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Abstract

The likelihood function represents statistical evidence in the context of data

and a probability model. Considerable theory has demonstrated that evidence

strength for different parameter values can be interpreted from the ratio of

likelihoods at different points on the likelihood curve. The likelihood function

can, however, be unknown or difficult to compute; e.g. for genetic association

studies with a binary outcome in large multi-generational families. Compos-

ite likelihood is a convenient alternative to using the real likelihood and here

we show composite likelihoods have valid evidential interpretation. We show

that composite likelihoods, with a robust adjustment, have two large sample

performance properties that enable reliable evaluation of relative evidence for

different values on the likelihood curve: (1) The composite likelihood function

will support the true value over the false value by an arbitrarily large factor;

and (2) the probability of favouring a false value over a true value with high

probability is small and bounded. Using an extensive simulation study, and

in a genetic association analysis of reading disability in large complex pedi-

grees, we show that the composite approach yields valid statistical inference.

Results are compared to analyses using generalized estimating equations and

show similar inference is obtained, although the composite approach results in

a full likelihood solution that provides additional complementary information.
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1 Introduction

Genetic association studies have identified many genes or markers that contribute to

disease susceptibility (Welter et al., 2014). Genetic data from families are often col-

lected for the purpose of linkage analysis, however this pedigree data can also be used

for fine-mapping studies using population based association analysis (Browning et al.,

2005). When related individuals are involved in the analysis, GEE or generalized

linear mixed effects models are commonly implemented in a frequentist framework

(Thornton, 2015). A comprehensive comparison of several methods, namely, GEE,

generalized linear mixed model, and a variance component model, for genome-wide

association studies was conducted in Chen et al. (2011) and, after consideration for

low disease prevalence and rare genetic variants, linear mixed models were the only

approach that resulted in valid type I error and adequate statistical power in the

majority of cases. However, this method does not have an odds ratio interpretation

for the regression coefficients and is computationally challenging. GEE is computa-

tionally more efficient and the inflation in type I error for the GEE is due to small

sample size that can be avoided by using a jackknife variance estimator. However,

the GEE is an estimation equation approach and does not allow for full likelihood

interpretation. In the next section, we review the likelihood paradigm (Royall, 1997),

a paradigm for statistical inference directly from the likelihood (or pseudo-likelihood)

function that provides an alternative approach to this problem.

1.1 Likelihood Paradigm

The likelihood paradigm uses likelihood functions to represent the statistical evidence

generated in a study about the unknown parameter(s) of interest and uses likelihood

ratios to measure the strength of statistical evidence for one hypothesis versus another.

Suppose we observe y as a realization of a random variable Y with a probability

distribution {f(.; θ), θ ∈ Θ} where θ is a fixed dimensional parameter. The Law

of Likelihood (Hacking, 1965) states: ‘if hypothesis H1 implies that the probability

that a random variable Y takes the value y is f1(y), while hypothesis H2 implies

that the probability is f2(y), then the observation Y = y is evidence supporting H1

over H2 if and only if f1(y) > f2(y), and the likelihood ratio, f1(y)/f2(y), measures

the strength of that evidence’. Then, for L(θ) ∝ f(y; θ), L(θ1)/L(θ2) measures the
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strength of evidence in favour of H1 : θ = θ1 relative to H2 : θ = θ2. We have

strong evidence in favour of H1 versus H2 if L(θ1)/L(θ2) > k, strong evidence in

favor of H2 versus H1 if L(θ1)/L(θ2) < 1/k and we have weak evidence if 1/k <

L(θ1)/L(θ2) < k that is, the data did not produce sufficiently strong evidence in

favor of either hypothesis. This is an undesirable result since it tells us the data

provided are not sufficient to produce strong evidence, we need to increase the sample

size. Another undesirable result is to observe strong evidence in favour of the wrong

hypothesis, that is, observing misleading evidence, which also can be minimized by

increasing the sample size. Moreover, below we see that the probability of observing

misleading evidence is bounded. The choice of k can be determined in the planning

stage such that the probability of observing weak and misleading evidence is small.

For discussions on benchmarks for k, see Royall (1997, p.11).

The probability of getting misleading evidence, a function of k and n, is denoted

by M1(n, k) = P1(L(θ2)/L(θ1) ≥ k), where P1 indicates the probability is taken under

the correct model hypothesized in H1. Royall (2000) shows that this probability is

described by a bump function, P1(L(θ2)/L(θ1) ≥ k)→ Φ(−c/2−log(k)/c), where k >

1, Φ is the standard normal distribution function and c is proportional to the distance

between θ1 and θ2, where c = ∆
√
n/σ. When the distance ∆ is measured in units

of the standard error, the probability of misleading evidence is independent of the

sample size at a fixed c (Figure 1). Figure 1 indicates that the probability of observing

misleading evidence is 0 when the distance between the two hypothesized values is

very small and corresponds to high probabilities of observing weak evidence. The

probability of observing misleading evidence tends to 0 when the distance between

the two hypothesized values increases and, regardless of the sample size, the bump

function is maximized at Φ(−
√

2 log k) when ∆ = (2 log k)1/2 and this is the best

possible bound.
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Figure 1. Example of a bump function generated under the Normal distribution.

To ensure reliable inferential properties for the likelihood paradigm, two important

performance properties are required (Royall (2000), Royall and Tsou (2003)). Let

L(θ) be the likelihood function where X1, ..., Xn are iid with a smooth probability

model f(.; θ) for θ ∈ R. Then 1) for any false value θ 6= θ0, the evidence will eventually

support θ0 over θ by an arbitrarily large factor: P0(L(θ0)/L(θ)→∞ as n→∞) =

1, and 2) in large samples, the probability of misleading evidence, as a function of θ,

is approximated by the bump function, P0(L(θ)/L(θ0) ≥ k) → Φ(−c/2 − log(k)/c)

where k > 1, Φ is the standard normal distribution function and c is proportional to

the distance between θ and θ0. The results can be extended to the case where θ is a

fixed dimensional vector parameter. The first property implies that the probability

of getting strong evidence in favor of the true value goes to 1. This implies that

the probability of weak evidence and misleading evidence go to 0 as n → ∞. The

second property implies that, when n is sufficiently large, the probability of misleading

evidence of strength k is maximized at a fixed constant Φ(−(2 log k)1/2), over all θ.

Those properties ensure that with high probability we will get evidence in favor of

the true value and that the probability of strong evidence in favor of a false value is
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low.

In some situations, the working model for the data can be wrong. Royall and Tsou

(2003) show that under certain conditions, the likelihood ratio constructed from the

working model, with a robust adjustment factor, can continue to be a valid measure

for evidential interpretation. The first condition in order to use this likelihood ratio

as a valid evidence function is to check whether the object of inference is equal to the

object of interest for the chosen working model. We describe these concepts below.

Suppose we have {f(.; θ), θ ∈ Θ} where θ is fixed dimensional, as the working

model, and there exist a true density g. The Kullback-Liebler divergence between g

and f is K(g : f) = Eg{log g(.)− log f(. : θ)}. Let θg be the value of θ that maximizes

Eg{log f(. : θ)}; that is, θg minimizes the Kullback-Liebler divergence between f and

g. Then it can be shown that the likelihood ratio L(θg)/L(θ) constructed from f

converges to infinity with probability 1. This tells us that the likelihood under the

wrong model represents evidence about θg. Suppose we are interested in Eg(Y ). θg

and Eg(Y ) are referred as the object of inference and the object of interest in Royall

and Tsou (2003). If our working model is wrong, then θg might not be equal to

Eg(Y ), and the likelihood ratio will favour the wrong value θg over the true value

Eg(Y ) since Pg(L(θg)/L(Eg(Y )→∞) = 1. Thus, we essentially need to understand

what θg represents in our working model f , and specifically, check if θg corresponds

to Eg(Y ) once f is chosen. This can be done analytically (Royall and Tsou, 2003) or

through simulations (Section 3).

To allow for pure likelihood interpretation here we propose using composite likeli-

hood ratios for genetic association studies when we have binary data with correlated

outcomes. Our method provides full likelihood interpretation for the inference, i.e.

support intervals, odds ratio (OR) interpretation, shape of the function and ability to

compare the relative evidence for all parameter values. It is easy to implement and

flexible to incorporate any data structure including independent controls.
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2 Methods

2.1 Composite Likelihoods : Definitions and Notations

Composite likelihoods are constructed by multiplying together lower dimensional like-

lihood objects (Lindsay, 1988). They are useful for inference when the full likeli-

hood is intractable or impractical to construct. Suppose Y = (Y1, Y2, ..., Ym) is an

m−dimensional random variable with a specified joint density function, f(y; θ), where

θ ∈ Θ ⊂ Rd is some unknown parameter. Considering this parametric model and

a set of measurable events {Ak; i = 1, ..., K}, a composite likelihood is defined as

CL(θ; y) =
∏K

k=1 f(y ∈ Ak; θ)wk , where wk, k = 1, . . . , K are positive weights.

The associated composite log-likelihood is denoted by cl(θ; y) = logCL(θ; y)

following the notation in Varin (2008). When we consider a random sample of

size n, the composite likelihood becomes CL(θ; y
∼

) = CL(θ) =
∏n

i=1 CL(θ; yi) =∏n
i=1

∏K
k=1 f(yi ∈ Ak; θ)wk with the composite score function u(θ; y

∼
) = u(θ) =

∆θ cl(θ), where ∆θ is the differentiation operation with respect to the parameter

θ. In the following, we drop the argument y
∼

for notational simplicity.

Note that the parametric statistical model {f(y; θ), y ∈ Y ⊂ Rm, θ ∈ Θ ⊂ Rd}
may or may not contain the true density g(y) of Y. Varin and Vidoni (2005) defined

the Composite Kullback-Leibler divergence between the assumed model f and the true

model g as K(g : f ; θ) =
∑K

k=1Eg{log g(Y ∈ Ak) − log f(Y ∈ Ak; θ)}wk. This is a

linear combination of the Kullback-Leibler divergence associated with individual com-

ponents of the composite likelihood. In the case where f(y ∈ Ak; θ) 6= gk(y) for some

k, the estimating equation u(θ) = 0 is not unbiased, i.e. Eg{u(θ)} 6= 0 ∀θ. However,

for the parameter value θg, which uniquely minimizes the composite Kullback-Leibler

divergence, Eg{u(θg)} = 0 holds. Then, under some regularity conditions, the max-

imum composite likelihood estimator (MCLE), θ̂CL = arg maxCL(θ), converges to

this pseudo-true value θg. Note that θg depends on the choice of Ak. Xu (2012)

provided a rigorous proof of the θg– consistency of θ̂CL under model misspecification.

Furthermore, when f(y ∈ Ak; θ0) = gk(y) for all k, θ̂CL is a consistent estimator of

the true parameter value θ0 (Xu, 2012).

In many practical settings, the parameter of interest is only a subset of the param-

eter space. In such cases, we partition θ into θ = (ψ, λ) ∈ Θ ⊂ Rd, where ψ ∈ Rp is
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the parameter of interest and λ ∈ Rq is the nuisance parameter, with p+q = d. Then,

θ̂ψ = (ψ, λ̂(ψ)) denotes the constrained MCLE of θ for fixed ψ, and CLp(ψ) is the pro-

file composite likelihood function, CLp(ψ) = CL(θ̂ψ) = maxλCL(ψ, λ). The compos-

ite score function is partitioned as u(θ) = [uψ(θ) uλ(θ)]
t = [∂cl(θ)/∂ψ ∂cl(θ)/∂λ]t.

Taking the expectation of its second moments, we obtain the variability matrix,

J =

[
Jψψ Jψλ

Jλψ Jλλ

]
,

with Jψψ = Eg{(∂cl(θ; Y)/∂ψ)2} and Jψλ = Eg{(∂cl(θ; Y)/∂ψ)(∂cl(θ)/∂λ)}. The

information in the composite score function is given by G(θ) = H(θ)J(θ)−1H(θ)

where H is the sensitivity matrix defined along with its inverse.

H =

[
Hψψ Hψλ

Hλψ Hλλ

]
, H−1 =

[
Hψψ Hψλ

Hλψ Hλλ

]
,

with Hψψ = Eg{−∂2cl(θ; Y)/∂ψ∂ψ} and Hψλ = Eg{−∂2cl(θ; Y)/∂ψ∂λ}.

2.2 Composite likelihood inference in the likelihood paradigm

We propose that the composite likelihood and its corresponding set of all possible

likelihood ratios can be used as a surrogate for the real likelihood ratios to provide

pure likelihood inference for a given date set. For this, we need to prove that the

composite likelihood functions have the two crucial performance properties possessed

by real likelihood functions and some pseudo likelihoods (Section 1.1). Since compos-

ite likelihoods can be seen as misspecified likelihoods, we need to derive the robust

adjustment factor defined in Royall and Tsou (2003), so that the inference becomes

robust against model misspecification. As a first condition, we need to determine

whether the object of inference is equal to the object of interest, which can only be

checked after the working model f is chosen.

In Theorem 1, we show that composite likelihood functions, with the robust ad-

justment factor, have the two important performance properties of the likelihood

paradigm (Royall and Tsou, 2003).

Theorem 1. Assume Y = (Y1, Y2, ..., Ym) is a random vector from an unknown dis-
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tribution g(y). The parametric model f(θ; y) is chosen as the working model, with

θ ∈ Θ ⊂ R. Let θg be the (unique) minimizer of the composite Kullback-Leibler

divergence between f and g. Assume Y1, ...,Yn is n independent and identically

distributed observations from the model g(.). Under regularity conditions on the

component log densities in Appendix A of the supplementary material, the following

properties hold; (a) For any value θ 6= θg, the evidence will eventually support θg

over θ by an arbitrarily large factor; Pg(CL(θg)/CL(θ)→∞ as n→∞) = 1. (b) In

large samples, the probability of misleading evidence, as a function of θ, is approx-

imated by the bump function, Pg
(
(CL(θ)/CL(θg))

a/b ≥ k
)
→ Φ (−c/2− log(k)/c) ,

where k > 1, Φ is the standard normal distribution function, c is proportional to

the distance between θ and θg, a = Eg{∆θu(θg; Y)} and b = V arg{u(θg; Y)}. The

results can be extended to the case where θ is a fixed dimensional vector parameter.

The proof is in Appendix A of the supplementary material. Note that we can sub-

stitute the a and b terms with the consistent estimates â = n−1Σn
i=1u(θ̂CL; Yi) and

b̂ = n−1Σn
i=1(u(θ̂CL; Yi))

2, where θ̂CL is the MCLE.

Suppose θ ∈ Θ ⊂ Rd is partitioned as θ = (ψ, λ) and ψ is a parameter of interest.

It was shown in Royall (2000) that the large-sample bound for the probability of

misleading evidence, Φ(−(2 log k)1/2) holds for profile likelihoods. In Theorem 2, we

show that the profile composite likelihood also has these two properties.

Theorem 2. Assume Y = (Y1, Y2, ..., Ym) is a random variable from an unknown

distribution g(y), the model f(θ; y) is the assumed model, with θ ∈ θ ⊂ R2 partitioned

as θ = (ψ, λ) and ψ is a parameter of interest. Let Y1, ...,Yn be n independent and

identically distributed observations from the model g(.). Under regularity conditions

on the component log densities in Appendix A of the supplementary material, the

following properties hold.

(a) For any false value ψ 6= ψg, the evidence will eventually support ψg over ψ by

an arbitrarily large factor;

CLp(ψg)

CLp(ψ)
→p ∞ n→∞ (1)

(b) In large samples, the probability of misleading evidence, as a function of ψ, is

9



approximated by the bump function,

Pg

{(
CLp(ψ)

CLp(ψg)

)a/b
≥ k

}
→ Φ

(
−c
∗

2
− log(k)

c∗

)
(2)

where k > 1, Φ is the standard normal distribution function, c∗ = ca/b1/2, c is

proportional to the distance between ψ and ψg, a = Hψψ(ψg, λg)
−1 and

b = Hψψ(ψg, λg)
−1Gψψ(ψg, λg)H

ψψ(ψg, λg)
−1.

Proof. See Appendix A of the supplementary material.

The results can be extended to the case where ψ and λ are fixed dimensional

vector parameters. Again, we substitute the a and b terms with consistent estimates.

Note that the adjustment factor a/b simplifies to Hψψ/Gψψ since we assume ψ is a

scalar. This ratio is equal to the adjustment factor proposed by Pace et al. (2011) in

order to get a composite likelihood ratio test converging to a χ2 distribution instead of

converging to
∑
νiχ

2
(1)i, where the νi’s are the eigenvalues of the matrix (Hψψ)−1Gψψ.

2.3 Modelling correlated binary data using composite likeli-

hoods

Consider a genetic association study where there are N independent families with

ni observations in the ith family, i = 1, ..., N . Let Yi = (Yi1, ..., Yini) be a binary

response for the ith family, where Yij indicates whether the individual j in the ith

family has the trait or not (Yij =1 or 0, respectively). Similarly the genotype data

vector at a particular SNP is defined as Xi = (Xi1, ..., Xini), where the SNP genotypes,

X ∈ {0, 1, 2}, represent the number of minor alleles for a given SNP. We look at

the relative evidence for different values of the ORs for SNPs genome-wide or in a

candidate region.

In general, constructing a fully specified probabilistic model for correlated binary

data is challenging. A joint probability mass function (pmf) for correlated binary

variables was first proposed by Bahadur (1961), which involves writing the joint

probabilities as functions of marginal probabilities and second and higher order cor-

relations. Although the Bahadur representation provides a tractable expression of a

pmf, it has some limitations (Bahadur (1961), Molenberghs and Verbeke (2005, chap.
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7)). Other approaches for modelling the joint pmf for correlated binary data include

constructing multivariate probit models or Dale models (Molenberghs and Verbeke,

2005). However, these are computationally intensive and hence intractable in high

dimensional data.

Since evaluating the full likelihood is complicated, we construct a composite like-

lihood to model pedigree data and use the ratio of the composite likelihoods as our

evidence function. We showed in Section 2.2 that composite likelihood can be used as

a surrogate for the real likelihood function for pure likelihood analysis and evidential

interpretation assuming the object of interest and object of inference are the same.

The simplest composite likelihood to construct is from independent margins and

is useful if one is interested only in marginal parameters (Varin et al., 2011). Here,

we are interested in the marginal parameter β1 which is a 1st order parameter. Thus,

we choose a composite likelihood constructed from lower dimensional margins using

the working independence assumption since they are easier to construct and they can

be more robust to model misspecifications (Jin (2010), Xu (2012)).

Consider an underlying logistic regression model with an additive effect of the

genotype on a binary response, log(pij/(1 − pij)) = β0 + β1xij, where pij =

P (Yij = 1|xij) = E(Yij|xij) is the marginal probability that the individual j in

the ith family has the disease trait given xij = 0, 1 or 2. The composite likeli-

hood constructed under the working independence assumption is CLind(β0, β1) =

ΠN
i=1Πni

j=1P (Yij = yij | xij) = ΠN
i=1

(
Πni
j=1(pij)

yij(1− pij)1−yij
)
, where pij = exp(β0 +

β1xij)/(1 + exp(β0 + β1xij). We can determine the profile composite likelihood

CLp(β1) = maxβ0{L(β0, β1)} and compute the maximum profile composite likeli-

hood estimate, β̂1CLind
= maxβ1 logCLind(β̂0(β1), β1). Note that we need to use the

adjustment factor, a/b in Eq. (2) to the composite likelihood ratio. In the next

section, we use a simulation study to investigate the implications of the theoretical

results in Section 2.2.
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3 Simulation study

3.1 Simulation design

Consider a family with 12 members, a proportion of whom are affected (eg. Figure

2 ). We generate N = 30, 50, 100, 150, 200, 300 and 500 of such families with this

structure to see how sample size affects the performance of our method.

1 2

3 9 4 5 8 10

11 12 17 18

Figure 2. Example of a generated family where there are 5 affected individuals.

We keep the regression parameters constant at β0 = −2.38 and β1 = 1.76 through-

out our simulations. With these values, the odds of disease when an individual does

not carry the minor allele is 0.09 and the odds ratio is set large at 5.8. There are 5

values assumed for the dependence parameter: ψ1 quantifies the dependence between

siblings, ψ2 quantifies the dependence between a parent and an offspring, ψ3 corre-

sponds to the dependence between an aunt/uncle and a niece/nephew, ψ4 quantifies

the dependence between the grandparent and the grandchild and ψ5 quantifies the

dependence between cousins. The values of the dependence parameters are chosen as

ψ1 = 3, ψ2 = 2.5, ψ3 = 2, ψ4 = 1.5, ψ5 = 1.2. We only assume positive dependence

12



within pairs. See Table 1 and Appendix B of the supplementary material for the

relationship between correlations within a binary pair and the odds ratio.

Table 1. The relationship between correlations within a binary pair and odds ratio.

odds ratio correlations
ψ δij|(0,0) δij|(0,1) δij|(1,1) δij|(0,2) δij|(1,2) δij|(2,2)

1.2 0.015 0.025 0.042 0.021 0.037 0.034
3 0.120 0.155 0.253 0.099 0.197 0.222

where δij|(k,l) = corr(Yi, Yj | xi = k, xj = l) and (Yi,Yj) is a binary pair.

Genotype data (X) for families with a minor allele frequency of 0.20 are generated

using SIMLA (Schmidt et al., 2005). To generate the 12 dimensional correlated

binary vector Y given X, we use the method of Emrich and Piedmonte (1991). This

method uses a discretised normal approach to generate correlated binary variates

with specified marginal logistic probabilities and pairwise correlations given genotype

X. A detailed explanation of the data generation is given in Appendix B of the

supplementary material.

Our main purpose is to evaluate evidence about β1 and determine if the procedure

we propose will lead to valid inference. Our simulation must show: (1) that the

maximum profile composite likelihood estimate of the parameter of interest converges

to the true value as sample size increases to indicate that the object of inference is the

same as the object of interest. That is, the composite likelihoods provide evidence

about the true parameter (Eq.(1) of Theorem 2), and (2) The probability of observing

misleading evidence is described by the bump function (Eq.(2) of Theorem 2).

For the composite likelihood constructed under the working independence as-

sumption, we have θ = (β0, β1), where β1 is the parameter of interest and β0 is the

nuisance parameter. We follow the steps described in Appendix C of the supple-

mentary material to find the maximum profile composite likelihood estimate of the

parameter of interest, β̂1CL. We generate 10,000 simulated data sets and estimate the

parameters by averaging over 10,000 maximum profile composite likelihood estimates,

β̂1CL =
∑10000

j=1 β̂
(j)
1CLp

/10000.

To estimate the probability of misleading evidence (Eq.(2) of Theorem 2), we

first estimate the robust adjustment factor a/b. Recall that a = Hψψ(ψg, λg)
−1 and

b = Hψψ(ψg, λg)
−1Gψψ(ψg, λg)H

ψψ(ψg, λg)
−1 where ψ is the parameter of interest,
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λ is the nuisance vector. Note that for θ = (ψ, λ), G(θ) = H(θ)J(θ)−1H(θ) with

H(θ) = Eg{−∂2cl(θ; Y)/∂θ∂θT} and J = Eg{(∂cl(θ; Y)/∂θ)(∂cl(θ; Y)/∂θ)T}. We

estimate J(θ), using Ĵ(θ̂) = 1/N
∑N

i=1 u(θ̂CL,yi)u(θ̂CL,yi)
T , where u(θ; yi) are the

elements of the composite score function, yi is the observations vector, θ̂ is the global

MCLEs of θ = (β0, β1), and N is the sample size (number of families).

Then we estimate H(θ) by Ĥ(θ̂) =
∑N

i=1(∂2cl(θ; yi)/∂θ∂θ
T )/N . For the

parameter of interest β1, Ĥβ1β1(θ̂) and Ĝβ1β1(θ̂) are the entries of the ma-

trices Ĥ−1(θ̂) and Ĝ−1 that belong to the parameter β1. Then, â/b̂ =

(Ĥβ1β1(θ̂)−1)/(Ĥβ1β1(θ̂)−1Gβ1β1(θ̂)Ĥβ1β1(θ̂)−1) = Ĥβ1β1(θ̂)/Ĝβ1β1(θ̂) since β1 is a

scalar.

To estimate the probability of misleading evidence for each simulated

dataset, calculate the proportions of the composite likelihood ratios with the

robust adjustment factor that are greater than the pre-specified threshold,

(1/10000)
∑10000

j=1 I[{CLp(β1; y
∼

(j))/CLp(β1g; y
∼

(j))}â/b̂ ≥ k], where y
∼

(j) is the jth simu-

lated dataset under the chosen model parameter β1g, β1 is a parameter value that is

different than β1g and I is the indicator function.

3.2 Simulation results

The simulation results for determining whether the maximum profile composite like-

lihood estimates of β1 converge to the true parameter value for sample sizes n =

30, 50, 100, 150, 200, 300 and 500 are given in Table 2. We see that as n increases, the

composite likelihood approach provides consistent estimates for the true parameter

value β1. This ensures that the object of inference is equal to the object of interest ;

that is, the composite likelihood ratio is providing evidence about the true parameter

of interest.

Table 2. Simulation study. The maximum profile composite likelihood estimates of
β1, using the composite likelihood method and with different number of families (n)
with β0 = −2.38, β1 = 1.76.

n 30 50 100 150 200 300 500

β̂1CLp 1.798 1.782 1.772 1.767 1.766 1.762 1.762

In Figure 3, we illustrate the behaviour of the probability of observing misleading
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evidence for β1 for n = 30, 100, 300 and 500. The solid curve indicates the proba-

bility of misleading evidence before the robust adjustment factor is applied and the

dashed curve indicates this probability after the robust adjustment is applied. For

illustration purposes, we chose k = 8. As the theoretical results predict, after robust

adjustment, the probability of observing misleading evidence is approximated by the

bump function with increasing sample size. The bump function has the maximum

value of Φ(−
√

2 log 8) = 0.021, indicated by the horizontal line in the figures.
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Figure 3. Plots for the probability of misleading evidence before (- -) and after(–)
robust adjustment for n = 30, n = 100, n = 300, n = 500 with β0 = −2.38, β1 = 1.76.
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In simulations where the number of individuals in families varies but only one type

of relationship exists, e.g. only siblings, we looked at the performance of the likelihood

ratios constructed from independent marginals and from pairwise marginals. We also

considered the parameter that defines the relatedness, ψ, as the parameter of inter-

est in the pairwise composite likelihood approach (Appendix D of the supplementary

material). These simulations indicate that 1) both composite likelihood approaches

provide valid evidence functions, 2) the composite likelihood approach from the inde-

pendent marginals still performs well when there is more than one type of relatedness

in the family, while the pairwise composite approach does not, 3) inference about

the first order parameter β1 is not affected by varying the value of the dependence

parameter, and 4) if the parameter of interest is the second order parameter, then the

pairwise likelihood approach is required to enable inference about the second order

parameter (Appendix E of the supplementary material).

4 Genetic Association Analysis of Reading Disor-

der in Families with Rolandic Epilepsy

Rolandic Epilepsy (RE) is a neuro-developmental disorder characterized by cen-

trotemporal sharp waves on EEG, focal seizures and a high frequency of comorbid

speech and reading disorder (RD) in RE cases and their seizure unaffected family

members. We conducted linkage analysis of RD in RE families and here we use our

composite likelihood approach for analysis of genetic association at the Chromosome

1 RD linkage locus we identifed in the families (Chr 1: 209,727,257- 232,025,174)

(Strug et al. (2012)). The data consists of 137 families and 1000 non-RD and non-RE

control singletons. Some families are complex with up to 15 members. In total, there

are 444 individuals in the RE families with 127 affected with RD. All have been geno-

typed genomewide on the Illumina Human Core Exome array. At this locus there are

2087 genotyped SNPs analyzed for association.

We constructed the composite marginal likelihood under a working independence

assumption with a robust adjustment factor, to correct for the misspecified model for

correlated individuals and we assumed an underlying logistic regression model with

an additive model for the SNP. The composite likelihood function with the robust
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adjustment factor, a/b, is CLind(β0, β1) = {ΠN
i=1Π

nj
j=1 (pij)

yij (1− pij)1−yij}a/b where

pij = exp(β0 +β1xij)/(1+exp(β0 +β1xij) and a/b = Hβ1β1(β0, β1)/Gβ1β1(β0, β1). Here

the odds ratio (OR), eβ1 is the interest parameter, and we plot the likelihood as a

function of eβ1 (Strug et al., 2010). Under the hypothesis of no association, the OR

is equal to 1, and the OR is some value different from 1 under the alternative. Note

that since β0 is a nuisance parameter, we profile out the baseline odds, eβ0 , and use

the profile composite likelihood (CLp) ratio with the robust adjustment factor as our

evidence function, i.e. (CLp(e
β1)/CLp(1))â/b̂.

In Figure 4, we illustrate the CLp function for the OR for three SNPs: (a) a

SNP, rs1495855, displaying association evidence, (b) a SNP, rs12130212, that does

not show association evidence and (c) a SNP, rs1160575, with a low cell count in the

2× 3 table (Table 3). By plotting the CLp function, we can observe all the evidence

about the association parameter eβ1 that the data set provides.

In Figure 4(a), the ratio of any two points on the curve represent their relative

support and the theoretical and simulation results ensure this interpretation is valid.

The 1/8 CLp interval for the OR is 1.5 to 3. The OR values within this interval are

consistent with the data at the level k=8, i.e. there are no other values outside this

interval that are better supported than the values within the interval, by a factor of

8 (Royall, 1997). We see that OR=1 is outside of the 1/8 CLp interval. That tells us

that there are some parameter values of the OR, for example the MLE, ÔRmle = 2.1

and nearby values, that are better supported than an OR=1 by a factor of greater

than 8. The 1/32 CLp interval shows that an OR=1 is also not supported by the data

at level k=32. The adjustment factor â/b̂ is 0.88, which is close to 1, suggesting that

the composite likelihood is not too discrepant from the true likelihood. This is due

to the fact that most individuals in our data are unrelated with the 1000 singletons

included in the analysis.

In Figure 4(b), we can see that both 1/8 and 1/32 CLp intervals include OR=1

as a plausible value. This indicates us that there is no value that the data supports

over OR=1 by a factor of 8 or more. In Figure 4(c), the CLp is skewed suggesting

there is sparsity in the data (see Table 3).
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Table 3. Distribution of data at SNP rs1160575

disease status
# of minor allele no yes total

SNP
0 1160 121 1281
1 153 6 159
2 4 0 4

total 1317 127 1444
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Figure 4. Standardized CLp function for OR at three SNPs. 1/8 and 1/32 CLp
intervals (CLpI) as well as the estimated robust adjustment factor â/b̂ are provided.
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In genetic association studies, one often needs to evaluate many SNPs in a region

or genome-wide. Plotting hundreds of individual likelihood functions corresponding to

each SNP may not be practical. Instead, a single plot that represents the association

information in a region of interest can be displayed (Strug et al., 2010) and followed

up by individual likelihood plots at a small number of markers of interest. Figure

5(a) presents the CLp intervals for 2087 SNPs under the Chromosome 1 linkage peak

from 1444 individuals. We display the SNPs by base pair position on the x-axis and

OR on the y-axis. The vertical lines for each SNP on the x-axis represent the 1/k

CLp intervals where k = 32, 100 and 1000. Only the SNPs whose 1/100 CLp intervals

do not include the OR=1 as a plausible value are displayed in colour and noted as

providing strong evidence for ORs different from 1 for a given k. The CLp intervals

displayed in grey include OR=1 (horizontal line at OR=1) as a plausible value so the

SNPs that produced these intervals are not concluded to display strong evidence for

association. If the 1/k CLp interval does not include OR=1, then it will be coloured

in green, red or navy blue for k = 32, 100 and 1000 respectively. For SNP rs1495855,

the 1/k CLp interval for k = 32, 100 and 1000 do not include OR=1 as a plausible

value, indicating evidence of an association between this SNP and RD at the level

k > 1000. Note that the 1/32 CLp interval for rs1495855 (the green portion) is the

same as provided in Figure 4(a). The longest grey CLp interval at the left of the plot

(marked with an x in the plot) corresponds to the SNP in Figure 4(c). Therefore,

Figure 5(a) also provides information about the shape of the likelihood function for

a given SNP.

The small horizontal tick on each CLp interval represents the MLE for the OR

at the SNPs that were found to be associated with RD for some k. The max CLp

ratios, calculated by [CLp(ÔRmle)/CLp(1)]â/b̂, for the three SNPs where the strength

of evidence for association is the largest are also provided on the plot. The SNP

rs1495855 provided the largest likelihood ratio with an MLE for the OR=2.1.
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Figure 5. Evidential analysis of association between SNPs at chromosome 1 and RD (0
or 1) using a composite likelihood from independent margins where the margins are lo-
gistic regression models with genotypes coded additively, with a robust adjustment (a).
Analysis of the data using a GEE approach with an independent correlation structure;
y-axis provides log10 P -values (b).

Using GEE with an independent correlation structure to assess association pro-

vides results that are consistent with the composite likelihood approach. That is, all

of the SNPs that provide CLp ratios for ORs that are better supported than an OR=1

by a factor of greater than 100 are among the ones that produce P -values<0.01 in

the GEE approach. Moreover, the three SNPs that have the maximum likelihood

ratios also have the smallest P -values in the GEE analysis, i.e. P -values for SNPs
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rs1495855, rs12748250 and rs6697921 are < 0.000001, < 0.00001 and < 0.0001 re-

spectively. Figure 5 compares the GEE analysis results with the evidential analysis

results. In Figure 5(b), the SNPs by base pair position are displayed on the x-axis as

in Figure 5(a) and the log10 P -values for the corresponding SNPs from the GEE anal-

ysis are displayed on the y-axis. The smallest P -value corresponds to SNP rs1495855

and the OR estimated from the GEE analysis is 2.1. Figure 5(b) only indicates that

the probability of observing a result this extreme or more is unlikely if the true OR

is 1.

4.1 Multiple Hypothesis Testing Adjustments

Until now we have not considered multiple hypothesis testing. The probability of

observing a LR > k at a single SNP if OR = 1 is true is bounded (Eq. (2)). But if

one aims to have the probability across all SNPs bounded, there are some alternative

considerations. Let H0 be the hypothesis that none of the N SNPs are associated with

the trait. To control the family-wise error rate (FWER), which is the probability of

at least one LR > k among N hypotheses when H0 : OR = 1 is true, let M0(n,N, k)

be the FWER where n is the sample size and k is the criterion for the measure of

evidence. Then,

FWER = M0(n,N, k) = P0 ((LR1 ≥ k) ∪ (LR2 ≥ k) ∪ ... ∪ (LRN ≥ k))

≤ P0(LR1 ≥ k) + P0(LR2 ≥ k) + ...+ P0(LRN ≥ k)

=
N∑
j=1

M
(j)
0 (n, k) j = 1, ..., N SNPs

where M
(j)
0 (n, k) is the probability of observing misleading evidence at the j-th

SNP for two simple hypotheses for the OR. M
(j)
0 (n, k) is a planning probability and

so generally, H0 : OR = 1, and H1 is the OR that is the minimum clinically important

difference, since for larger ORs, M0 is smaller (Strug and Hodge, 2006b).

For planning purposes M
(j)
0 (n, k) are the same for all j. Thus, a conservative

upper bound on the FWER is NM0(n, k). Since M0(n, k) is usually very small for

any given SNP, it may provide a reasonable upper bound for the FWER. Otherwise,

increasing the sample size can dramatically lower the FWER (Strug and Hodge,
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2006a), suggesting sample size is an adjustment for multiple hypothesis testing.

We simulated 105 replicates under no association (OR = 1). Let y
∼

(j) be the jth

simulated phenotype under H0 given the corresponding genotype, CLp(OR; y
∼

(j)) is

the profile composite likelihoods evaluated at a chosen OR, and I is an indicator func-

tion. Then we evaluate the likelihood ratio for OR = 2 and OR = 2.5 versus OR = 1

and we estimate M0(n, k) using (1/105)
∑105

j=1 I[{CLp(OR; y
∼

(j))/CLp(1; y
∼

(j))}â/b̂ ≥ k].

The effective number of independent tests in the set of 2087 dependent markers was

estimated as 1413 (Li et al., 2012). Thus, N = 1413 is used in the calculation of the

upper bound for the FWER.

We calculate the upper bound on the FWER for different choices of criterion k

(k = 32, 64, 100 and 1000). For k = 1000, the upper bound for the FWER is 0.3250

at OR = 2. This tells us that the probability of observing at least one LR > k among

1413 SNPs when none of the SNPs are associated with the trait is bounded by 0.3250.

A lower upper bound would be preferable, however, although we know that this is

a crude upper bound and may not provide a good estimate of the true FWER, it is

straightforward to estimate.

When feasible, the best approach to decrease the M0(n, k) and consequently the

FWER is by increasing the sample size or equivalently, replicating the result in an

independent sample. This approach also reduces the probability of weak evidence

whereas increasing k for a fixed n increases weak evidence. To see how increasing

the sample size will effect the upper bound on the FWER, we simulated a data set

based on the original data structure, but where the number of families is doubled

from 444 to 888. We see in Table 4 that the upper bound on the FWER is 0.1837 and

is considerably lower with greater sample size, where we now have 1888 individuals,

instead of 1444.

Table 4. Upper bound for FWER for 105replicates when the sample size is 1888.

FWER ≤ N M0(1888, k)) k = 32 k = 64 k = 100 k = 1000

OR=2 1 1 1 0.1837

OR=2.5 1 0.6076 0.4098 0.0706
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5 Summary

We have developed an alternative approach to the analysis of genetic association for

correlated (family) data using the pure likelihood paradigm. The likelihood paradigm

provides a full likelihood solution that enables more comprehensive inference than null

hypothesis significance testing. Due to complex dependencies in family data, con-

structing a fully specified probabilistic model for a binary trait is challenging. There-

fore, we considered working with composite likelihoods for modelling this type of data,

which has also been considered in a frequentist context (Le Cessie and Van Houwelin-

gen (1994), Kuk and Nott (2000), Zhao and Joe (2005), Zi (2009), He and Yi (2011)).

We showed that LRs from composite likelihoods, with a robust adjustment, are valid

statistical evidence functions in the likelihood paradigm. They have the two required

performance properties of an evidence function, assuming the object of inference is

equal to the object of interest, that enable the measurement of evidence strength by

comparing likelihoods for any two values of an interest parameter. The robust adjust-

ment on the composite likelihood is necessary even though the likelihood objects in

the composite likelihood are correctly specified, since multiplying them to construct

the composite likelihood does not in general lead to a probability density function.

If one is interested in marginal parameters (e.g. OR = eβ1), we proposed con-

structing composite likelihoods from independent marginals when we have complex

family structures. (Working with these independent likelihoods reduces the com-

putations considerably.) Using simulation, we also examined the use of composite

likelihoods for a logistic regression model with an additive effect on the marginal

binary response, and we show that this choice of composite likelihood offers reliable

inference as well. The composite likelihood approach contributes additional infor-

mation by providing a full likelihood solution that can complement frequentist GEE

analysis, and is more feasible to implement over generalized mixed models.

We applied the composite likelihood method to the analysis of genetic association

on Chromosome 1 at the RD linkage locus in RE families. We found that rs1495855

provided large likelihood ratios for ORs near 2 versus OR=1. We observed an MLE

of OR=2.1 and almost 24000 times greater evidence for OR near 2 versus OR=1. The

1/1000 likelihood interval is (1.16, 3.89) (not shown on Figure 5(a)). Even the values

around 1.2 are better supported over OR=1 by a factor of 1000. GEE analysis also

23



supported evidence for association at this variant. Lastly, we discussed how FWER

control is achieved in the context of this paradigm, and showed that indeed the

probability of observing a misleading result across the 2089 SNPs at even k > 1000

was actually quite high and a replication sample would be needed to decrease the

FWER.

A limitation of this approach is that it may not be optimal in small samples

since the performance properties for incorrect models (e.g. composite likelihoods)

rely on large sample results. Future work will determine an efficient solution for

small sample adjustments, potentially using a Jacknife variance estimate as was done

in small sample correction methods for GEE (Paik (1988), Lipsitz et al. (1990)).

Another challenge is when interest lies in higher order parameters, like the correlation

parameter. In this case, composite likelihoods that are composed of more complex

marginals are required for pure likelihood inference. This makes the computations

more difficult and leads to longer computational time. Finding a working model where

the object of interest is equal to the object of inference may also be challenging, which

is critical when working with incorrect models in any paradigm.

In conclusion, we have provided a composite likelihood approach for the analysis

of genetic association in family data using the likelihood paradigm. Our method is

practical, efficient and easy to implement and provides a reliable evidence function

when the real likelihoods are intractable or impractical to construct.

Software

Software in the form of R code, together with the simulated data set is available from

the authors upon request.
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Supplemental Material

A Proofs of Theorem 1 and Theorem 2

A.1 Regularity Conditions

The regularity conditions (A1-A6) are provided in (Knight, 2000, p.245). Let l(θ; y) =

log f(y; θ) and let lθ(θ; y), lθθ(θ; y) and lθθθ(θ; y) be the first three partial derivatives

of l(θ; y) with respect to θ. These conditions apply on the component log densities of

a composite likelihood.

A1. The parameter space Θ is an open subset of the real line.

A2. The set A = {y : f(x; θ) > 0} does not depend on θ.

A3. f(y; θ) is three times continuously differentiable with respect to θ for all y in A.

A4. E[lθ(θ; y)] = 0 for all θ and V ar[lθ(θ; y)] = I(θ) where 0 < I(θ) <∞ for all θ.

A5. E[lθθ(θ; y)] = −J(θ) where 0 < J(θ) <∞ for all θ.

A6. For each θ and δ > 0, |lθθθ(t; y) ≤M(x)| for |θ − t| ≤ δ where Eθ[M(Yi)] <∞

A7. There exists a unique point θg ∈ Θ which minimizes the composite Kullback-

Lebler divergence in Eq. 3 (Xu, 2012).

K(g : f ; θ) =
K∑
k=1

Eg [log g(Y ∈ Ak)− log f(Y ∈ Ak; θ)]wk. (3)

Condition A4 changes when there is model misspecification (e.g. setting up wrong

marginal or conditional densities in composite likelihoods), e.g. Eg[lθ(θ; y)] = 0 only

for θ = θg, where the expectation is taken under the correct (unknown) model g.

It can be deduced that the mean and variance of the log likelihood derivatives,

lθ(θ; y), lθθ(θ; y) and lθθθ are of orderO(n). The higher order derivatives are, in general,

of order Op(n) (Severini, 2000, p.88).

According to Severini (2000, p.106), sufficient conditions for the consistency of

the MLE for regular models are:
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1. Θ is a compact subset of Rd.

2. supθ∈Θ |n−1l(θ)− n−1E{l(θ)}| →p 0 as n→∞.

We need the second condition to hold on the component log densities. Let li be

the ith component log density in the composite likelihood with i = 1, .., d, such that

cl(θ) =
∑d

i=1 n
−1li(θ) then∣∣∣∣∣

d∑
i=1

n−1li(θ)−
d∑
i=1

n−1E{li(θ)}

∣∣∣∣∣ ≤
d∑
i=1

∣∣n−1li(θ)− n−1E{li(θ)}
∣∣

sup
θ∈Θ

∣∣∣∣∣
d∑
i=1

n−1li(θ)−
d∑
i=1

n−1E{li(θ)}

∣∣∣∣∣ ≤ sup
θ∈Θ

d∑
i=1

∣∣n−1li(θ)− n−1E{li(θ)}
∣∣

=
d∑
i=1

sup
θ∈Θ

∣∣n−1li(θ)− n−1E{li(θ)}
∣∣ (4)

If each component in Eq.(4) goes to 0 in probability, then the term on the left side

goes to 0 in probability. Furthermore, see (Xu, 2012) for a more detailed regularity

conditions that are needed for the consistency of the maximum composite likelihood

estimator.

A.2 Proof of Theorem 1

(a) We want to show Pg{CL(θg)/CL(θ) → ∞ as n → ∞} = 1. The composite

likelihood function for n observations is CL(θ) = Πn
i=1CL(θ; yi). Let Rn =

Πn
i=1CL(θg; yi)/Π

n
i=1CL(θ; yi). We want Rn →∞.
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Let cl(θ; y) = logCL(θ; y).

log

(
Πn
i=1CL(θg; yi)

Πn
i=1CL(θ; yi)

)1/n

=
1

n

(
n∑
i=1

cl(θg; yi)−
n∑
i=1

cl(θ; yi)

)

=
1

n

(
K∑
k=1

wk

{
n∑
i=1

log(f(yi ∈ Ak; θg))

−
n∑
i=1

log(f(yi ∈ Ak; θ))

})

→a.s

K∑
k=1

wk {Eg [log(f(Y ∈ Ak; θg))

− log(f(Y ∈ Ak; θ))]} (5)

> 0

since wk’s are positive and θg minimizes the K(g : f ; θ). (5) is true by the

Strong Law of Large Numbers. Since (1/n) logRn → c > 0, where c is a finite

positive number, then Rn = Πn
i=1CL(θg,yi)/Π

n
i=1CL(θ,yi)→∞

(b) We want Pg{[CL(θ)/CL(θg)]
a/b ≥ k)} → Φ(−c/2 − log(k)/c) where c is pro-

portional to the distance between θ and θg. Note that CL(θ; y) = ΠK
k=1f(y ∈

Ak; θ)ωk and cl(θ; y) = logCL(θ; y) =
∑K

k=1 ωk log f(y ∈ Ak; θ).
Composite score function: u(θ; y) = ∇θcl(θ; y) =

∑K
k=1 ωj∇ log f(y ∈ Ak; θ)

The sensitivity matrix under the correct model:

H(θ) = Eg (−∇θu(θ; Y)) =

∫
−∇θu(θ; y)g(y)dy

The variability matrix under the correct model:

J(θ) = varg(u(θ; Y))

The Godambe information matrix (Godambe, 1960) under the correct model is

G(θ) = H(θ)J(θ)−1H(θ).
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Then for n independent and identically distributed observations Y1, ...,Yn from

the model g(.), as n→∞, under the regularity conditions, we have;∑n
i=1 u(θg; yi)√

n
→d N (0, J(θg)) since Eg(u(θg; Y)) = 0 (6)

∑n
i=1∇θu(θg; yi)

n
→ −H(θg) (7)

where θg is the (unique) minimizer of the composite Kullback-Leibler divergence

between f and g. Let θ = θg + c/
√
n, then the Taylor expansion of the log

composite likelihood around θg is;

cl(θ)− cl(θg) = u(θg)(θ − θg) +∇θu(θg)
(θ − θg)2

2
+Op(n

−1/2)

=
n∑
i=1

u(θg; yi)
c√
n

+
n∑
i=1

∇u(θg; yi)
c2

2n
+Op(n

−1/2)

→d N

c2

2
E(∇u(θg; Y))︸ ︷︷ ︸

a=−H(θg)

, c2 var(u(θg; Y))︸ ︷︷ ︸
b=J(θg)

 (from Eq. (6)and (7))

→ N

(
−c

2

2
a, c2b

)
(8)

Op(n
−1/2) can be justified since the log composite likelihood is a finite sum of

genuine log likelihoods, which are of the same order. Note that Eq.(8) does

not generate the bump function since the mean is not the negative half of the

variance in the asymptotic normal distribution. In order to obtain the bump

function, we can adjust the ratio of composite likelihoods by raising it to the

power (a/b);
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a

b
log

CL(θ; y)

CL(θg; y)
→ N

(
−a

2c2

2b
,
a2c2

b

)
(9)

∴ lim
n→∞

P

((
CL(θ; y)

CL(θg; y)

)a/b
≥ k

)
= Φ

(
−c
∗

2
− log k

c∗

)
where c∗ = ac√

b

We can estimate a/b through consistent estimates of J(θ) and H(θ). Let θ̂CL

be the maximum likelihood estimator of θ, which is a consistent estimator of θg

(Xu, 2012) then

â =
1

n

n∑
i=1

∇θu(θ̂CL; yi)

b̂ =
1

n

n∑
i=1

u2(θ̂CL; yi)

A.3 Proof of Theorem 2

(a) We want to show,

CLp(ψg, y)

CLp(ψ, y)
→p ∞ n→∞ (10)

CLp(ψg; y) = CL(ψg, λ̂(ψg); y) = supλCL(ψg, λ; y) ≥ CL(ψg, λ; y) ∀λ thus

true for λg.

Then it would be enough to show CL(ψg ,λg ;y)

CLp(ψ;y)
→p ∞ since CLp(ψg ;y)

CLp(ψ;y)
≥ CL(ψg ,λg ;y)

CLp(ψ;y)
.

This will imply that Eq.(10) holds.

In Severini (2000) on page 127, it was shown that the difference between a

profile log-likelihood function from a genuine log likelihood function is of order

Op(1), i.e. lp(ψ; y) = l(ψ, λ(ψ); y) +Op(1), here l(ψ, λ(ψ); y) refers to a genuine

log likelihood function as it can be obtained from an actual model for the data

using a Taylor expansion lp(ψ; y) = l(ψ, λ̂(ψ); y) about l(ψ, λ(ψ); y). Following
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a similar Taylor expansion for the composite likelihood, we get;

cl(ψ, λ̂(ψ)) = cl(ψ, λ(ψ)) + clλ(ψ, λ(ψ))T (λ̂(ψ)− λ(ψ))

+
1

2
(λ̂(ψ)− λ(ψ))T clλλ(ψ, λ(ψ))(λ̂(ψ)− λ(ψ)) + ...

Then if λ̂(ψ) = λ(ψ) + Op(n
1/2) is true then we conclude that clp(ψ; y) =

cl(ψ, λ(ψ)) + Op(1). Since cl(ψ, λ(ψ)) is a finite sum of genuine log-likelihood

functions, under regularity condition on genuine likelihood functions, clλ(ψ, λ(ψ)) =

Op(
√
n) and clλλ(ψ, λ(ψ)) = Op(n).

Why is λ̂(ψ) = λ(ψ) +Op(n
1/2) true?

Remember θg = (ψg, λg) is the value of the parameter that minimizes the K-

L divergence between the assumed model f and the true model g. In the

profile composite likelihood CLp(ψ) = CL(ψ, λ̂(ψ)) = supλCL(ψ, λ), λ̂ψ is

the maximum likelihood estimate of λ for a fixed ψ. In general λ̂(ψ) is not a

consistent estimator of λg unless ψ is fixed at the ‘true’ value, ψg. Note that:

1

n
cl(ψ, λ)− 1

n
Eg[cl(ψ, λ)]

p−→ 0.

Following the arguments in Severini (2000), section 4.2.1, the maximizer of

cl(ψ, λ)/n should converge in probability to the maximizer of Eg[cl(ψ, λ)]/n,

which is (ψg, λg). It was shown in Xu (2012) that the maximum composite like-

lihood estimator, θ̂CL, converges almost surely to θg where θg is the parameter

that minimizes the Kullback-Leibler divergence between the working model f

and the true model g (Eq. (3)). Here, we treat ψ fixed, then λ(ψ) becomes the

only parameter and λ̂(ψ) is the MLE of λ(ψ) for a fixed ψ. Note that when

ψ = ψg, λ(ψg) = λg. By following the regular arguments about the composite

MLEs in Xu (2012), it can be shown that λ̂(ψ) → λ(ψ) as n → 0, where λ(ψ)

is the value of λ that maximizes n−1Eg[l(ψ, λ)] when ψ is fixed. The asymp-

totic distribution of
√
n
(
λ̂(ψ)− λ(ψ)

)
is derived in Eq.(17) and Eq.(20). Thus

λ̂(ψ) = λ(ψ) +Op(n
−1/2) and clp(ψ) = cl(ψ, λ(ψ)) +Op(1).
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It follows that:

(1/n) log
CL(ψg, λg)

CLp(ψ)
= (1/n)(cl(ψg, λg)− cl(ψ, λ(ψ))) + (1/n)Op(1) (11)

where cl(θ) = logCL(θ).

log

(
Πn
i=1CL(ψg, λg; yi)

Πn
i=1CL(ψ, λ(ψ); yi)

)1/n

=
1

n

(
n∑
i=1

cl(ψg, λg; yi)−
n∑
i=1

cl(ψ, λ(ψ); yi)

)
+ (1/n)Op(1)

=
1

n

(
K∑
k=1

wk

{
n∑
i=1

log(f(yi ∈ Ak;ψg, λg))

−
n∑
i=1

log(f(yi ∈ Ak;ψ, λ(ψ)))

})
+ (1/n)Op(1)

p−→
K∑
k=1

wk {Eg [log(f(Y ∈ Ak;ψg, λg))− log(f(Y ∈ Ak;ψ, λ(ψ)))]}

> 0

since wk’s are positive and θg = (ψg, λg) minimizes the Kullback-Leibler diver-

gence in (3).

Let Rn = Πn
i=1CL(ψg, λg; yi)/Π

n
i=1CL(ψ, λ(ψ); yi). We get 1/n logRn → c > 0,

where c is a finite positive number, thenRn = Πn
i=1CL(ψg, λg; yi)/Π

n
i=1CL(ψ, λ(ψ); yi)

p−→
∞.

(b) We want to show limn→∞ Pg

(
CLp(ψ)

CLp(ψg)
≥ k

)
= Φ

(
− c

2
− log k

c

)
, where c is propor-

tional to the distance between ψ and ψg.

Following the proof of Royall (2000) for profile likelihoods: Let clp(ψ) = logCLp(ψ).

For ψ = ψg + c/
√
n,

clp(ψ)− clp(ψg) = cAn + (c2/2)Bn +Rn (12)

where An = 1√
n

dclp(ψ)

dψ

∣∣∣
(ψg)

, Bn = 1
n

d2clp(ψ)

dψ2

∣∣∣
(ψg)

and Rn = Op(n
−1/2)
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An =
1√
n

dclp(ψ)

dψ

∣∣∣∣
(ψg)

=
1√
n

dcl(ψ, λ̂(ψ))

dψ

∣∣∣∣∣
(ψg)

(13)

dcl(ψ, λ̂(ψ))

dψ

∣∣∣∣∣
(ψg)

=
∂cl(ψ, λ)

∂ψ

∣∣∣∣
(ψg ,λ̂(ψg))

+
∂cl(ψ, λ)

∂λ

∣∣∣∣
(ψg ,λ̂(ψg))︸ ︷︷ ︸

=0

dλ̂(ψ)

dψ

∣∣∣∣∣
(ψg)

=
∂cl(ψ, λ)

∂ψ

∣∣∣∣
(ψg ,λ̂(ψg))

(14)

We make a Taylor expansion of ∂cl(ψ,λ)
∂ψ

∣∣∣
(ψg ,λ̂(ψg))

about ∂cl(ψ,λ)
∂ψ

∣∣∣
(ψg ,λg)

∂cl(ψ, λ)

∂ψ

∣∣∣∣
(ψg ,λ̂(ψg))

=
∂cl(ψ, λ)

∂ψ

∣∣∣∣
(ψg ,λg)

+
∂2cl(ψ, λ)

∂ψ∂λ

∣∣∣∣
(ψg ,λg)

(λ̂(ψg)− λg)

+R∗n (15)

We observe that λ(ψg) = λg and that cl(ψ, λ(ψ)) is a finite sum of genuine

log-likelihood functions. Then R∗n in Eq.(15) is of Op(1) since the higher order

derivatives of log-likelihood function are of order Op(n) and (λ̂(ψg) − λg) =

Op(n
−1/2) due to Eq.(20).

Then (13) becomes:

1√
n

dclp(ψ)

dψ

∣∣∣∣
(ψg)

=
1√
n

∂cl(ψ, λ)

∂ψ

∣∣∣∣
(ψg ,λg)︸ ︷︷ ︸

(I)

+
1

n

∂2cl(ψ, λ)

∂ψ∂λ

∣∣∣∣
(ψg ,λg)︸ ︷︷ ︸

(II)

√
n(λ̂(ψg)− λg)︸ ︷︷ ︸

(III)

(16)
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(I) and (II) in Eq.(16) become;

1√
n

∂cl(ψ, λ)

∂ψ

∣∣∣∣
(ψg ,λg)

→ N(0, Jψψ(ψg, λg)) (by CLT)

1

n

∂2cl(ψ, λ)

∂ψ∂λ

∣∣∣∣
(ψg ,λg)

→ Eg(
∂2cl(ψ, λ)

∂ψ∂λ

∣∣∣∣
(ψg ,λg)

) (by LLN)

= −Hψλ(ψg, λg)

What about (III) in Eq.(16)?

Note that λ̂(ψg) is the solution to dcl(ψg ,λ)

dλ

∣∣∣
λ̂(ψg)

= 0. Then a Taylor expansion

of dcl(ψg ,λ)

dλ

∣∣∣
λ̂(ψg)

about dcl(ψg ,λ)

dλ

∣∣∣
λg

gives,

dcl(ψg, λ)

dλ

∣∣∣∣
λ̂(ψg)

= 0 =
dcl(ψg, λ)

dλ

∣∣∣∣
λg

+
d2cl(ψg, λ)

dλ2

∣∣∣∣
λg

(λ̂(ψg)− λg) +R∗∗n .

(17)

Dividing both sides by
√
n, we get

1√
n

dcl(ψg, λ)

dλ

∣∣∣∣
λ̂(ψg)

=
1√
n

dcl(ψg, λ)

dλ

∣∣∣∣
λg

+
1

n

d2cl(ψg, λ)

dλ2

∣∣∣∣
λg

√
n(λ̂(ψg)− λg) +

R∗∗n√
n
.

(18)

In (18), R∗∗
n√
n

= 1
n

d3cl(ψg ,λ)

dλ3

∣∣∣
t

√
n(λ̂(ψg) − λg)2 where |λg − t| ≤ δ. Then by A6

and (λ̂(ψg)− λg)→p 0, the following argument holds (Knight, 2000, chap.5),

(λ̂(ψg)− λg)
1

n

d3cl(ψg, λ)

dλ3

∣∣∣∣
t

→p 0. (19)

Then (III) in Eq.(16) becomes

√
n(λ̂(ψg)− λg)

.
= −

1√
n

dcl(ψg ,λ)

dλ

∣∣∣
λg

1
n

d2cl(ψg ,λ)

dλ2

∣∣∣
λg

d→ N(0, Jλλ(ψg, λg))

Hλλ(ψg, λg)
(20)
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Substituting (20) in (16)

An =
1√
n

dclp(ψ)

dψ

∣∣∣∣
(ψg)

d→ z1 −Hψλ(ψg, λg)
z2

Hλλ(ψg, λg)

where (
z1

z2

)
d→ N

([
0

0

]
,

[
Jψψ(ψg, λg) Jψλ(ψg, λg)

Jλψ(ψg, λg) Jλλ(ψg, λg)

])

Then

An
d→ N

(
0, [Jψψ(ψg, λg) +

[
Hψλ(ψg, λg)

Hλλ(ψg, λg)

]2

Jλλ(ψg, λg)− 2
Hψλ(ψg, λg)

Hλλ(ψg, λg)
Jψλ(ψg, λg)]

)
(21)

What about Bn in (12)?

Bn =
1

n

d2clp(ψ)

dψ2

∣∣∣∣
(ψg)

(22)
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where

d2clp(ψ)

dψ2

∣∣∣∣
(ψg)

=
d

dψ

[
dclp(ψ)

dψ

]∣∣∣∣
(ψg)

=
∂

∂ψ

[
∂cl(ψ, λ)

∂ψ
+
∂cl(ψ, λ)

∂λ

dλ̂(ψ)

dψ

]∣∣∣∣∣
(ψg ,λ̂(ψg))

=
∂2lcl(ψ, λ)

∂ψ2

∣∣∣∣
(ψg ,λ̂(ψg))

+
∂2cl(ψ, λ)

∂ψ∂λ

∣∣∣∣
(ψg ,λ̂(ψg))

dλ̂(ψ)

dψ

∣∣∣∣∣
(ψg)

+

{
∂2cl(ψ, λ)

∂ψ∂λ

∣∣∣∣
(ψg ,λ̂(ψg))

+
∂2cl(ψ, λ)

∂λ2

∣∣∣∣
(ψg ,λ̂(ψg))

dλ̂(ψ)

dψ

}
dλ̂(ψ)

dψ

∣∣∣∣∣
(ψg)

+
d2λ̂(ψ)

dψ2

∣∣∣∣∣
(ψg)

∂cl(ψ, λ)

∂λ

∣∣∣∣
(ψg ,λ̂(ψg))︸ ︷︷ ︸

=0

=
∂2lcl(ψ, λ)

∂ψ2

∣∣∣∣
(ψg ,λ̂(ψg))

+ 2
∂2cl(ψ, λ)

∂ψ∂λ

∣∣∣∣
(ψg ,λ̂(ψg))

dλ̂(ψ)

dψ

∣∣∣∣∣
(ψg)

+
∂2cl(ψ, λ)

∂λ2

∣∣∣∣
(ψg ,λ̂(ψg))

 dλ̂(ψ)

dψ

∣∣∣∣∣
(ψg)

2
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Why is Rn of Op(n
−1/2) in Eq.(12)? Rn = 1

6n3/2

d3clp(ψ)

dψ3

∣∣∣
t

where |ψg − t| ≤ δ.

d3clp(ψ)

dψ3

∣∣∣∣
t

=
d

dψ

[
∂2lcl(ψ, λ)

∂ψ2

∣∣∣∣
(t,λ̂(t))

+ 2
∂2cl(ψ, λ)

∂ψ∂λ

∣∣∣∣
(t,λ̂(t))

dλ̂(ψ)

dψ

∣∣∣∣∣
t

+
∂2cl(ψ, λ)

∂λ2

∣∣∣∣
(t,λ̂(t))

(
dλ̂(ψ)

dψ

∣∣∣∣∣
t

)2


=
d

dψ

[
∂2lcl(ψ, λ)

∂ψ2

∣∣∣∣
(t,λ̂(t))

]
︸ ︷︷ ︸

A1

+
d

dψ

[
2
∂2cl(ψ, λ)

∂ψ∂λ

∣∣∣∣
(t,λ̂(t))

dλ̂(ψ)

dψ

∣∣∣∣∣
t

]
︸ ︷︷ ︸

A2

+
d

dψ

 ∂2cl(ψ, λ)

∂λ2

∣∣∣∣
(t,λ̂(t))

(
dλ̂(ψ)

dψ

∣∣∣∣∣
t

)2


︸ ︷︷ ︸
A3

A1 =
∂3cl(ψ, λ)

∂ψ3

∣∣∣∣
(t,λ̂(t))

+
∂3cl(ψ, λ)

∂ψ2∂λ

∣∣∣∣
(t,λ̂(t))

dλ̂(ψ)

dψ

∣∣∣∣∣
t

A2 = 2

[{
∂3cl(ψ, λ)

∂ψ2∂λ

∣∣∣∣
(t,λ̂(t))

+
∂3cl(ψ, λ)

∂ψ∂λ2

∣∣∣∣
(t,λ̂(t))

dλ̂(ψ)

dψ

∣∣∣∣∣
t

}
dλ̂(ψ)

dψ

∣∣∣∣∣
t

+
∂2cl(ψ, λ)

∂ψ∂λ

∣∣∣∣
(t,λ̂(t))

d2λ̂(ψ)

dψ2

∣∣∣∣∣
t

]

A3 =

 ∂3cl(ψ, λ)

∂ψ∂λ2

∣∣∣∣
(t,λ̂(t))

+
∂3cl(ψ, λ)

∂λ3

∣∣∣∣
(t,λ̂(t))

dλ̂(ψ)

dψ

∣∣∣∣∣
(t)

( dλ̂(ψ)

dψ

∣∣∣∣∣
t

)2

+ 2
∂2cl(ψ, λ)

∂ψ∂λ

∣∣∣∣
(t,λ̂(t))

dλ̂(ψ)

dψ

∣∣∣∣∣
t

d2λ̂(ψ)

dψ2

∣∣∣∣∣
t

From Lemma 2 below, dλ̂(ψ)/dψ
∣∣∣
t

= Op(1). By taking the second derivative

of dλ̂(ψ)/dψ with respect to ψ, it is seen that d2λ̂(ψ)/d2ψ
∣∣∣
t

= Op(1). Also,

following the arguments presented in Lemma 1, we observe that the second and
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higher order derivatives of composite log-likelihood functions in A1, A2 and A3

are of Op(n), since the mean of the log likelihood derivatives are of order O(n)

(they are O(1) for one observation) and the log composite likelihood is a finite

sum of log likelihoods, e.g. the first term in A1 is Op(n) since

1

n

∂3cl(ψ, λ)

∂ψ3

∣∣∣∣
(t,λ̂(t))

→ Eg

(
∂3cl(ψ, λ)

∂ψ3

∣∣∣∣
(t,λ(t)

)
.

∴ Rn = Op(n
−1/2).

Lemma 1. (Royall, 2000)

1

n

∂2cl(ψ, λ)

∂ψ2

∣∣∣∣
(ψg ,λ̂(ψg))

→ −Hψψ(ψg, λg)

1

n

∂2cl(ψ, λ)

∂ψ∂λ

∣∣∣∣
(ψg ,λ̂(ψg))

→ −Hψλ(ψg, λg)

This follows from the Law of Large Numbers, since λ̂(ψ) is the MLE in the one

dimensional model with a fixed ψ.

Lemma 2. (Royall, 2000)

dλ̂(ψ)

dψ

∣∣∣∣∣
(ψg)

→ −Hψλ(ψg, λg)

Hλλ(ψg, λg)
(23)

Proof. Let g(ψ, λ̂(ψ)) = ∂cl(ψ,λ)
∂λ

∣∣∣
λ̂(ψ)

. Since g(ψ, λ̂(ψ)) = 0 ∀ψ, g(ψ, λ̂(ψ)) is a

constant. Thus dg/dψ = 0.

dg

dψ
=

∂g(ψ, λ)

∂ψ

∣∣∣∣
λ̂(ψ)

+
∂g(ψ, λ)

∂ψ

∣∣∣∣
λ̂(ψ)

dλ̂(ψ)

dψ

0 =
∂2cl(ψ, λ)

∂ψ∂λ

∣∣∣∣
λ̂(ψ)

+
∂2cl(ψ, λ)

∂ψ2

∣∣∣∣
λ̂(ψ)

dλ̂(ψ)

dψ

Thus
dλ̂(ψ)

dψ
= −

∂2cl(ψ,λ)
∂ψ∂λ

∣∣∣
λ̂(ψ)

∂2cl(ψ,λ)
∂ψ2

∣∣∣
λ̂(ψ)

The conclusion follows from Lemma 1.
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Then

Bn → −Hψψ +Hψλ
Hψλ

Hψψ

Then (12) becomes;

clp(θ1)− clp(θg)
d→ N(−c

2

2
a, c2b) (24)

where

a = Hψψ −Hψλ
Hψλ

Hψψ

= Hψψ(ψg, λg)
−1

b = [Jψψ(ψg, λg) +

[
Hψλ(ψg, λg)

Hλλ(ψg, λg)

]2

Jλλ(ψg, λg)− 2
Hψλ(ψg, λg)

Hλλ(ψg, λg)
Jψλ(ψg, λg)] (from (21))

= Hψψ(ψg, λg)
−1Gψψ(ψg, λg)H

ψψ(ψg, λg)
−1

We see that (24) does not produce a bump function (the mean is not the negative

half of the variance). If we take
(
clp(θ̂ψ1 )

clp(θ̂ψg )

)a/b
then

(
clp(ψ1)

clp(ψg)

)a/b
→ N(−c

2

2

a2

b
,
c2a2

b
),

which results in a bump function. Then the probability of misleading evidence

will be

Pg

{(
clp(ψ1)

clp(ψg)

)a/b
≥ k

}
→ Φ

{
−(ca/b1/2)

2
− log(k)

(ca/b1/2)

}
(the bump function).

In Theorem 2, c∗ = ca/b1/2.

B Generating correlated binary data

The method in Emrich and Piedmonte (1991) for generating correlated binary data

uses a discretised normal approach to generate correlated binary variates with speci-
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fied marginal probabilities and pairwise correlations. Suppose we want to generate a

k-dimensional correlated binary vector, Y = (Y1, ..., Yk) given X = (X1, ..., Xk), such

that pi = E[Yi | xi] for i = 1, ..., k and pij = E[YiYj | xi, xj] = Pr(Yi = 1, Yj = 1 |
xi, xj) for i = 1, ..., k − 1 and j = 2, ...k. There are different approaches to quantify

the dependence between a pair of binary observations. One approach is to quantify

the dependence using the correlation between Yi and Yj, however, the correlation

gets constrained depending on the marginal probabilities, pi and pj (Prentice, 1988).

Here, we use the association via the odds ratio (Dale, 1986). It is the ratio of the

odds Yi = 1 given that Yj = 1 and the odds of Yi = 1 given that Yj = 0, which is

interpreted as the odds of concordant pairs to discordant pairs.

ψij =
Pr(Yi = 1 | Yj = 1, xi, xj)

/
Pr(Yi = 0 | Yj = 1, xi, xj)

Pr(Yi = 1 | Yj = 0, xi, xj)
/
Pr(Yi = 0 | Yj = 0, xi, xj)

=
Pr(Yi = 1, Yj = 1 | xi, xj)Pr(Yi = 0, Yj = 0 | xi, xj)
Pr(Yi = 1, Yj = 0 | xi, xj)Pr(Yi = 0, Yj = 0 | xi, xj)

=
pij(1− pi − pj + pij)

(pi − pij)(pj − pij
from Table 5

Table 5. Different outcomes with probabilities of occurrence (Le Cessie and
Van Houwelingen, 1994).

Yj = 1 Yj = 0
Yi = 1 pij pi − pij pi
Yi = 0 pj − pij 1− pi − pj + pij 1− pi

pj 1− pj 1

Thus, the joint probability of pij is written in terms of the marginal probabilities,

pi and pj and the odds ratio, ψij. (Plackett (1965).

pij =


1 + (pi + pj)(ψij − 1)− S(pi, pj, ψij)

2(ψij − 1)
if ψij 6= 1,

pipj if ψij = 1,

(25)
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where

S(pi, pj, ψij) =
√
{1 + (pi + pj)(ψij − 1)}2 + 4ψij(1− ψij)pipj,

for pi, pj ∈ (0, 1), ψij ≥ 0. If Yi and Yj are independent then ψij = 1.

Also, the pairwise correlation, corr(Yi, Yj | xi, xj) = δij is

δij =
pij − pipj

(pi(1− pi)pj(1− pj))1/2
, (26)

Now, let Z = (Z1, ..., Zk) be a standard multivariate random variable with mean 0

and correlation matrix Σ = (ρij) with i = 1, ..., k − 1 and j = 2, ...k. Then set Yi = 1

if Zi ≤ z(pi) and set Yi = 0 otherwise for i = 1, ..., k, where z(pi) is the pthi quantile

of the standard normal distribution. This leads to

E[Yi | xi] = Pr(Yi = 1 | xi) = Pr(Zi ≤ z(pi)) = pi, (27)

and

E[Yi Yj | xi, xj] = Pr(Yi = 1, Yj = 1 | xi, xj) = Pr(Zi ≤ z(pi), Zj ≤ z(pj)) = Φ (z(pi), z(pj), ρij) ,

where

Φ(z(p1), z(p2), ρij) =

∫ z(p1)

−∞

∫ z(p2)

−∞
f(z1, z2, ρ)dz1dz2,

and f(z1, z2, ρ) is the probability density function of a standard bivariate normal

random variable with mean 0 and correlation coefficient ρ.

Note from Eq.(26) that E[YiYj | xixj] = pipj + δij (pi(1− pi)pj(1− pj))1/2. Then,

Φ (z(pi), z(pj), ρij) = pipj + δij (pi(1− pi)pj(1− pj))1/2 . (28)

To solve Eq.(28) for ρij, Emrich and Piedmonte (1991) suggested using a bisection

technique. This method does not ensure that the pairwise probabilities pij, or the

correlation matrix composed of binary correlations (δij) are valid. Below are the

compatibility conditions that are needed to be checked (Leisch et al., 1998);
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1. 0 ≤ pi ≤ 1 for i = 1, ..., k.

2. max(0, pi + pj − 1) ≤ pij ≤ min(pi, pj) for i 6= j.

3. pi + pj + pl − pij − pil − pjl ≤ 1 for i 6= j, j 6= l, l 6= i.

These conditions are necessary in order to get a nonnegative joint mass function for

Y (Emrich and Piedmonte, 1991).

We define the bivariate joint probability, pij, in terms of the marginal probabilities

pi and pj, and an odds ratio ψij (Eq (25)). However, for this simulation method, we

need to use pairwise correlations δij instead of ψ. The relationship between δij, and

ψij can be easily established when we plug Eq.(25) in Eq.(26).

Below, we provide a step-by-step summary of the simulation algorithm for gener-

ating a k-dimensional binary vector:

1. Set β0, β1 and ψ values. Determine the marginal probabilities from the logis-

tic model and second order probabilities in Eq.(25). Check the compatibility

conditions. Calculate pairwise correlations δij between each binary pair.

2. Calculate z(pi) from Eq.(27).

3. Solve Eq.(28) to obtain the elements of the correlation matrix Σ = (ρij) for the

multivariate normal distribution.

4. Generate a k-dimensional multivariate normal vector Z with mean z(pi) and

correlation matrix Σ = (ρij).

5. Set yi = 1 if zi ≤ z(pi), and yi = 0 otherwise, for i = 1, ..., k.

We check the compatibility conditions in Step 1 using the R package bindata

(Leisch et al. (2012)), and for Steps 2–5, we used the R package mvtBinaryEP (By

and Qaqish (2011)) in the R Statistical Software. This procedure generates a vector

of binary variables with the desired properties, namely, E(Yi) = pi and corr(Yi, Yj |
xixj) = δij. Other methods for generating correlated data can be found in Jin (2010).

Another important point is that this method generates correlated binary data

that satisfy the first and second order marginal distributions. There might be more

than one joint distribution that generate the same lower dimensional marginal distri-

butions, in which case the inference from a composite likelihood approach will be the
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same for that family of distributions (Varin et al., 2011). This property of composite

likelihood inference is viewed as being robust by many authors (Xu (2012), Varin

et al. (2011), Jin (2010)).

C Finding the profile maximum likelihood esti-

mates

We follow the steps below to find the profile maximum likelihood estimates (MCLE)

of the parameter of interest, for example, when the parameter of interest is β1 and

θ = (β0, β1).

1. Set a grid for β1, i.e. {β11, β12, ..., β1g}.

2. For each β1i, i = 1, ..., g, maximize the composite likelihood chosen with respect

to the nuisance parameters as a function of β1i. Obtain the composite likelihood

value for each (β1i, β̂0(β1i)). Note that (β̂0(β1i) is the MCLE when β1 is taken

as fixed. For this, we use the Newton Raphson algorithm which we coded using

the R Statistical Software (R Core Team (2015))

3. Find the profile MCLE, β̂1CLp , which maximizes the composite likelihoods cal-

culated in Step 2.

D The composite likelihood constructed from pair-

wise margins

When the dependence parameter is also of interest, we need to construct the composite

likelihood from pairwise (or higher order) likelihood components (Varin et al., 2011).

The composite likelihood constructed from pairwise likelihood components is,

CLpair(β0, β1, ψ) = ΠN
i=1

[
Πni−1
j=1 Πni

k=j+1P (Yij = yij, Yik = yik | xi)
]1/(ni−1)

, (29)

where Πni−1
j=1 Πni

k=j+1P (Yij = yij, Yik = yik | xi) denotes the pairwise likelihood for

the ith family (Table 5 and Eq. (25)). The weight 1/(ni − 1) is used to weigh the

contribution of each family according to its size when the parameter of interest is the
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marginal parameter, since each observation in a family of size k presents in k−1 pairs

(Zhao and Joe, 2005).

When the parameter of interest is β1, we can determine the profile composite

likelihood CLp(β1)= maxβ0,β1{CLpair(β0, β1, ψ)} and compute the profile composite

likelihood estimate, β̂1CLpair
= maxβ1 logCLp(β0, β1, ψ). However, when we want to

get inference about ψ, we use the composite likelihood in Eq.(29) without the weights

for families. We do not need to use the weights since the dependence parameter ψ

appears the right amount of times in the pairwise likelihood function for a family of

size k, where there are k − 1 pairs.

CLψpair(β0, β1, ψ) = ΠN
i=1

[
Πni−1
j=1 Πni

k=j+1P (Yij = yij, Yik = yik | xi)
]

(30)

and calculate CLp(ψ) = maxβ0,β1{CL
ψ
pair(β0, β1, ψ)}.

E More simulation results

In these simulations, we consider three different family structures, where k is the

family size.

1. Sibling study with k = 5: Data consist of only siblings, where the number of

siblings is 5 in each family.

2. Sibling study with k ∈ {2, 3, 4, 5}: Data consist of only siblings, where the

number of siblings is 2, 3, 4 or 5 in each family.

3. Family study with k = 5: Data consist of nuclear families with 3 siblings, i.e.,

2 parents and 3 offspring.

In the Sibling study with k = 5, we choose three different values for the dependence

parameter ψ to indicate weak dependence (ψ = 1.2), moderate dependence (ψ = 3)

and strong dependence (ψ = 6) within family members. Here we are interested

in whether the inference about β1 is affected by different strengths of dependence.

For the other family structures, we only take into account ψ = 3. In Table 6, for the

Sibling study with k = 5 siblings, we see that as sample size increases, both composite

likelihood approaches provide consistent estimates for the true parameter value β1.
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The results do not change whether the dependence between sibling pairs are weak or

strong.

Table 6. Sibling study with k = 5. The maximum profile composite likelihood esti-
mates of β1, using independent and pairwise likelihood methods, under a weak, mod-
erate and strong dependence parameter (ψ = 1.2, 3 and 6) and with different numbers
of families (n) and β0 = −1, β1 = 2.

β̂1CLp

ψ = 1.2 ψ = 3 ψ = 6

n independent pairwise independent pairwise independent pairwise

30 2.048 2.048 2.064 2.062 2.096 2.090

100 2.016 2.016 2.023 2.023 2.024 2.024

300 2.002 2.002 2.006 2.006 2.006 2.006

500 2.002 2.002 2.003 2.003 2.003 2.003

1000 2.000 2.000 2.002 2.002 2.002 2.002

In Table 7, for the Sibling study with k ∈ {2, 3, 4, 5}, we also see that as sample

size increases, both composite likelihood approaches provide consistent estimates for

the true parameter value β1.

Table 7. Sibling study with k ∈ {2, 3, 4, 5}. The maximum profile composite likelihood
estimates of β1, using independent and pairwise likelihood methods, under the moderate
dependence parameter ψ = 3 and with different number of families n and β0 = −1,
β1 = 2.

β̂1CLp

n independent pairwise

30 2.106 2.102
100 2.029 2.029
300 2.008 2.008
500 2.006 2.006

1000 2.002 2.002

In Table 8, for the Family study with k = 5, we see that as sample size increases,

the independent likelihood provides consistent estimates for the true parameter value

β1. However, the pairwise likelihood does not. This is due to that fact that the two

different parameter for dependence, ψ1 and ψ2, induce some constraints on the true

mean parameters (β0, β1). This changes the meaning of the mean parameters that

are represented by the pairwise likelihood.
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Table 8. Family study with k = 5. The maximum profile composite likelihood es-
timates of β1, using independent and pairwise likelihood methods, under a moderate
dependence parameter ψ = 3 and with different number of families (n) and and β0 = −1,
β1 = 2.

β̂1CLp

n independent pairwise

30 2.062 1.938
100 2.022 1.915
300 2.003 1.898
500 2.003 1.899

1000 2.002 1.899

In Table 9, we see that as sample size increases, the pairwise likelihood provides

consistent estimates for the true parameter value ψ.

Table 9. Sibling study with k = 5. The maximum profile composite likelihood esti-
mates of δ = log(ψ), using the pairwise likelihood method and with different number
of families (n) and β0 = −1, β1 = 2, δ = log(3) = 1.099.

n 30 100 300 500 1000

δ̂CLp 1.031 1.079 1.092 1.094 1.096

49


	1 Introduction
	1.1 Likelihood Paradigm

	2 Methods
	2.1 Composite Likelihoods : Definitions and Notations 
	2.2 Composite likelihood inference in the likelihood paradigm
	2.3 Modelling correlated binary data using composite likelihoods

	3 Simulation study
	3.1 Simulation design
	3.2 Simulation results

	4 Genetic Association Analysis of Reading Disorder in Families with Rolandic Epilepsy
	4.1 Multiple Hypothesis Testing Adjustments

	5 Summary
	A Proofs of Theorem 1 and Theorem 2 
	A.1 Regularity Conditions
	A.2 Proof of Theorem 1
	A.3 Proof of Theorem 2

	B Generating correlated binary data
	C Finding the profile maximum likelihood estimates
	D The composite likelihood constructed from pairwise margins
	E More simulation results

