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Abstract

The identification of reproducible signals from the results of replicate high-throughput 

experiments is an important part of modern biological research. Often little is known about the 

dependence structure and the marginal distribution of the data, motivating the development of a 

nonparametric approach to assess reproducibility. The procedure, which we call the maximum 

rank reproducibility (MaRR) procedure, uses a maximum rank statistic to parse reproducible 

signals from noise without making assumptions about the distribution of reproducible signals. 

Because it uses the rank scale this procedure can be easily applied to a variety of data types. One 

application is to assess the reproducibility of RNA-seq technology using data produced by the 

sequencing quality control (SEQC) consortium, which coordinated a multi-laboratory effort to 

assess reproducibility across three RNA-seq platforms. Our results on simulations and SEQC data 

show that the MaRR procedure effectively controls false discovery rates, has desirable power 

properties, and compares well to existing methods. Supplementary materials for this article are 

available online.
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1. Introduction

The use of high-throughput technologies is now an essential part of modern biological 

research. For example, these technologies have been used to identify protein binding sites, 

pharmacological compounds that prolong cell life, and differentially expressed genes. 

Candidates selected from high-throughput experiments are often the primary focus for 
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follow-up studies. A well-known difficulty met by researchers is the variability of results 

even among experiments that are technical or biological replicates. For this reason, statistical 

methods for assessing agreement between experiments has been of recent research interest to 

statisticians (Boulesteix and Slawski 2009; Zhang et al. 2009; Li et al. 2011; Zhang et al. 

2014). Genes or binding sites that show consistency across replicate experiments are often 

called reproducible, and those that do not are termed irreproducible. We use the term gene to 

refer to candidates in the rest of the text.

Spearman’s pairwise rank correlation can be used to assess reproducibility of gene rank lists. 

However, its properties are dependent in some part upon how stringent the requirements are 

for inclusion of genes in the calculation. More stringent requirements produce higher values 

of rank correlation than more lenient requirements, even for the same experiments. Further, 

Spearman’s rank correlation does not provide for error control. An alternative approach was 

proposed by Shabtai, Glaever, and Nislow (2012), which avoids parametric assumptions by 

discretely grouping genetic signals with similar correlation structure. The definition of these 

groups, however, is not straightforward and may be difficult in practice. A comprehensive 

approach to assessing and describing reproducibility, including error control, was proposed 

by Li et al. (2011). This approach uses a copula mixture model on ranked data to estimate 

effect sizes, correlation, variance, proportion of reproducible signals, and irreproducible 

discovery rates (idr) for all genes considered.

In this article, we introduce a non-parametric procedure to assess the reproducibility of gene 

rank lists. In contrast to the model-based method, this procedure does not make parametric 

assumptions on the underlying dependence structures or distributions of reproducible genes. 

Based on a maximum rank statistic, our procedure identifies where the change from 

reproducible to irreproducible signals begins by minimizing the mean squared error between 

observed and theoretical survival functions. The marginal false discovery rates for each gene 

are then calculated based on the distribution of irreproducible maximum rank statistics. The 

procedure requires no tuning parameters and has desirable properties in terms of 

discriminative power, decision boundaries, and error control.

This article proceeds as follows. Section 2 motivates the procedure by introducing data from 

the Sequencing Quality Control (SEQC) project, a coordinated effort to evaluate 

reproducibility of RNA-seq experiments. Section 3 introduces the data format and defines 

the maximum rank statistic. In Section 3.1, estimators are derived in an ideal setting and 

shown to be asymptotically consistent. More realistic settings and estimation of false 

discovery rates are described in Section 3.2, as is a summary of the procedure. The finite-

sample properties of the proposed procedures are evaluated using simulation studies in 

Section 4. Section 5 describes analyses on published datasets. Finally, we conclude with 

some discussion in Section 6.

2. Motivation: The SEQC Project

The SEQC project was coordinated by the US Food and Drug Administration to assess the 

“accuracy, reproducibility, and information content” of RNA-seq data (SEQC/MAQC-III 

Consortium 2014). The project coordinated sequencing of the same commercially available 
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genetic samples in 13 independent laboratories using three different sequencing platforms: 

Roche 454 GS FLX, Life Technologies SOLiD 5500, and Illumina HiSeq 2000. Each lab 

sequenced a Universal Human Reference RNA sample, a Human brain reference RNA 

sample, and mixes of the two in prescribed proportions of 3:1 and 1:3. Reads were mapped 

to genes using three annotation databases: RefSeq, GENCODE, and NCBI AceView. The 

resulting data are a rich collection of measurements on the same set of 43,919 genes.

One of the primary goals of the SEQC project was to assess reproducibility. The authors did 

so by comparing fold-change estimates for selected sets of genes, and by comparing 

absolute expression levels across platforms. Little analysis was described concerning the 

reproducibility between biological replicates within or between labs, although the authors 

determined that the replicates were sufficiently reproducible to combine read counts from 

experiments in different labs. We believe that further characterization of the reproducibility 

of absolute expression levels of transcripts across biological replicates will be a valuable 

contribution.

3. Data Description and Procedure Formulation

We first introduce notation necessary to describe the proposed procedure. We assume that 

each gene studied is associated with a continuous measure from each of two experiments, 

for example a fold change score, test statistic, p-value, or q-value. Let xg be the measure 

from the first experiment for gene g, and yg be the corresponding measure from the second 

experiment. With n genes we thus have two sets of measures: x1…, xn from the first 

experiment and y1…, yn for the second. We further assume no missing data are present. 

These measurements are converted into rank statistics. Each gene g is thus associated with 

two ranks: Rg
x, Rg

y , where Rg
x  is the rank of xg among x1…, xn, and similarly for Rg

y. Because 

the original measures are assumed to be continuous, we assume no ties are present. Figure 1 

provides an example dataset of p-values and rank statistics for n 1000 genes, of which 350 

are reproducible.

Genes whose measures indicate the most interest to the researcher, for example those 

showing strong evidence of differential expression, are said to be “highly ranked”, which 

means that the numerical values of their ranks are small. That is, the most highly ranked 

gene in a set has rank 1. Genes with reproducible measurements should be consistently 

highly ranked for both replicate experiments, and are expected to have positive correlation in 

their ranks. Genes with irreproducible measurements are assumed to have independent 

ranks.

The procedure proposed in this article uses the maximum rank for each gene to determine 

which genes are reproducible. This statistic is defined below:

Definition 1.

Mg = max Rg
x, Rg

y , g = 1, …, n .
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Table 1 provides a sample dataset of n = 4 genes to illustrate the calculation of maximum 

rank statistics. Genes that are consistently highly ranked will have a relatively low value for 

their maximum rank statistic, while inconsistent or low ranked genes will have higher 

values. For this reason, choosing a threshold based on the maximum rank has the potential to 

effectively separate reproducible from irreproducible signals. Figure 2 illustrates the 

maximum rank statistics and receiver operating characteristic (ROC) curve generated from 

the same dataset introduced in Figure 1. Because we use values of the maximum rank 

statistic to determine which genes are reproducible, we call the procedure proposed in this 

article the “maximum rank reproducibility” (MaRR) procedure.

The joint distribution of all n maximum rank statistics has a complicated covariance 

structure, as no more than two of these statistics can take on any single value. We can, 

however, calculate the exact marginal distribution functions for irreproducible genes when 

certain conditions are in place. We define these conditions in Section 3.1, and present the 

marginal distribution functions as Proposition 1 and Corollaries 1 and 2.

We now derive the estimator of the proportion of reproducible genes in the sample, π1, using 

the MaRR procedure. To derive this estimator and show that it is consistent, we re-scale the 

maximum rank statistics to the unit interval by considering Mg/n. When π1 = 0, all n genes 

are irreproducible and the marginal probability mass function for Mg/n can be calculated 

exactly.

Proposition 1.

Assume that all n genes are irreproducible. Then the marginal probability mass function for 

the normalized maximum rank statistic Mg/n is

f n, 0 i/n =
2i − 1

n2 0 < i/n ≤ 1

0 otherwise
.

Proof.

See supplementary materials.

3.1. Derivation of Estimate π1 Under Ideal Setting

We now derive a procedure to estimate π1 in an ideal setting by making strong assumptions 

about the behavior of the marginal ranks Rg
x and Rg

y. We later relax these assumptions, 

discuss the properties of π1 in realistic settings, and derive estimates for FDR in Section 3.2. 

We call the setting consistent with the strong assumptions “ideal,” and settings consistent 

with relaxed assumptions “realistic.” For clarity of notation, we use the index h to indicatea 

gene that is assumed to have irreproducible measurements.
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Assumptions under the ideal setting—(I1) Reproducible signals are always ranked 

higher than irreproducible signals, that is, Rg
x < Rh

x and Rg
y < Rh

y if gene g is reproducible and 

gene h is irreproducible.

(I2) The correlation between the ranks of reproducible signals is nonnegative.

(I3) The two ranks per irreproducible gene are independent.

As a result of assumption (I1), Mg < Mh for all reproducible genes g and irreproducible 

genes h. Letting π1 be the proportion of reproducible genes, this implies that all genes g such 

that Mg/n ≤ π1 are reproducible, and all genes h such that Mh/n > π1 are irreproducible. Rank 

pairs and maximum rank statistics for a sample dataset generated under the ideal 

assumptions with π1 = 0.35 are provided in Figures 3(a) and 3(b). We can now derive the 

relevant distribution functions for Mh/n when π1 > 0. For notational simplicity, define

jπ1
= max

i = 1, …, n
i: i/n ≤ π1 = nπ1 . (1)

In the ideal setting described above, reproducible genes must have maximum ranks no more 

than jπ1
= nπ1 , thus possible values for Mh are jπ1

+ 1, …, n. Adaptation of fn,0 in 

Proposition 1 gives the marginal mass function for Mh/n dependent on π1:

Corollary 1.

f n, π1
i/n =

2 i − jπ1
− 1

n − jπ1

2 π1 < i/n ≤ 1

0 otherwise

.

As a further result, the marginal cumulative distribution, Fn, π1
 and survival, Sn, π1

, functions 

can be calculated.

Corollary 2.—Let π1 ∈ 0, 1 , x ∈ 0, 1 , ix = nx , and jπ1
= nπ1 . Then the marginal 

cumulative distribution and survival functions are

Fn, π1
x =

0 x < π1

ix − jπ1

2

n − jπ1

2 π1 ≤ x ≤ 1
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Sn, π1
x =

1 x < π1

1 −
ix − jπ1

2

n − jπ1

2 π1 ≤ x ≤ 1.

Proof.—See supplementary materials.

We also derive the limiting marginal distribution of Mh/n:

Theorem 1.—Let π1 ϵ (0, 1) be fixed, and assume (I1), (I2), and (I3). Then as n ∞ the 

marginal limiting distributions of the random variable Mh/n are as below

Fn, π1
x Fπ1

x =

0 x < π1

x − π1
2

1 − π1
2 π1 ≤ x ≤ 1

1 1 < x

,

Sn, π1
x Sπ1

x =

1 x < π1

1 −
x − π1

2

1 − π1
2 π1 ≤ x ≤ 1

0 1 < x

.

Proof.—See supplementary materials.

As illustrated above, the theoretical distribution of Mh is determined by the value of π1, and 

under the ideal conditions the observed distribution of maximum rank statistics should 

resemble most closely the theoretical distribution with the correct value of π1. In practice, 

the value of π1 is unknown, thus the MaRR procedure estimates π1 by comparing observed 

and theoretical distributions of maximum rank statistics. The estimate for π1 can thus be 

chosen as the value that produces the best match between observed and theoretical 

distributions. A classical approach to this comparison would focus on the cumulative 

distribution functions. The Cramer–von-Mises statistic (Cramer 1928; von Mises 1931) is a 

goodness-of-fit statistic that achieves this purpose and is well-known in the change-point 

literature. In the setting described here, however, the exact distribution of Mg/n is only 

known for Mg/n > π1. Using the cumulative distribution function would require assumptions 

or knowledge about the distribution of maximum rank statistics for reproducible genes. We 

avoid this issue by using the survival function, allowing consideration of only statistics 

associated with irreproducible genes. Define the empirical survival function as
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Sn x = 1
n ∑

g = 1

n
I Mg/n ≥ x , x ∈ 0, 1 . (2)

We expect the π1 for which Sπ1
 is closest to Sn to be a consistent estimate for π1. To define 

“closest,” we use a weighted mean squared error between the two functions for λ ∈ 0, 1 :

Definition 2.

MSEn λ = n − iλ
−1 ∑

x = iλ

n
Sn x/n − 1 − λ Sλ x/n

2
, iλ = λn .

The definition of MSEn λ  includes the factor 1 − λ  inside the sum because Mg follows a 

mixture distribution: Mg ∼ λG + 1 − λ Fλ, where G is the unknown distribution of 

reproducible genes, and Fλ is defined in Corollary 2. Therefore, the theoretical Sλ must be 

normalized by 1 − λ . For a finite dataset of size n, MSEn λ  can be calculated for any value 

of λ ∈ 0, 1/n, 2/n, …, n − 1 /n , and we expect it to be small for values of λ close to the true 

π1, and larger for values far from π1. Thus, we define the estimate π1 in the finite case and 

show it to be asymptotically consistent below:

Theorem 2.—Let the ideal assumptions hold, and define the estimate π1 of π1 as

π1 = n−1 argmin
i ∈ 0, …, n − 1

MSEn i/n .

Then as n ∞,

π1
p

π1 .

Proof.—See supplementary materials.

Figure 4 illustrates the calculation of π1 for the sample ranks presented in Figure 3(a). The 

figure shows that MSEn i/n  is very small near the correct π1, and for i/n close to 1. It is small 

for i/n ∈ 0.9, 1  because this part of the survival function is very similar regardless of the 

true value of π1. For this reason, in practice it is necessary to consider only values of 

π1 ∈ 0, .9 . Once π1 has been determined, it is assumed that gene g is reproducible if 

Mg/n ≤ π1. In the ideal setting, it also means that gene h is irreproducible if Mh/n > π1. This 

perfect split, however, only occurs under the ideal assumptions, and we must define an 
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estimate of the false discovery rate for each gene with Mg/n > π1 for realistic settings. In the 

next section, we relax the ideal assumptions and derive a false discovery rate estimate.

3.2. Estimation of False Discovery Rates in Realistic Settings

In this section, we make assumptions that are reasonably met by many real datasets, and use 

them in conjunction with π1 to estimate marginal false discovery rates of rejection regions 

for Mg. For a realistic setting, we continue to assume (I2) and (I3) from the ideal setting, but 

relax (I1):

Assumptions for a realistic setting—(R1) Reproducible signals tend to be ranked 

higher than irreproducible signals. Thus, if gene g is reproducible and gene h is 

irreproducible,

P Rg
x < Rh

x > 1/2, and P Rg
y < Rh

y > 1/2

(I2) The correlation between the ranks of reproducible signals is nonnegative.

(I3) The two ranks per irreproducible gene are independent.

The difference between assumptions (R1) and (I1) is the lack of a clear split between 

reproducible and irreproducible signals in terms of Mg. The estimator π1 derived in Section 

3.1 is consistent in the ideal case, but is conservatively biased in the realistic case: 

E π1 ≤ π1. We provide a justification of this statement in the supplementary materials and 

summarize the argument here. In realistic settings, reproducible signals Mg/n have a positive 

probability of falling in the region π1, 1 . The smaller the effect size the larger this 

probability. As a result, the empirical survival curve will take on larger values in the region 

π1, 1  than it would in the ideal case. Weighted theoretical survival 1 − λ Sλ x  have larger 

values for smaller values of λ, as illustrated in Figure 4(b), thus the empirical survival curve 

in the realistic case will be closer to a curve 1 − λ∗ Sλ∗ than to 1 − π1 Sπ1
 for some λ∗ ≤ π1. 

As a result, the mean squared error will be minimized for some value λ∗ ≤ π1, thus 

E π1 ≤ π1. Figure 5 provides empirical and theoretical survival curves for varying effect 

sizes to illustrate the estimation of π1.

For convenience, we now move away from the unit interval and work with the originally 

scaled Mg = 1, …, n. We therefore define and use the discrete and rescaled version of π1,k

k = argmin
i = 0, 1, …, .9n

MSEn i/n . (3)

In practice, we find that k  is a good estimate1 of when reproducible signals begin the 

transition to irreproducible signals. We base this assertion on observation of a large number 
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of simulated datasets with varying degrees of effect size and proportion of reproducible 

signals, although it unfortunately cannot yet be proven theoretically. Figure 5 illustrates the 

performance of k  using stacked histograms for a small number of datasets. The figure also 

includes the corresponding datasets, survival curves, and MSEn curves to illustrate the 

estimation of k  for varying effect sizes.

To determine the set of reproducible genes we choose a critical value, N, according to an 

error rate, and declare all genes associated with Mg ≤ N as reproducible. This approach is 

akin to defining a rejection as 0, N , and rejecting the null hypothesis of irreproducibility for 

all signals with Mg in this region (Storey, Taylor, and Siegmund 2004). We use the term 

“false discovery” to describe the Type 1 error committed when an irreproducible gene is 

declared reproducible, and estimate a marginal false discovery rate (Genovese and 

Wasserman 2002) based on a rejection region.

Consider Table 2 detailing possible decision outcomes for m simultaneous hypotheses, 

where U is the number of true null hypotheses that were correctly not rejected, V is the 

number of false rejections, T is the number of hypotheses that were not rejected when they 

should have been, and S is the number of correctly rejected hypotheses. Q is the total 

number of rejections made. The marginal false discovery rate (mFDR) (Genovese and 

Wasserman 2002) is thus defined

mFDR = E V
E Q . (4)

This quantity is closely related to the classical false discovery rate (FDR) as defined by 

Benjamini and Hochberg (1995). Related quantities in common usage include the positive 

FDR (pFDR) (Storey 2002), the irreproducible discovery rate (idr)(Li et al. 2011), and the 

local false discovery rate (lfdr) (Efron 2004). To describe our approach to mFDR estimation, 

we introduce the following notation:

Q i = ∑
g = 1

n
I Mg ≤ i = # genes declared reproducible for

critical region 0, i

(5)

Vk i = # irreproducible genes declared reproducible
with k < Mg ≤ i . (6)

1Note that we recommend using .9n  as the maximum possible value for k  We choose this value to ensure k  is estimated as the first 
local minimum in the SS(i/n) curve, as this curve tends to zero as i approaches n. For certain datasets with small effect size, 0.9n
may need to be reduced to ensure accuracy.
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Using this notation, the estimated mFDR for using i as the threshold value for declaring 

reproducibility is

mFDR i =
E V

k
i

Q i . (7)

The denominator of this expression is determined directly from data, however the numerator 

must be calculated using the distribution of Mh calculated in Section 3.1, and dependent on 

k . With the value of k  determined, all genes with Mg ≤ k  are declared reproducible. Recall 

that k  under-estimates nπ1, thus n − k  over-estimates the true number of irreproducible genes. 

By using this assumption that there are n − k  irreproducible genes in the dataset, we 

calculate E V
k

i  using the cumulative distribution function F
n, k /n from Corollary 2.

The calculation of the numerator is thus detailed

E V
k

i = n − k ⋅ P
n, k /n Mh ≤ i

= n − k ⋅
i − k 2

n − k 2

=
i − k 2

n − k
, i = k + 1, …, n .

(8)

We can then define the estimated mFDR associated with any rejection region (0, i).

mFDR i =
E V

k
i

Q i =
i − k 2

Q i n − k
, i = k + 1, …, n . (9)

Thus, the false discovery rate is controlled at a nominal level α if the threshold value N is 

chosen to be

N = max
k < i ≤ n

i:mFDR i ≤ α , (10)

and all genes with maximum rank statistics less than or equal to N are declared reproducible.

We now summarize the maximum rank reproducibility procedure for set of n genes each 

with two measurements generated from replicate experiments.

MaRR Procedure: To control FDR at a nominal level of α:
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Define k = argmin
i = 0, 1, …, .9n

MSEn i/n = n − i −1 ∑
x = i

n

× Sn x/n − 1 − i/n Si/n x 2 ,

where Sn x  is the empirical survival function, and Si/n x  is the limiting survival function 

defined in Theorem 1. Define N as

N = max
k < i ≤ n

i:mFDR i =
i − k 2

Q i n − k
≤ α .

where Q(i) is the number of genes with maximum ranks less than or equal to i. Reject all 

genes g associated with maximum ranks Mg less than or equal to N.

4. Simulation Studies

We now describe two sets of simulation studies designed to assess the performance of the 

MaRR procedure. For both studies we compare our results to those of the copula mixture 

model of Li et al. (2011). Li et al. compared their method’s performance to that of existing 

p-value combination techniques such as Fisher’s and Stouffer’s, finding in all cases that their 

approach offered a clear advantage. Because of these previous results, in these simulation 

studies we compare the MaRR approach only to the copula mixture model. Both methods 

perform analysis on the rank scale, negating the need to calculate p-values and allowing the 

simulations to proceed directly from simulated test statistics.

The first study, simulation A, generates data from the parametric model assumed by the 

copula mixture model. The purpose of this simulation is to illustrate the performance of the 

MaRR procedure in situations where the copula mixture model has been shown to be 

effective. The second study, simulation B, mimics our motivating RNA-seq datasets from the 

SEQC study. These datasets do not follow the parametric assumptions made in the copula 

mixture model’s formulation.

4.1. Settings for Simulation A

In the first study, we vary three parameters: the effect size μA , the proportion of 

reproducible signals π1 , and the correlation between these signals ρ . We assume that large 

values of test statistics will be highly ranked, corresponding to calculation of right-tail one-

sided p-values. The test statistics for reproducible signals are generated as follows

Zg, 1
Zg, 2

∼ N
μA

μA
, 1 ρ

ρ 1 . (11)

Irreproducible signals are generated from the standard bivariate normal distribution
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Zh, 1
Zh, 2

∼ N
0
0 , 1 0

0 1 . (12)

We let μA ∈ 1, 2, 3 , ρ ∈ 0.40, 0.85 , and π1 ∈ 0.10, 0.30, 0.65, 0.80 , resulting in a total of 24 

settings. For each setting, we simulate 100 datasets of size n 2000 and apply both the MaRR 

procedure and the copula mixture model, controlling error rates at α 0.05. The copula 

mixture model requires specification of initial parameter values for μA, ρ, σ, and π1 to 

perform an expectation maximization algorithm. We thus performed the procedure ten times 

on each dataset, drawing initial parameters from uniform distributions with the domains 

μA ± 0.50, ρ ± 0.10, and π1 ± 0.10. The initial parameter for σ was always set at the true value, 

σ = 1. Results with the highest likelihood were recorded. For each dataset, we calculate the 

empirical false discovery rate for each procedure separately by dividing the number of false 

calls by the total number of genes declared reproducible. The results are presented and 

discussed in Section 4.3.

4.2. Settings for Simulation B

The objective of the second simulation study is to imitate the observed rank sets from the 

RNA-seq data analyzed in Section 5, and to further assess the performance of the MaRR 

procedure. For the RNA-seq datasets the correlation is nearly perfect for the highest ranked 

signals, but a gradual reduction in correlation is observed for progressively lower ranked 

genes. In some datasets the correlation remains relatively high (e.g., Figure 9, 1–2), and in 

others it deteriorates further before the initiation of an irreproducible component (Figure 9, 

3).

For each reproducible gene g the first test statistic, tg, 1 is generated according to 

tg, 1 ∼ Unif 1, 5  The correlation between test statistics tg, 1 and tg, 2 is linearly dependent on 

the value of tg, 1. We assume that for tg, 1 = 5 there is perfect correlation, and for the smallest 

value of tg, 1 = 1 the correlation is some reduced value r0. Given tg, 1, the remaining test 

statistic tg, 2 is assumed to follow a normal distribution

tg, 2 tg, 1 ∼ N tg, 1, 1 − rg
2 (13)

Where rg =
1 − r0

4 tg, 1 − 1 + r0 .

As before, the largest values of tg, 1, tg, 2 are considered to be the most highly ranked signals. 

Irreproducible signals are generated following (12). We include 12 parameter settings for 

simulation B by varying the proportion of reproducible signals, π1 ∈ 0.10, 0.30, 0.65, 0.80  , 

and the minimum correlation value, r0 ∈ 0.30, 0.70, 0.95 . For each setting, we generate 100 
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datasets. To more closely imitate the SEQC data, each dataset has size n = 10,000. As 

before, we record results from the MaRR procedure and copula mixture model. For the 

latter, we record the result with the highest likelihood after using ten different initial 

parameter sets drawn from uniform distributions with domains (2, 3) for μA, (0.70, 0.99) for 

ρ, and π1 ± 0.10 for π1.

4.3. Simulation Results

4.3.1. FDR Control—Figure 6 compares the FDR control for the MaRR procedure and 

the copula mixture model for data generated using the copula mixture model’s parametric 

assumptions (Simulation A). Taken as a whole, the results show that MaRR performs well in 

most situations, and overall is comparable to the copula mixture model. There were two 

challenging situations for the MaRR procedure. The first situation is when signals are weak 

and infrequent μA = 1, π1 = 0.1 . The MaRR procedure was anti-conservative in these 

settings. This is expected due to the assumption that no irreproducible signals have 

maximum rank less than k , the value at which the MaRR procedure determines 

irreproducible genes first appear. In this setting, it is likely that some irreproducible 

maximum ranks are less than k , leading to inflated FDR estimates. In the same situation, the 

copula mixture model is very conservative if the signals are weakly correlated across 

replicates (ρ = 0.4). In these cases, the real signals may fall in the undetectable regions, 

which makes identification difficult for any methods (Donoho and Jin 2004). In practice, 

practitioners who apply MaRR when π1 is suspected to be very small should be wary of 

inflated FDR estimates, or they may set k  to be zero if they desire strict FDR control. The 

second situation is when a very large but weakly correlated reproducible group (μA =1 or 2, 

ρ = 0.4, and π1 = 0.8) is present. In this case, the two components are not well separated and 

the irreproducible component overwhelms the reproducible component. As a result, the 

MaRR procedure cannot accurately estimate k  based on irreproducible signals, due to 

overlap with the reproducible component. MaRR systematically underestimates π1, resulting 

in an overly conservative decision. In this setting, the copula mixture model is a better 

choice for inference. This is expected, as these situations are generated from the true models 

of the copula mixture model. The copula mixture model is expected to be advantageous over 

nonparametric models in these situations.

In simulation B (Figure 7), the MaRR procedure effectively controls FDR across all 

situations examined, with no settings requiring extra care. Both methods tend to be 

conservative, but the copula model is more conservative when r0 is 0.95. We will look into 

this case in more details in the following two subsections.

4.3.2. Discriminative Power—Next, we compare the discriminative power of these two 

procedures. Figures 8 (a)–(e), shows the discriminative power for three datasets from 

simulation A and two from simulation B. The two approaches have similar discriminative 

power in most cases from simulation A with the exception of two situations. The copula 

mixture model tends to outperform MaRR in the presence of a large and not well-separated 

reproducible group that overwhelms the irreproducible group. The MaRR procedure tends to 
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have higher discriminative power for settings from simulation B when r0 = 0.95 and π1 = 

0.80, that is, when the data resemble the distribution of RNA-seq data.

4.3.3. Decision Boundary—We now compare the decision boundaries of the two 

methods and show that the decision boundary of MaRR is more desirable for the application 

of RNA-seq data. The decision boundary determines how the reproducibility of relatively 

low abundance signals is prioritized. It is particularly relevant to RNA-seq data, as many 

functionally important genes have a low abundance and the information on their 

reproducibility is especially helpful for establishing confidence in their measurements 

(Roberts and Pachter 2011; Mercer et al. 2012).

MaRR always has a consistent, square decision boundary, while that of the copula mixture 

model has a shape similar to a bivariate Gaussian tail and is influenced by the empirical 

distribution of the reproducible component. For data that behaves as in Figure 8(i), the two 

methods give very similar results. In the case of Figure 8(j), the parametric decision 

boundary is overly narrow and extends well into the irreproducible component, causing an 

omission of reproducible signals that are somewhat off diagonal y = x. This behavior is 

related to the parametric assumption of the copula mixture model, which we discuss in detail 

in Section 5.3. The nonparametric nature of the MaRR procedure is likely to improve 

analysis for this type of situation.

These simulation results, ROC curves, and decision bound-aries show two primary facts. 

First, the MaRR procedure performs well in most situations in our simulations, with care 

needed primarily when the proportion of reproducible signals is small or when there is no 

obviously irreproducible component. Second, the MaRR procedure has favorable 

performance in situations similar to those in Figure 8(j), when correlation of reproducible 

signals is nearly perfect for the highest ranked signals and erodes only slightly for 

progressively lower ranked ones. This second fact further motivates the use of the MaRR 

procedure for the SEQC data.

5. Application to SEQC Data

To illustrate the utility of the MaRR procedure, we apply it to the problem of assessing 

reproducibility of RNA-seq data. We use data produced for the Sequencing Quality Control 

project to compare and evaluate three RNA-sequencing platforms across different labs using 

Universal Human Reference RNA samples.

Section 5.1 discusses the data, its read depth, and the processing necessary to perform the 

MaRR procedure. We present results in Section 5.2 for two types of comparisons: (1) 

biological replicates from the same lab, and (2) biological replicates from different labs 

using the same platform. We perform the same comparisons using the copula mixture model. 

Finally, we discuss and evaluate the findings in Section 5.3.

5.1. Data

The Universal Human Reference RNA sample was sequenced by all 13 laboratories involved 

in the SEQC project. The Mayo Clinic, BGI, Cornell, City of Hope, Novartis, and the 
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Australian Genome Research Facility used Illumina HiSeq 2000. Penn State, Northwestern, 

SeqWright Inc., and Liverpool used Life Technologies. Finally, Roche 454 data were 

produced by the Medical Genomes Project, New York University Medical Center, and 

SeqWright Inc.

We apply the MaRR procedure and copula mixture model to measure reproducibility within 

labs and between labs. For within-lab comparisons, we rank and compare transcripts from 

replicates produced by the Mayo Clinic (Mayo), Penn State (PSU), and New York 

University Medical Center (NYU). Table 3 summarizes these replicates and their 

corresponding read depths. To make comparisons between labs using the same technology, 

we sum read counts over all replicates per lab. We then rank the total read counts for each 

lab and make three comparisons: Illumina, Life Technologies, and Roche 454. Table 4 

summarizes which labs were selected, the number of replicates per lab, and the read depth.

For all comparisons, highly ranked transcripts are those with the most read counts. Ranking 

ties are treated by random assignment. For example, if two transcripts are tied with three 

transcripts ranked higher than both, one of the tied transcripts is randomly assigned the rank 

of four and the remaining transcript the rank of five. The technologies have varying read 

depth, but the reads are all mapped to the same set of 43,919 transcripts. Increased read 

depth for Illumina and Life Technologies experiments appears to affect the reproducibility of 

results, as we discuss in more detail in Section 5.3.

After an initial examination of all six comparisons, we found that the distribution of ranked 

read counts shows very high correlation for the most highly ranked transcripts, with a 

gradual deterioration in correlation for less highly ranked transcripts. Additionally, we found 

that for all comparisons of interest there was an obvious irreproducible component, meeting 

the requirements of the MaRR procedure.

For external validation of results, we use the Taqman polymerase chain reaction (PCR) data 

associated with the SEQC project. Expression levels measured with PCR are typically 

viewed as a reference “gold” standard. For this reason, we use the PCR values as a 

benchmark for objectively assessing the performance of both procedures with the SEQC 

data. The PCR experiments were done on the same RNA sample as the RNA-seq data, each 

with four technical replicates. They were mapped to 1129 transcripts in the SEQC data. We 

average the PCR values over the four replicates and rank them based on this average. We 

discuss results using these PCR ranks in Section 5.3.

5.2. Analysis and Results

We applied both procedures to each of six comparisons. The copula mixture model was 

performed ten times with different starting values to ensure convergence. Results with the 

highest likelihood are reported. We provide the number of signals declared reproducible at 

an estimated error rate of α = 0.01, the estimated proportion of reproducible signals, π1, and 

the correlation for transcripts declared reproducible, ρ. The results are summarized in Table 

5 and illustrated in Figure 9.
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5.3. Discussion

The results reported in the previous section show a very high level of reproducibility for the 

Illumina and LIFE technologies, agreeing with the findings of the SEQC project (SEQC/

MAQC-III Consortium 2014). For all platforms considered, the estimated proportion of 

reproducible signals π1  is alarger for between-lab comparisons than for within-lab 

replicates, although agreement between highly ranked transcripts ρ  is somewhat reduced 

(Table 5). We suspect the larger proportion of reproducible transcripts is due to increased 

read depth from combination of biological replicates, and the decreased correlation is due to 

increased noise from between labs. For Illumina this decrease is very slight, while it is most 

noticeable for the Roche 454 platform whose measurements were the noisiest to begin with. 

There seems to be a strong relationship between read depth and reproducibility; higher read 

depth is associated with more reproducible findings. The Illumina platform in particular has 

almost perfect correlation between ranks for both within and between lab comparisons. The 

Roche 454 technology, which has far fewer reads per transcript, shows a lower level of both 

reproducibility and correlation between ranks of reproducible transcripts.

An important part of the analysis is to identify reproducible transcripts. Though 

reproducibility is less an issue for highabundance transcripts, as they usually are highly 

reproducible (Figure 9), more uncertainty is present for low-abundance transcripts, as RNA-

seq technology has larger variance for low read counts (Love, Huber, and Anders 2014; 

Zhao et al. 2014). Nevertheless, many low-abundance transcripts, for example, long 

intergenic non-coding transcripts (lncRNAs), are crucial in defining cellular function in 

normal and disease states (Roberts and Pachter 2011). The consistency across replicates 

greatly helps differentiate them from noise. When applied to the SEQC data, both methods 

give similar results for two of the six comparisons (Roche technology, comparisons 3 and 6), 

however they differ in both estimates of π1 and the shape of decision boundary for the 

remaining comparisons (1, 2, 4, 5). The MaRR procedure found very high proportions of 

reproducible signals for these comparisons π1 = 0.851, 0.847, 0.900, 0.898  while the copula 

mixture model estimated π1 to be 0.773, 0.767, 0.861, and 0.649, respectively. Here, we 

compare their decision boundaries, which determine how reproducible signals are identified 

among weak signals, i.e., the low-abundance transcripts. To display the behavior at different 

abundance levels, we compare decision boundaries for top-k transcripts, with k = 8000, 

20,000 and the number of signals declared reproducible by MaRR at α = 0.01, to reflect 

descending abundance. The value of the last k varies in each comparison (k = 38,975, 

38,778, 27,020, 40,855, 40,760, 28,798 for comparisons 1–6, respectively). The decision 

boundary at this k reflects the behavior at the cutoff.

For k 8000 and 20,000, the two approaches are in close agreement (Figure 9 dark and 

intermediate gray). However, when k is large (k > 30,000), the decision boundaries differ: 

MaRR retains its characteristic square shape, whereas the decision boundaries for the copula 

mixture model are very “pointy” on the right end for the comparisons with Illumina and Life 

technology, similar to the results of Simulation B with r0 = 0.95 and π1 = 0.80 (Figure 8(j)). 

This effect is caused by the model’s assumptions that the data’s dependence structure 

follows a mixture of Gaussian copulas. Due to the symmetry of the Gaussian copula, the 
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right tail of the reproducible component in the copula mixture model tends to mirror the 

shape of the left tail. When top signals are highly correlated, like in these four cases, the 

right tail of the reproducible signals, that is, the decision boundary, tends to be pointy, 

showing a strong favoritism to consistent low signals over signals that have higher signals 

but are slightly less consistent. For transcripts with low abundance, this decision boundary 

becomes more extreme, with only the ranks located along the diagonal being deemed 

reproducible, ignoring some transcripts that have low abundance but are still reasonably 

consistent across replicates. This effect is especially noticeable in the between-lab 

comparisons (4–5 in Figure 9), where some signals that are highly ranked in both labs are 

still deemed irreproducible. On the other hand, MaRR’s square decision boundary prioritizes 

transcripts that are higher ranked but somewhat off-diagonal over lower ranked transcripts 

that are very close to the line y = x. As low-abundance transcripts usually have higher 

dispersion for RNA-seq data (Love, Huber, and Anders 2014; Zhao et al. 2014), real 

transcripts with low counts are more likely to be somewhat off the diagonal than the highly 

abundant ones. A square decision boundary is more likely to accommodate these transcripts 

than a pointy one.

To evaluate which decision boundary is more biologically relevant for these particular data, 

we consider the Taqman PCR data as a source of external validation. Although PCR 

measurements are only available for a small subset of the genes considered in the RNA-seq 

datasets (1129 out of more than 40,000 transcripts), they still provide some insight. 

Specifically, we compare the PCR genes included in the “top k” signals from one approach 

but not the other. The PCR genes with smaller rank values would be considered more 

desirable to identify, as their average expression level is higher. Figure 10 summarizes ranks 

of procedure-specific PCR genes from the top k genes in each comparison, where k is 

determined by the number of transcripts declared reproducible by the MaRR procedure for α 
0.01. At this k, both methods identify most of the PCR genes. The numbers of commonly 

identified PCR genes are 1101, 1099, 851, 1120, 1119, and 877 for comparisons 1–6, 

respectively. In all the comparisons, MaRR identifies more PCR genes than the copula 

mixture model. Among them, in comparisons 4–5, MaRR identifies all PCR genes identified 

by the copula mixture model and some additional PCR genes. For most of the rest of 

comparisons (comparison 1–3), MaRR-specific PCR genes tend to have smaller ranks in 

PCR measurements than copula-specific genes. Two-sample t-tests to compare the mean 

rank of method-specific genes yield p-values of 0.0227, 0.0047, 0.2176, and 0.1235 for 

comparisons 1, 2, 3, and 6, respectively.

6. Concluding Remarks

In this article, we have introduced MaRR, a nonparametric approach to detect reproducible 

transcripts from replicate experiments. The MaRR approach is applicable for many different 

measurement types, makes very few assumptions about the distribution of reproducible 

signals, and does not rely on tuning parameters or require starting values. Its decision 

boundary naturally accommodates the elevated dispersion among less highly ranked genes. 

It works especially well when there is a gradual deterioration in correlation for less highly 

ranked genes, a situation that is encountered in certain high-throughput data analyses such as 

RNA-seq data.
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Despite these advantages, there are alsoa few caveats to keep in mind when applying the 

MaRR procedure. Most notably, caution is required when the proportion of reproducible 

signals is small. In this situation, the estimated FDR may be inflated if there are 

irreproducible signals with maximum ranks less k , the estimated lower bound for 

irreproducible signals. It is also important that the ranks in the irreproducible component are 

independent, otherwise the assumptions of the MaRR procedure are not met and conclusions 

may not be valid. For example, if there is a systematic bias in both replicates that impose a 

positive correlation structure in the irreproducible component then π1 tends to overestimate 

the proportion of reproducible signals.

An extension of the MaRR procedure for simultaneous consideration of more than two 

replicates is a topic for future research. Although defining what “reproducible” means is 

complicated in higher dimensions, it is closely related to the partial conjunction hypothesis 

discussion of Benjamini and Heller (2008). Consider the case of three biological replicates. 

We then have three ranks for each gene g:Rg
x, Rg

y, and Rg
z . An enhanced MaRR procedure 

would define a summary rank statistic depending on how “reproducible” is defined. Either 

the maximum order statistic, Mg
3 = max Rg

x, Rg
y, Rg

z , or the second order statistic Mg
2  could 

be used. The marginal distribution of both can be calculated exactly in a derivation similar to 

that of f π1
 in this article, and corresponding estimates for π1 and mFDR could be derived. 

We have outlined the process for Mg
3  in supplemental materials. This straightforward 

extension requires tedious algebra, but the resulting procedure will have a closed form 

solution and fast computation. These approaches are scalable as the dimension increases, 

due to the effective collapse of high-dimensional ranks into single summary rank statistics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Funding

Qunhua Li gratefully acknowledges support from NIH R01GM109453. Debashis Ghosh gratefully acknowledges 
support from NSF ABI 1457935.

References

Benjamini Y, and Heller R (2008), “Screening for Partial Conjunction Hypotheses,” Biometrics, 64, 
1215–1222. [1039] [PubMed: 18261164] 

Benjamini Y, and Hochberg Y (1995), “Controlling the False Discovery Rate: A Practical and 
Powerful Approach to Multiple Testing,” Journal of the Royal Statistical Society, Series B, 57, 289–
300. [1033]

Boulesteix A-L, and Slawski M (2009), “Stability and Aggregation of Ranked Gene Lists,” Briefings 
in Bioinformatics, 10, 556–568. [1028] [PubMed: 19679825] 

Cramer H (1928), “On the Composition of Elementary Errors,” Scandinavian Actuarial Journal, 1928, 
141–180. [1030]

Philtron et al. Page 18

J Am Stat Assoc. Author manuscript; available in PMC 2019 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Donoho D, and Jin J (2004), “Higher Criticism for Detecting Sparse Heterogeneous Mixtures,” Annals 
of Statistics, 32, 962–994. [1034]

Efron B (2004), “Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis,” 
Journal of the American Statistical Association, 99, 96 [1033]

Genovese C, and Wasserman L (2002), “Operating Characteristics and Extensions of the False 
Discovery Rate Procedure,” Journal of the Royal Statistical Society, Series B, 64, 499–517. [1032]

Li Q, Brown JB, Huang H, and Bickel PJ (2011), “Measuring Reproducibility of High-Throughput 
Experiments,” Annals of Applied Statistics, 5, 1752–1779. [1028,1033]

Love MI, Huber W, and Anders S (2014), “Moderated Estimation of Fold Change and Dispersion for 
RNA-Seq Data with Deseq2,” Genome Biology, 15, 550 [1037] [PubMed: 25516281] 

Mercer TR, Gerhardt DJ, Dinger ME, Crawford J, Trapnell C, Jeddeloh JA, Mattick JS, and Rinn JL 
(2012), “Targeted RNA Sequencing Reveals the Deep Complexity of the Human Transcriptome,” 
Nature Biotechnology, 30, 99–104. [1035]

Roberts A, and Pachter L (2011), “RNA-Seq and Find: Entering the RNA Deep Field,” Genome 
Medicine, 3, 74 [1035,1037] [PubMed: 22113004] 

SEQC/MAQC-III Consortium (2014), “A Comprehensive Assessment of RNA-Seq Accuracy, 
Reproducibility and Information Content by the Sequencing Quality Control Consortium,” Nature 
Biotechnology, 32, 903–914. [1029,1037]

Shabtai D, Glaever G, and Nislow C (2012), “An Algorithm for Chemical Genomic Profiling that 
Minimizes Batch Effects: Bucket Evaluations,” BMC Bioinformatics, 13, 245 [1028] [PubMed: 
23009392] 

Storey JD (2002), “A Direct Approach to False Discovery Rates,” Journal of the Royal Statistical 
Society, Series B, 64, 479–498. [1033]

Storey JD, Taylor JE, and Siegmund D (2004), “Strong Control, Conservative Point Estimation and 
Simultaneous Conservative Consistency of False Discovery Rates: A Unified Approach,” Journal 
of the Royal Statistical Society, Series B, 66, 187–205. [1032]

von Mises R (1931), “Wahrscheinlichkeitsrechnung und Ihre Anwendung in der Statistik und 
Theoretischen Physik,” Leipzig: Deuticke [1030]

Zhang M, Zhang L, Zou J, Yao C, Xiao H, Liu Q, Wang J, Wang D, Wang C, and Guo Z (2009), 
“Evaluating Reproducibility of Differential Expression Discoveries in Microarray Studies by 
Considering Correlated Molecular Changes,” Bioinformatics, 25, 1662–1668. [1028] [PubMed: 
19417058] 

Zhang Y, Lin Y-H, Johnson TD Rozek LS, and Sartor MA (2014), “PePr: A Peak-Calling Prioritization 
Pipeline to Identify Consistent or Differential Peaks from Replicated ChIP-Seq Data,” 
Bioinformatics, 30, 2568–2575. [1028] [PubMed: 24894502] 

Zhao S, Fung-Leung W-P, Bittner A, Ngo K, and Liu X (2014), “Comparison of RNA-Seq and 
Microarray in Transcriptome Profiling of Activated T Cells,” PloS One, 9, e78644 [1037] 
[PubMed: 24454679] 

Philtron et al. Page 19

J Am Stat Assoc. Author manuscript; available in PMC 2019 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
P-values (a), and corresponding rank pairs (b) for 1000 genes, 350 of which are 

reproducible. Gray points indicate reproducible genes, while black points indicate 

irreproducible genes. Note that irreproducible genes are generally ranked lower than the 

reproducible ones.

Philtron et al. Page 20

J Am Stat Assoc. Author manuscript; available in PMC 2019 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Maximum rank statistics presented two ways, (a) and (b), and corresponding receiver 

operating characteristic (ROC) curve using Mg as the basis for declaring reproducibility, (c). 

These figures continue the example from Figure 1. Panel (b) shows a stacked histogram of 

the maximum rank statistics, illustrating a clear change in behavior between reproducible 

(light gray) and irreproducible (dark gray) components. It is this transition that we hope to 

detect using the MaRR procedure.

Philtron et al. Page 21

J Am Stat Assoc. Author manuscript; available in PMC 2019 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Data from 1000 genes generated under the assumptions for the ideal setting. 350 of these 

genes (gray) are assumed to be reproducible, and the remaining 650 genes (black) are 

irreproducible. In this example, there is a sharp transition from reproducible to 

irreproducible with no overlap. This transition is very apparent in the stacked histogram (c).
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Figure 4. 
Continuing the example from Figure 3, (a) shows the values of MSE(i/n) for 

i = 0, 1, …, n − 1, and (b) the empirical survival function (solid black) overlaid with the 

theoretical survival functions (dashed). The theoretical survival functions are generated for 

λ = 0.5 (dark gray), λ = 0.35 (gray), and λ = 0.2 (light gray). Here, the true π1 is 0.35, and the 

estimate is π1 = 0.348. It is clear that the empirical survival curve is very similar to the 

correct theoretical curve.
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Figure 5. 
Illustration of MaRR procedure for three datasets of size n = 1000 with 400 reproducible 

signals: large effect size (row 1), moderate effect size (row 3), and small effect size (row 

3). The first column shows rank pairs for both irreproducible (gray) and reproducible (black) 

signals. The second column presents the corresponding empirical survival curves (black) 

overlaid with the theoretical survival curve for the true π1 = .4 (dark gray) and the theoretical 

survival curve for π1 (light gray). Column three shows the MSEn curves used to determine k

for each dataset. Finally, column four gives the stacked histograms of Mg overlaid with 

theoretical irreproducible densities f π1
 (dashed) and f π1

 (solid). These densities intersect the 

x-axis at π1 and π1 respectively. As can be seen, the empirical survival curves most closely 

approximate theoretical curves with π1 ≤ π1 (column 2), and the estimate π1 marks the 

approximate beginning of irreproducible signals (column 4).
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Figure 6. 
Empirical FDR results for simulation A based on 100 simulated datasets in each setting. The 

dashed line indicates the target FDR level (0.05) for all simulation . Labels along the x-axis 

describe values of π1 (top level) and of ρ (bottom level).
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Figure 7. 
FDR results for simulation B based on 100 simulated datasets in each setting. The dashed 

line indicates the target FDR level (0.05) for all simulations. Labels along the x-axis 

describe values of π1 (top level) and method (bottom level).
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Figure 8. 
Discriminative (top row) and corresponding decision boundaries (bottom row) for 

representative datasets from simulations A and B. Top row, right and dark gray curves were 

calculated using the MaRR procedure and the copula mixture model respectively. In the 

bottom row, lines outline the square decision boundary of the MaRR procedure, and gray 

dots illustrate the decision boundary of the copula mixture model. The gray dots above and 

to the left of the lines are signals found to be reproducible by the copula model but not the 

MaRR procedure. Crosses are signals declared reproducible for the MaRR procedure but not 

for the copula model. From left to right: (a) and (f ) follow setting A with μA = 1, π1 = 0.1, ρ 
= 0.85; (b) and (g) follow setting A with μA = 1, π1 = 0.8, ρ = 0.85; (c) and (h) follow 

setting A with μA = 2, π1 = 0.65, ρ = 0.85; (d) and (i) follow setting B with r0 = 0.7, π1 = 

0.65; (e) and (j) follow setting B with r0 = 0.95, π1 = 0.80.
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Figure 9. 
Comparisons for the SEQC data. The rows show decision boundaries for the MaRR 

procedure (top) and the copula mixture model (bottom). The gray shades from dark to light 

show the top k transcripts for k 8000, 20,000, and the number of signals declared 

reproducible by MaRR at α = 0.001, respectively. Black dots indicate transcripts not 

declared reproducible for any included value of k. Comparisons 1–3 are within-lab and 

comparisons 4–6 are between-lab, with details described in Table 5.
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Figure 10. 
Rank of method-specific PCR genes in the top k for only MaRR (light gray) or for only the 

copula mixture model (dark gray) for comparisons 1–6. Horizontal lines indicate median 

values. Here, k is determined by the number of transcripts declared reproducible by the 

MaRR procedure for α = 0.01. PCR genes with lower-valued ranks are more highly 

expressed. In all comparisons, more PCR genes are identified only by the MaRR procedure 

than the copula mixture model. For comparisons 4 and 5, there were no PCR genes 

identified only by the copula mixture model.
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Table 1.

Sample data, ranks, and maximum rank statistics from four genes, assuming larger values of xg, yg indicate 

more interest to the researcher.

Index (g) xg yg Rg
x, Rg

y Mg

1 1.0 1.3 (3,2) 3

2 −0.2 0.0 (4,3) 4

3 1.2 −1.0 (2,4) 4

4 2.4 2.2 (1,1) 1
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Table 2.

Decision outcomes for m hypothesis tests.

Fail to reject null Reject null Total

Null is true U V m0

Null is false T S m − m0

Total m − Q Q m
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Table 3.

Summary of sequencing platform, laboratories, and read depth for replicates used for within-lab comparisons. 

Differences in read depth may be due to the sequencing technologies or be a choice made by individual labs.

Technology Laboratory Read depth

Illumina Mayo 152,240,873

Mayo 288,049,574

Life Technologies PSU 92,762,967

PSU 96,634,448

Roche 454 NYU 610,609

NYU 666,621
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Table 4.

Summary of sequencing technology, laboratories, and read depth for datasets used for between-lab 

comparisons. Roche 454 produces far fewer reads than Illumina and Life Technologies, however these reads 

are significantly longer.

Technology Laboratory Replicates Read depth

Illumina Mayo 4 1,141,566,965

BGI 5 1,008,962,065

Life Technologies PSU 5 400,076,114

NWU 5 517,881,698

Roche 454 NYU 2 1,277,230

SQW 2 1,139.842
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