:A

50th rs7909074 10:45395839:G:A rs2273660 2:32961858:A:G

rs8239 12:118502467:A:G rs11151964 18:72201918:G:A

rs409782 21:15596772:T:G rs2240795 5:149589647:A:G

rs1805034 18:60027241:C:T rs505187 19:56588609:G:A

rs2279651 5:35039437:A:G rs12051 5:35039437:A:G

75th rs6573560 14:65031534:C:T rs4745571 9:79318367:T:C

rs3826537 17:60769803:A:G rs1581688 7:112723093:T:C

rs3742764 14:76330181:G:A rs10505093 8:107617360:A:G

rs464333 21:41099821:G:A rs2243193 1:207016225:A:G

rs2452524 15:50226313:G:T rs2279303 8:49536412:G:T

90th rs1052690 9:86258685:A:C rs13874 3:66419956:C:T

rs1407977 9:15188106:T:C rs3750306 8:139164192:G:A

rs9911122 17:74208424:G:A rs2074412 17:35839066:C:T

rs289723 16:57080528:C:A rs4129081 2:191307408:G:T

rs2239923 17:43176804:C:T rs1133099 16:2015121:C:T

100th rs3820416 1:170707675:T:C rs3783501 19:2477316:G:A

rs1567047 4:126372742:G:A rs3741190 11:66816507:T:C

rs11155297 6:143825104:G:T rs9559516 13: 109859945:T:C

rs10933164 2:227860671:G:A rs2071593 6:31512799:G:A

rs3741194 11:66626234:T:C rs764231 15:34943414:G:A

Note: Positions are reported on genome build hg19.
Abbreviations: AA, African ancestry; EA European ancestry; SNVs, single nucleotide variants.
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