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ABSTRACT This article focuses on conducting global testing for association between a binary trait and a set of rare variants (RVs),
although its application can be much broader to other types of traits, common variants (CVs), and gene set or pathway analysis. We
show that many of the existing tests have deteriorating performance in the presence of many nonassociated RVs: their power can
dramatically drop as the proportion of nonassociated RVs in the group to be tested increases. We propose a class of so-called sum of
powered score (SPU) tests, each of which is based on the score vector from a general regression model and hence can deal with different
types of traits and adjust for covariates, e.g., principal components accounting for population stratification. The SPU tests generalize the
sum test, a representative burden test based on pooling or collapsing genotypes of RVs, and a sum of squared score (SSU) test that is
closely related to several other powerful variance component tests; a previous study (Basu and Pan 2011) has demonstrated good
performance of one, but not both, of the Sum and SSU tests in many situations. The SPU tests are versatile in the sense that one of
them is often powerful, although its identity varies with the unknown true association parameters. We propose an adaptive SPU (aSPU)
test to approximate the most powerful SPU test for a given scenario, consequently maintaining high power and being highly adaptive
across various scenarios. We conducted extensive simulations to show superior performance of the aSPU test over several state-of-the-art
association tests in the presence of many nonassociated RVs. Finally we applied the SPU and aSPU tests to the GAW17 mini-exome
sequence data to compare its practical performance with some existing tests, demonstrating their potential usefulness.

THE recent advances in sequencing technologies have
made it feasible to conduct global testing for association

between complex traits and rare variants (RVs) (Bansal et al.
2010). The most popular approach in genome-wide associ-
ation studies (GWASs) is to test on each single nucleotide
variant (SNV) one by one and then select the SNVs meeting
a stringent significance level after adjusting for multiple
testing. However, such a strategy may be low powered due
to the weak signal contained within each individual RV for its
extremely low minor allele frequency (MAF). Hence, develop-
ing new association tests tailored to RVs has been an active
research area in the past few years. Due to lowMAFs of RVs, to

achieve practically meaningful power, the majority of existing
approaches focus on testing on a group of RVs, rather than on
each individual RV (Capanu et al. 2011); the main idea is to
boost power through aggregating information across multiple
RVs in an analysis unit, such as a gene (e.g., Morgenthaler and
Thilly 2007; Li and Leal 2008; Madsen and Browning 2009;
Liu and Leal 2010; Han and Pan 2010; Hoffmann et al. 2010;
Li et al. 2010; Price et al. 2010; Zhang et al. 2010; Zhu et al.
2010; Luo et al. 2011; Neale et al. 2011; Ionita-Laza et al.
2011; Feng et al. 2011; Pan and Shen 2011; Basu and Pan
2011; Gordon et al. 2011; Wu et al. 2011; Fan et al. 2013). As
theoretically shown (Cox and Hinkley 1974) and demon-
strated in our simulations, there is no uniformly most-power
test for this purpose, which means that, depending on the
unknown truth, including specific association effect directions
and sizes, a given and fixed test may or may not be powerful.
Hence, there have been intensive efforts in developing adap-
tive tests for RVs (e.g., Pan and Shen 2011; Lin and Tang
2011; Zhang et al. 2011; Lee et al. 2012; Chen et al. 2012;
Derkach et al. 2013; Sun et al. 2013). However, due to their
limited extents of adaptivity (e.g., with a predetermined and
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fixed set of the weights on RVs), these adaptive tests are still
not flexible (or adaptive) enough with loss of power in some
situations. A main motivation in this article is to develop
a broader family of association tests such that at least one of
them is powerful for a given situation. We develop such a fam-
ily of tests, called the sum of powered score (SPU) tests, which
generalize the sum (of score) test (Sum) and the sum of
squared score (SSU) test (Pan 2009). The Sum test is a repre-
sentative of the burden tests based on genotype pooling or
collapsing (Morgenthaler and Thilly 2007; Li and Leal 2008;
Madsen and Browning 2009), whereas the SSU test is closely
related to kernel machine regression [and its implementation
for RVs, SKAT (Sequence Kernel Association Test)] (Wu et al.
2010, 2011), C-alpha test (Neale et al. 2011), and an empirical
Bayes test for high-dimensional data (Goeman et al. 2006); see
Pan 2011 and Basu and Pan (2011). In many simulation set-
ups, one, but not both, of the Sum test and SSU test has been
shown to be powerful (Basu and Pan 2011). For example, with
different association directions of causal RVs, the Sum test
suffers from a loss of power, while the SSU test performs much
better. However, we emphasize that, in analysis of multiple
RVs, there exist nonassociated RVs. For example, in cancer
research it has been observed that the vast majority of RVs
do not appear to confer risk (Capanu et al. 2011). Hence, it is
important to assess the performance of a test in the presence of
nonassociated RVs in the group of the RVs to be tested. In fact,
as to be shown, the performance of the Sum test deteriorates
rapidly as the number of nonassociated RVs increases, whereas
the SSU test is more robust but nevertheless may gradually
become less competitive. It seems that the performance of
various tests has not been fully investigated for the case with
many nonassociated RVs, including some new adaptive tests,
such as a kernel-based adaptive clustering (KBAC) test (Liu
and Leal 2010), a P-value weighted sum test (PWST) (Zhang
et al. 2011), an estimated regression coefficient (EREC) test
(Lin and Tang 2011), an adaptive SSU (aSSU) test (Pan and
Shen 2011), and an optimized SKAT (SKAT-O) test (Lee et al.
2012). As to be shown, it turns out that these tests suffer more
from substantial power loss and are no longer competitive in
the presence of a high proportion of nonassociated RVs. In
contrast, regardless of the number of nonassociated RVs, at
least one of our proposed SPU tests may remain relatively
more powerful. Since the identity of the most powerful SPU
test also changes with the unknown true association pattern
with causal and noncausal RVs, we propose a simple yet highly
adaptive SPU (aSPU) test to maintain high power across a wide
range of scenarios.Our proposed aSPU test is often much more
powerful than many existing adaptive tests in the presence of
many nonassociated RVs.

We conducted extensive simulation studies to compare
our newly proposed tests with several state-of-the-art tests,
such as the PWST, EREC, aSSU, and SKAT-O tests, which all
appeared after the publication of and thus were not
compared in Basu and Pan (2011). As an active research
topic, quite a few association tests for RVs have been pro-
posed in the past 2 or 3 years. However, unfortunately, most

of them have not been fully compared to each other, espe-
cially in the presence of many nonassociated RVs, which is
expected to be a norm instead of an exception in analysis of
RVs. Hence, as a second aim of this article, we assess the
performance of these existing tests along with our newly
proposed tests, offering some insights into their potential
in practical use. Our study can be regarded as an update
and follow-up to Basu and Pan (2011).

Methods

Data and notation

Our proposed methods are based on general regression
models and thus can be applied to binary, quantitative, and
survival responses or traits in the framework of generalized
linear models and Cox proportional hazards model while
adjusting for covariates, such as environmental variables
and principal components accounting for population strat-
ification. To be concrete, we consider only the case–control
study design with a binary response/trait and no covariates;
more general cases can be similarly approached, as shown in
our example. Suppose that for subject i = 1, . . ., n, Yi = 0 or
1 is a binary response or trait, e.g., an indicator of disease,
and Xi = (Xi1, . . ., Xik)9 is a group of predictors of interest,
such as k RVs from a candidate gene or region. We use
additive coding for each RV; that is, Xij is the count of
the minor allele at RV j for subject i. Consider a logistic re-
gression model:

Logit½PrðYi ¼ 1Þ� ¼ b0 þ
Xk

j¼1

Xijbj: (1)

We want to test the null hypothesis H0: b = (b1, . . ., bk)9 =
0; that is, there is no association between any RVs and the
trait under H0.

Many of the existing tests and our new tests are based on
the score vector U = (U1, . . ., Uk)9 for b in the logistic re-
gression model (1) and V = Cov(U|H0) (Pan 2009; Basu
and Pan 2011; Lin and Tang 2011; Wu et al. 2011; Lee
et al. 2012),

U ¼
Xn

i¼1

ðYi 2 YÞXi;

V ¼ CovðUjH0Þ ¼ Yð12 YÞ
Xn

i¼1

ðXi 2XÞðXi2XÞ9;

where Y and X are the sample means of Yi’s and Xi’s, respec-
tively. An advantage of using a score-based test is that the
closed form of the score vector is available and only a null
model (i.e., the model under H0) needs to be fitted, and thus
is computationally much faster, sometimes even only feasible,
as compared to the corresponding Wald or likelihood-ratio
test, for which a more general and complicated model has
to be fitted and may not even converge (e.g., when k . n).

1082 W. Pan et al.



Furthermore, it is noted that the score vector U in the joint
model (1) is the same as UM = (UM,1, . . ., UM,k)9, with UM,j

being the score statistic for bM,j in the marginal model

Logit½PrðYi ¼ 1Þ� ¼ bM;0 þ XijbM;j; (2)

where subscript M denotes parameters from a marginal
model. In contrast, for example, in general, the maximum-
likelihood estimates (MLEs) b̂ and b̂M ¼ ðb̂M;1; . . . ; b̂M;kÞ9
differ, and our experience suggests that the Wald test based
on the marginal models is more powerful than that based on
the joint model. The most popular single variant-based anal-
ysis corresponds to a minimum P-value (UminP) test com-
bining univariate score tests for the marginal models,

TUminP ¼ max
k

j¼1
U2
j

.
Vjj;

where Vjj = Var(Uj|H0) is the jth diagonal element of V. To
adjust for multiple testing, one could apply the conservative
Bonferroni adjustment or better, as implemented here,
based on the asymptotic null distribution of U � N(0, V)
under H0, use numerical integrations (or simulations) to
obtain an asymptotically exact P-value for the UminP test
(Conneely and Boehnke 2007).

A brief review of some existing tests

Basu and Pan (2011) compared the performance of many
existing association tests for RVs. Their major conclusion is
that if there is (nearly) a common association strength for
causal RVs with no or few nonassociated RVs, then the bur-
den tests, such as the Sum test (Pan 2009), were most power-
ful; otherwise, the SSU test (Pan 2009) and its close relatives
(Pan 2011), kernel machine regression (KMR or SKAT) (Wu
et al. 2010, 2011) and C-alpha test (Neale et al. 2011) per-
formed best. The Sum test is based on a working assumption
that in the joint logistic regression model (1), we have a com-
mon association parameter between the k RVs and the trait,
say b1 = . . . = bk = bc. Then we need only to test a null
hypothesis with a single parameter H0: bc = 0, corresponding
to fitting a simple logistic regression model:

Logit½PrðYi ¼ 1Þ� ¼ bc;0 þ
Xk

j¼1

Xijbc: (3)

On the other hand, the SSU test is a variance-component
test: assuming that b1, . . ., bk in model (1) are independent
random effects with mean 0 and variance t2, it can be de-
rived as a score test on a null hypothesis with a single pa-
rameter H0: t2 = 0. Specifically, both the Sum test and SSU
test are based on the score vector U,

TSum ¼ 19U ¼
Xk

j¼1

Uj; TSSU ¼ U9U ¼
Xk

j¼1

U2
j ;

from which it is clear that the Sum test, as other burden tests,
such as the CMC test (Li and Leal 2008) and the weighted

Sum test (Madsen and Browning 2009), will lose its power if
the causal RVs have different association directions, leading
to different signs of Uj’s and thus a small test statistic TSum,
failing to reject H0. In contrast, since the components of U is
squared in the SSU test (and KMR and C-alpha test), the SSU
test and its close relatives do not lose power with different
association directions due to the sum over U2

j , instead of over
Uj as in the Sum test. A more general score-based statistic can
be written as

TG ¼ z9U ¼
Xk

j¼1

zjUj;

where z = (z1, . . ., zk)9 is a vector of weights for the k RVs
(Lin and Tang 2011). For example, if zj = 21 or 1 depend-
ing on whether b̂M;j , 0 and its P-value , 0.1, then TG is the
adaptive Sum (aSum) test of Han and Pan (2010). Two new
tests that were not reviewed in Basu and Pan (2011) are
also special cases of the above general test TG. First, if zj = 2
(pj 2 0.5), where pj is the P-value for a one-sided Wald test
for Hj,0: bM,j = 0 vs. Hj,1: bM,j , 0 with a test statistic
b̂M;j=

ffiffiffiffiffi
Vjj

p
, then TG is the PWST of Zhang et al. (2011).

Second, if zj ¼ b̂M;j6d, then the TG test is the EREC test of
Lin and Tang (2011); it is noted that, due to the instability
of estimating bM,j for a RV, Lin and Tang (2011) proposed
shrinking b̂M;j toward a constant d or 2d, with d = 1 for
binary traits. Each of the above three adaptive tests accom-
modates different association directions by using the signs of
b̂M;j’s, thus overcoming a main shortcoming of the Sum test,
retaining high power in the presence of different association
directions. Nevertheless, with RVs, for the same reason that
motivates pooling or collapsing RVs in most association tests
proposed so far, only limited information is contained in
each RV, implying that all the above weighting schemes
may not work well in some situations, as elaborated later.

In addition to differing association directions for causal RVs,
a more common issue is the existence of many nonassociated
RVs among the group of RVs to be tested. In particular, with
many nonassociated RVs, as shown by Basu and Pan (2011),
the burden tests, including the Sum test, lose their power
quickly, while the SSU test and its close relatives performmuch
better. On the other hand, intuitively, if we can exclude non-
associated RVs in constructing a test statistic, it may help im-
prove the power. Along this line, Pan and Shen (2011)
proposed a class of adaptive Neyman-type tests (Neyman
1937), including an adaptive Sum (aSum+) and an adaptive
SSU (aSSU) test, which are based on RV selection, instead of
weighting. Specifically, first, one orders the components of the
score vector U in a descending order based on the magnitudes
of Uj and U2

j , respectively, for the aSum+ and aSSU tests.
Second, suppose that the P-values for the Sum and SSU tests
based on the first j components of the ordered U are PSum,j and
PSSU,j respectively; then the test statistics for the two adaptive
tests are

TaSumþ ¼ min
1# j# k

PSum; j; TaSSU ¼ min
1# j# k

PSSU; j;
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and the final P-values are obtained by permutations or sim-
ulations. In short, the aSum+ and aSSU tests work by select-
ing the first few components of a reordered score vector U
that are most informative (with smallest P-values) while
possibly ignoring other components of U for nonassociated
or weakly associated RVs. In particular, the aSum+ test
accounts for possibly different association directions by us-
ing only those positively associated RVs; however, it may
suffer from power loss due to its ignoring those negatively
associated RVs. To improve over the aSum+ test, Pan et al.
(2011) proposed an adaptive Sum test based on two direc-
tional searches, denoted as aSum2d, to use both positively
and negatively associated SNVs, and found its improved
power in detecting gene–gene interactions for CVs. Specifi-
cally, we first reorder the components of U in a descending
order of Uj as for the aSum+ test and suppose that the
P-value of the Sum test applied to the last j components of
the reordered U is PSum,2j; then the aSum2d test statistic is

TaSum2d ¼ minfTaSumþ;TaSum2g where TaSum2 ¼ min
1# j# k

PSum;2j:

We can then use permutations or simulations to obtain P-
values for TaSum2d (and TaSum– if needed). If desired, one can
also just use TaSum– to test for only negatively associated
RVs.

Another adaptive test, called KBAC, was proposed by Liu
and Leal (2010). A unique feature of the KBAC test is to
detect not only the main effects of, but also possible
interactions among, RVs. For the latter purpose, rather than
weighting on each individual RV, it uses a kernel-based
weight on each unique pattern (or combination) of the
genotypes across the k RVs. It upweights a genotype pattern
that appears more frequently in cases (i.e., with a higher risk
of disease) and then contrasts the frequencies of genotype
patterns between the case and control groups by taking
a weighted sum of their frequency differences. As pointed
out by Basu and Pan (2011), there are two potential limi-
tations. First, since its test statistic is a weighted sum of the
frequency differences between the case and control groups,
the presence of opposite association directions may contrib-
ute to both positive and negative frequency differences,
leading to a small test statistic and thus loss of power. Sec-
ond, as the number of nonassociated RVs increases, there
will be a larger number of unique genotype patterns and
thus a smaller number of subjects with each genotype pat-
tern, leading to loss of power. These two points are con-
firmed later.

A new class of tests and a data-adaptive test

Our basic observation is that, depending on the unknown
pattern of association effects of the group of RVs to be
tested, different tests may be more powerful; in spite of the
generality of the TG test, its performance critically depends
on the choice of the weights, and any fixed choice may or
may not be most suitable. Hence our primary goal is to con-
struct a class of versatile tests such that for a given scenario,

at least one of the tests is powerful. Then we combine
these tests to obtain a data-adaptive test that will maintain
high power across a wide range of scenarios. For this purpose,
we choose weight zj as informative and as simple as possible.
Since most existing association tests use the score vector U,
suggesting that most information is already contained in U, we
would simply use U to construct weights. In particular, since
we have U � N(0, V) under H0, we know that a large |Uj|
offers strong evidence to reject H0,j: bj = 0. Specifically, we
choose zj ¼ Ug21

j for an integer g $ 1, leading to a SPU test:

TSPUðgÞ ¼
Xk

j¼1

Ug
j : (4)

With various values of g $ 1, we obtain a class of the SPU
tests. The SPU tests cover the Sum and SSU tests as two
special cases with a corresponding g = 1 and g = 2, re-
spectively. Importantly, as g increases, the SPU(g) test puts
more weights on the larger components of U while gradually
ignoring the remaining components. An extreme case is
that, as an even number g / N, we have

TSPUðgÞ } kUkg ¼
0
@Xk

j¼1

��Uj
��g
1
A
1=g

/kUkN ¼ max
k

j¼1

��Uj
��:

Since the SPU tests are based on resampling methods to
calculate their P-values, they are invariant to any monotone
transformation of their test statistics, such as (�)1/g. That is,
we can equivalently define TSPUðNÞ ¼ maxkj¼1

��Uj
��, which uses

only the largest component of |U|. More generally, as we
increase the value of g, we put higher and higher weights on
the larger components of U, effectively realizing RV selec-
tion. On the other hand, an even integer of g automatically
eliminates the effects of different signs of Uj’s, avoiding
power loss of the Sum test in the presence of different as-
sociation directions. However, an odd integer of g might be
more suitable, as in the SPU(1) or Sum test, when the asso-
ciations are all in the same direction.

We know that under H0, the score vector U has an as-
ymptotic Normal distribution N(0, V). Hence, in theory, we
can derive the asymptotic distribution of TSPU(g), which,
however, may not be easy to calculate. As an alternative,
we recourse to permutations (Churchill and Doerge 1994).
Specifically, we permute the original set of traits Y to obtain
a new set of traits Y(b), based on which we calculate the
score vector U(b) and the null statistic TðbÞ

SPU ¼ TSPUðUðbÞÞ;
after b = 1, . . ., B permutations, we calculate the P-value

as
PB

b¼1

�
Ið��TðbÞ

SPU

��$ jTSPUjÞ þ 1
�
=ðBþ 1Þ. We used B= 200 in

our simulations for a nominal significance level at 5%.
In the presence of covariates, we propose generalizing

the above permutation scheme. Specifically, first we regress
Y on the covariates to fit a null model under H0 to obtain
m̂i;0 ¼ ÊðYijH0Þ and residual ri ¼ Yi 2 m̂i;0; second, we per-
mute the set of the residuals r = {ri|i = 1, . . ., n} to obtain
a permuted set r(b); third, we calculate the new score vector
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based on the permuted residuals as UðbÞ ¼ Pn
i¼1Xir

ðbÞ
i and

the corresponding null statistic TðbÞ
SPU ¼ TEðUðbÞÞ; and after

repeating the above steps for b = 1, . . ., B, we calculate

the P-value as
PB

b¼1

�
Ið��TðbÞ

SPU

��$ jTSPUjÞ þ 1
�
=ðBþ 1Þ.

Alternatively, we also propose using the parametric boot-
strap: we first fit a null model under H0 to obtain m̂i;0 ¼
ÊðYijH0Þ and then simulate a new set of traits Y ðbÞ

i � Bin
ð1; m̂i;0Þ for b = 1, . . ., B; we calculate the test statistic
TðbÞ
SPU based on each set of simulated Y(b) and calculate the

P-value as in the permutation method.
Since the power of a SPU(g) test depends on the choice

of g while the optimal choice of g depends on the unknown
true association pattern of the RVs to be tested, it would be
desirable to data-adaptively choose the value of g. For this
purpose, we propose an aSPU test that simply combines the
P-values of multiple SPU tests (with various values of g),
although other combining methods are also possible (Pan
et al. 2010; Cheung et al. 2012). Suppose that we have some
candidate values of g in G, e.g., G = {1, 2, 3, . . ., 8, 15, 16,
31, 32, N} as used in our later simulations, and suppose
that the P-value of the SPU(g) test is PSPU(g); then our com-
bining procedure is to take the minimum P-value:

TaSPU ¼ min
g2G

PSPUðgÞ:

Of course, TaSPU is no longer a genuine P-value; we use
the permutation or parametric bootstrap to estimate its
P-value. It may appear that a double permutation or boot-
strap procedure is needed, but indeed not necessary. For
example, if we use the permutation method, first, we per-
mute the original set of traits to obtain Y(b) and the corre-
sponding score vector U(b) for b = 1, 2, . . ., B. We then
calculate the corresponding SPU test statistics TðbÞ

SPUðgÞ and

their P-values pðbÞg ¼ P
b1 6¼b½IðTðb1Þ

SPUðgÞ $TðbÞ
SPUðgÞÞ þ 1�=B. Thus,

we have TðbÞ
aSPU ¼ ming2GpðbÞg , and the final P-value of the aSPU

test is PaSPU ¼ PB
b¼1½IðTðbÞ

aSPU #TaSPUÞ þ 1�=ðBþ 1Þ.
We note the practicality of permutation- or other

resampling-based methods for P-value calculations. First,
due to extremely low MAFs of some RVs, it is always dubi-
ous whether asymptotic results are applicable. Second, it is
computationally feasible to use permutation-based tests for
genome-wide searches. In practice, we can first use a smaller
B, say B = 1000, to scan a genome and then gradually and
repeatedly increase B for a few groups of RVs that pass an
initial significance criterion (e.g., P-value , 5/B) in the
previous step; in this way, contrary to otherwise claimed,
it is indeed feasible to apply a permutation-based test to
genome scans and obtain highly significant results (if any). We
have applied permutation- or simulation-based aSPU test to
genome-wide scans to yield P-values , 1026.

Finally we comment on the choice of G. The following
considerations guide the choice of the integers g $ 1 in G.
First, to cover the burden and variance-component tests,
which have been shown empirically to perform well under

some situations (Basu and Pan 2011), we would include g =
1 and g = 2 in G. Second, depending on whether the phe-
notype-RV association directions vary, we may need to use
either even or odd integers g’s to yield high power; if un-
sure, then it is suggested to use both odd and even integers
g’s. Third, depending on how sparse the association signals
are, one may use smaller or larger g’s. For example, the
more the RVs to be tested and the fewer associated RVs to
be expected, then larger g’s would be desirable. We have
found that often G = {1, 2, 3, . . ., 8, N} suffices. For dem-
onstration, we have included g = N, which is not necessary,
but may be beneficial when testing on CVs. In the following,
we also show the results of the SPU(g) tests for g 2 G; we
have two purposes. The first is to show varying operating
characteristics of the various SPU tests. For example, we
show higher power of SPU(3) or SPU(4) than that of SPU
(1) and SPU(2), demonstrating the power gain of using
some SPU(g) test with g . 2. Second, we show that often
SPU(8) gives results almost the same as those of SPU(N),
suggesting no need to use other larger g’s. In practice, we
suggest using the aSPU test that combines the strengths
(and possibly weaknesses) of various SPU tests; the aSPU
test can be regarded as a rigorous (and almost exact) means
for multiple testing adjustment with the use of several SPU
tests, while the results of the SPU tests may shed light on the
underlying genetic architecture. For example, if a large g

gives the most significant P-value, it may indicate a high
degree of signal sparsity; if some odd g’s yield more signif-
icant results than even g’s, then most or all of the large
associations are in the same direction. More elaborately, as
shown below, an analysis of a SPU test can also imply the
relative contribution of each SNV to the aggregated associ-
ation (if any).

SNV selection

A limitation of most global tests is their inability for variant
selection: even if the global null hypothesis is rejected, they
may not give any information on which RVs are (or are not)
likely to be associated with disease. We note that the aSPU
test can be used to rank the importance of the RVs. First, we
estimate the optimal value of g , N, ĝ ¼ argming2GPSPUðgÞ
chosen by the aSPU test. Second, we assess the relative
contribution of each RV r to the aSPU test as
Cr ¼ jUrjĝ=

Pk
j¼1

��Uj
��ĝ. Third, we rank the RVs based on their

Cr values, and we can select the top k1 RVs such that the sum
of their relative contributions

Pk1
r¼1Cr $a1 with a1 = 0.8,

say; the choice of a1 determines the tradeoff between in-
creasing true positives and increasing false positives. Gener-
ally, we can use Cr to prioritize and generate hypotheses on
the selection of causal RVs.

Further comments and extensions

Below we briefly comment on the advantages of the aSPU
test over several other adaptive tests. First, since the power
of any univariate test for a single RV may be low (which is
exactly the reason why we combine information across
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multiple RVs, e.g., through pooling or collapsing), the P-value
of such a test may not be informative; the aSum test and
PWST based on such P-values may not perform well. Second,
we note that the adaptive Neyman-type tests, such as the
aSSU test, are based on the idea of variable or RV selection,
while the SPU tests are more based on weighted averaging of
variables or RVs. As discussed extensively in the model selec-
tion literature (Yuan and Yang 2005; Shen and Huang 2006)
and in a genetic application (Newton et al. 2007), if signals
are strong enough, then model selection is expected to per-
form better; otherwise, model averaging is preferred. In our
current context, again due to extremely low MAFs of RVs, no
matter how strong its association strength, information con-
tained within each individual RV is only quite limited. Thus
we expect that the model averaging-based SPU tests to out-
perform the model selection-based aSSU or other adaptive
Neyman-type tests. Third, we note that the EREC test is re-
lated to the SPU tests. As shown in Pan (2009), we have

b̂M ¼ DiagðVÞ21U þ Opð1=nÞ;

where Diag(V) is a diagonal matrix with its jth diagonal
element as Vjj. Hence, if

���b̂M

��� is much larger than d, then
z ¼ b̂M6d � b̂M, which is roughly proportional to U (if the
MAFs of the RVs are in a close range), suggesting that
the EREC test will be similar to the SPU(2), i.e., SSU test.
On the other hand, if

���b̂M

��� is small relative to d, then
z ¼ b̂M6d � 6d, implying that the EREC test will behave
similarly to the SPU(1) (or Sum) test. Generally, we expect
that the EREC test behaves between the SPU(1) and SPU(2)
tests.

Furthermore, several approaches (Lee et al. 2012; Derkach
et al. 2013; Sun et al. 2013), including SKAT-O, have been
proposed to combine a burden test like SPU(1) and a variance-
component test like SPU(2). In contrast, our proposed aSPU
test is based on combining a broader set of tests includ-
ing but beyond SPU(1) and SPU(2), hence is more flexible
and adaptive. In the presence of many nonassociated RVs,
the weight z = 1 or z = U may not suffice: we may need
weights Ug 2 1 with g . 2. In other words, with many non-
associated RVs, the power of the EREC or SKAT-O [or sim-
ilar tests combining SPU(1) and SPU(2)] can be much
lower than a SPU(g) test with a large g and lower than
the aSPU test. In addition, since the aSum, PWST, and EREC
tests use the marginal estimates b̂M;j, which have to be
obtained iteratively during each permutation, whereas the
score vector U is much easier to obtain, the SPU tests are
much faster.

In the presence of external or prior biological informa-
tion, as for other tests, it may be helpful to incorporate some
external weights (differing from z discussed earlier) into the
SPU tests. Given some external weights wj, we can have
a weighted SPU (wSPU) test as

TwSPUðgÞ ¼
Xk

j¼1

wjU
g
j ;

while all other aspects, including the construction of an
adaptive wSPU test, remain the same as before. For example, if
it is believed that causal RVs tend to have lower MAFs, as
advocated by Madsen and Browning (2009), one can use a wj

inversely proportional to the MAF of the jth RV. In this way, by
suitably weighting both CVs and RVs, it is possible to use the
adaptive wSPU test for a joint analysis of CVs and RVs (Ionita-
Laza et al. 2013). Alternatively, wj can be a predicted likelihood
of the jth RV’s being functional or deleterious based on some
computational algorithms (Wei et al. 2011). As other tests, the
performance of the wSPU tests depends on how informative or
correct the external weights are, while the choice of the exter-
nal weights may not always be clear; hence we skip further
discussions on the use of such external weights.

We have proposed using permutations (or the parametric
bootstrap) to calculate the P-values for the SPU and aSPU
tests. If the asymptotic normality of the score vector is ex-
pected to approximately hold, e.g., in analysis of CVs, we may
replace the permutation or bootstrap with simulation-based
methods, which will be much faster (Zou et al. 2004; Seaman
and Muller-Myhsok 2005).

Results

Simulation setups

We conducted extensive simulation studies to evaluate and
compare the performance of various tests. We simulated
genotypes as in Wang and Elston (2007). First, a latent vec-
tor Z = (Z1, . . ., Zk)9 was generated from a multivariate
Normal distribution N(0, R), where R had a first-order autor-
egressive (AR1) covariance structure with its (i, j)th element
Rij = Corr(Zi, Zj) = r|i 2 j|; we used r = 0 and r = 0.9 to
generate independent and correlated RVs, respectively. Sec-
ond, the latent vector Z was dichotomized to yield a haplo-
type with some specified MAFs, each of which was randomly
selected from a uniform distribution between 0.001 and
0.01 during each simulation. Third, the above two steps
were repeated to generate two independent haplotypes,
which were then combined to obtain genotype Xi = (Xi1, . . .,
Xik)9 for subject i. Fourth, for a nonnull case we randomly
chose k1 causal RVs with their corresponding bj 6¼ 0 while
all other bj = 0; for a null case, all bj = 0. Fifth, the disease
status Yi of subject i was generated from the logistic regression
model (1). We used b0 = 2log(0.05/0.95) for a 5% back-
ground disease probability; that is, Pr(Yi = 1|Xi = 0) =
0.05. Finally, as in a case–control study, we sampled n/2 cases
and n/2 controls in each data set.

We considered a few setups with combinations of various
values of r = 0 or 0.9, k1 = 8 or 1, and n = 1000. We varied
the number of nonassociated RVs k2 k1 between 0 and 128,
and a range of possible values of bj 6¼ 0 to cover from a com-
mon association effect to varying association strengths or
directions and from a single to multiple causal RVs.

Throughout the simulations, the test significance level was
fixed at a = 0.05. The results were based on 1000 independent
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replicates for each setup. We compared the performance of
the SPU tests with several state-of-the-art adaptive tests not
reviewed in Basu and Pan (2011), including one based on
a Bayesian hierarchical GLM (BhGLM) (Yi et al. 2011). As
a benchmark, we also included the UminP test that tests on
each individual RV separately and then combine them by
taking their minimum P-value.

Simulation results

To save space, we focus on a few cases with correlated RVs
(i.e., neighboring RVs were in linkage disequilibrium). It is not
only more general to consider correlated RVs (or covariates),
but also in agreement with real sequence data as generated
from the 1000 Genomes Project (Zhang et al. 2013). The
extensive simulation results with independent RVs and other
association parameters were similar to those presented below
and thus are relegated to supporting information, File S1.

First, all the tests maintained well-controlled type I error
rates (Table 1). Second, we consider the case with nonzero
bj’s randomly drawn from a uniform distribution U(1, 2),
representing the association pattern with varying associa-
tion strengths but all in the same direction (Table 2). Among
the SPU tests, the SPU(1), SPU(2), SPU(4), or SPU(6) were
the respective winners with no, a medium, and a large num-
ber of nonassociated RVs. This is in agreement with our
analysis earlier that an increasing proportion of nonassoci-
ated RVs requires a larger value of g in the SPU(g) test to
weed off the effects of nonassociated RVs. In particular, the
quickly deteriorating performance of the SPU(1) (i.e., Sum)
test was striking. Compared to some more powerful SPU
tests, the UminP test was low powered because the UminP
test used information from only the most significantly asso-
ciated RV while ignoring other associated RVs. It is noted
that a SPU(g) test with 8 # g , N was only slightly more
powerful than SPU(N), suggesting no need to use g . 8.

Among the adaptive tests, the aSPU test was the overall
winner; its performance in the presence of many non-
associated RVs was most impressive: for example, with
126 nonassociated RVs, the power of the aSPU test was
0.811, much higher than 0.749 of SKAT (with a linear kernel
used throughout), 0.658 of aSSU, 0.567 of EREC, 0.532 of
aSum+, 0.380 of PWST, 0.331 of KBAC, and 0.248 of
BhGLM. It is noted that the power of the aSPU test was
always close to that of the most powerful SPU test, whose
identity however changed with the setup. Although all other
adaptive tests performed well with no or few nonassociated
RVs, they failed to do so otherwise. In particular, the aSSU
test was much less powerful than the SSU test with many
nonassociated RVs, presumably due to the difficulty in RV
selection with relatively weak signals with each individual
RV.

Third, for the case with both varying association direc-
tions and effect sizes of the causal RVs (Table 3), among the
SPU tests, as the number of nonassociated RVs increased,
SPU(2), SPU(4), SPU(6), and SPU(8) became most power-
ful, respectively, and as expected, the SPU(1) (i.e., Sum) test

was the least powerful. For example, with 128 null RVs, the
power of SPU(1) and that of SPU(2) were only 0.070 and
0.261, respectively, much lower than 0.370 of SPU(7) and
SPU(8); accordingly, the power of aSPU was 0.329, much
higher than 0.235 of SKAT and 0.195 of SKAT-O. It was also
confirmed that there was no need to use a SPU(g) test with
g . 8 to gain power. Among the adaptive tests, the aSPU
test was the winner, although the PWST and SKAT were
most powerful with no or only few nonassociated RVs, but
quickly lost their edge as the number of nonassociated RVs
increased. The aSSU test performed second best after the
aSPU test, presumably due to easier RV selection with larger
effect sizes of some causal RVs. The BhGLM, aSum, and
KBAC tests did not perform well in this case. Similar results
with higher significance levels a and with covariates were
obtained as shown in File S1.

Data example

We applied the methods to the mini-exome sequence data
provided by the Genetic Analysis Workshop (GAW) 17
(Almasy et al. 2011). The exome sequence data contain
24,487 SNVs in 3205 genes from 697 unrelated subjects.
Our analyses focused on RVs with MAFs no larger than
1%; after removing those more frequent SNVs, we had 2476
genes containing at least 1 RV, with a total of 18,131 RVs. We
conducted gene-based analyses.

The phenotypes were generated by GAW17 organizers
based on some disease liability models with covariates. In

Table 1 Empirical type I error rates of various tests for the cases
with a group of eight nonassociated RVs and another group of
nonassociated RVs

No. of nonassociated RVs

Test 0 8 16 32 64 96 128

UminP 0.025 0.020 0.017 0.018 0.015 0.007 0.011
SPU(1) 0.051 0.055 0.044 0.049 0.048 0.041 0.051
SPU(2) 0.048 0.055 0.034 0.029 0.039 0.037 0.035
SPU(3) 0.049 0.051 0.040 0.041 0.032 0.038 0.037
SPU(4) 0.051 0.046 0.033 0.040 0.025 0.037 0.029
SPU(5) 0.053 0.048 0.039 0.050 0.026 0.043 0.030
SPU(6) 0.056 0.046 0.042 0.048 0.024 0.039 0.022
SPU(7) 0.057 0.044 0.040 0.046 0.028 0.038 0.023
SPU(8) 0.054 0.042 0.040 0.044 0.022 0.036 0.023
SPU(16) 0.055 0.041 0.041 0.047 0.029 0.037 0.025
SPU(32) 0.053 0.042 0.043 0.047 0.030 0.039 0.025
SPU(N) 0.053 0.042 0.042 0.047 0.031 0.039 0.025
aSPU 0.055 0.044 0.041 0.048 0.038 0.047 0.038
aSum+ 0.045 0.058 0.045 0.053 0.048 0.051 0.046
aSum2d 0.062 0.054 0.042 0.049 0.052 0.043 0.045
aSSU 0.066 0.047 0.045 0.045 0.046 0.048 0.052
KBAC 0.049 0.061 0.035 0.049 0.047 0.057 0.051
aSum 0.066 0.056 0.033 0.048 0.048 0.055 0.042
PWST 0.061 0.047 0.031 0.049 0.040 0.040 0.042
EREC 0.056 0.058 0.044 0.046 0.050 0.045 0.046
BhGLM 0.044 0.061 0.042 0.042 0.043 0.039 0.048
SKAT 0.057 0.064 0.042 0.046 0.050 0.046 0.049
SKAT-O 0.058 0.065 0.047 0.040 0.051 0.047 0.052

The RVs within each group were correlated, but there was no between-group
correlation; all results were based on 1000 simulation replicates.
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particular, biological knowledge on pathways, especially the
vascular endothelial growth factor (VEGF) pathway, and on
predicted deleterious coding variants was utilized to design
a realistic simulation model. Fixing the sequence data for
the 697 subjects, 200 independent sets of a binary pheno-
type were generated. In addition to some causal SNVs, three
risk factors, age, gender, and smoking status, were possibly
associated with the binary phenotype. An advantage of
using the GAW17 data is the opportunity to assess statistical
power of any given method due to the known causal SNVs
and the availability of replicated phenotypes. Hence, in
addition to conducting a genome-wide scan, we applied the
methods to each causal gene with all 200 sets of the binary
phenotype to estimate the power.

A genome-wide scan: To demonstrate the practical use of
the proposed methods, we first conducted a genome-wide
scan on all the 2476 genes with the first set of the binary
phenotype. A logistic regression model was fitted to each
gene with the three covariates,

Logit½PrðYi ¼ 1Þ� ¼ b0 þ
Xk

j¼1

Xijbj þ Agei � a1 þ Genderi � a2

þ Smokei � a3;

for i= 1, . . . 697, where Xi1, . . ., Xik are the k RVs in the gene
to be tested and Yi is the binary phenotype. In the presence

of the covariates, we used the parametric bootstrap to calcu-
late the P-values for the SPU, aSPU, SKAT, and SKAT-O tests.

Throughout the data analysis, we used the following
“step-up” procedure to determine the number of bootstraps
(or permutations), B. We started with B = 103 amd then
gradually increased B: if an estimated P-value was,5/B, we
increased B to 10 times of its current value to reestimate the
P-value, and the process was repeated until no estimated
P-value was ,5/B. For the genome scan on the GWA17 data,
we tried B = 103, 104, and up to 105 to obtain P-values. On
a multicore computer with 100 cores, it took about 0.21 hr
to test the 2476 genes based on B = 103, 0.05 hr to test the
50 genes (with their P-values , 0.005 in the previous
round) with B = 104, and 0.12 hr for testing the 5 genes
based on B= 105. If a single-core computer was used, a con-
servative estimate of the time to be taken would be the
above time multiplied by 100, which would take ,2 days.
If we doubled the sample size, it took about three times the
original time. Note that our code was completely in R and
not yet optimized; implementing the core part in C or another
compiled language is planned and expected for at least a 10-
fold speedup. Hence, to be more accurate, we can replace the
used threshold 5/B with a larger value such as 50/B.

Figure 1 shows the Manhattan plots for the tests. Since we
were testing on 2476 genes, at the usual family-wide signifi-
cance level of 0.05 and with a Bonferroni adjustment, we would
use a gene-wise significance level of 0.05/2476 = 2.02 3 105,

Table 3 Empirical power of various tests for the cases with a group
of eight causal RVs with ORs = (3, 1/3, 2, 2, 2, 1/2, 1/2, 1/2) and
another group of nonassociated RVs

No. of nonassociated RVs

Test 0 8 16 32 64 96 128

UminP 0.507 0.379 0.324 0.288 0.208 0.197 0.157
SPU(1) 0.341 0.227 0.159 0.111 0.074 0.070 0.070
SPU(2) 0.631 0.542 0.485 0.435 0.332 0.279 0.261
SPU(3) 0.563 0.493 0.451 0.413 0.303 0.323 0.274
SPU(4) 0.625 0.540 0.508 0.478 0.402 0.386 0.351
SPU(5) 0.601 0.514 0.480 0.465 0.374 0.383 0.358
SPU(6) 0.619 0.529 0.504 0.490 0.398 0.401 0.367
SPU(7) 0.600 0.521 0.485 0.480 0.386 0.399 0.370
SPU(8) 0.610 0.530 0.494 0.485 0.402 0.404 0.370
SPU(16) 0.595 0.524 0.488 0.470 0.390 0.395 0.356
SPU(32) 0.595 0.523 0.487 0.469 0.388 0.389 0.353
SPU(N) 0.592 0.520 0.484 0.467 0.386 0.387 0.355
aSPU 0.589 0.511 0.467 0.461 0.366 0.361 0.329
aSum+ 0.596 0.497 0.419 0.370 0.268 0.245 0.214
aSum2d 0.560 0.450 0.391 0.326 0.220 0.193 0.169
aSSU 0.598 0.511 0.464 0.424 0.337 0.311 0.296
KBAC 0.525 0.392 0.327 0.254 0.181 0.135 0.129
aSum 0.549 0.415 0.299 0.232 0.138 0.145 0.127
PWST 0.675 0.554 0.460 0.354 0.267 0.197 0.196
EREC 0.545 0.448 0.365 0.298 0.189 0.176 0.154
BhGLM 0.434 0.290 0.186 0.123 0.082 0.072 0.071
SKAT 0.650 0.557 0.474 0.425 0.318 0.272 0.235
SKAT-O 0.622 0.495 0.406 0.378 0.260 0.226 0.195

All results were based on 1000 simulation replicates. The highest powered
nonadaptive and adaptive tests are italic.

Table 2 Empirical power of various tests for the cases with a group
of eight causal RVs with ORs randomly drawn from U(1,2), and
another group of nonassociated RVs

No. of nonassociated RVs

Test 0 8 16 32 64 96 128

UminP 0.874 0.812 0.768 0.733 0.659 0.619 0.586
SPU(1) 0.939 0.852 0.746 0.577 0.411 0.300 0.244
SPU(2) 0.926 0.908 0.904 0.872 0.832 0.801 0.769
SPU(3) 0.917 0.903 0.893 0.870 0.829 0.802 0.786
SPU(4) 0.909 0.896 0.890 0.882 0.854 0.840 0.835
SPU(5) 0.902 0.894 0.879 0.875 0.843 0.834 0.834
SPU(6) 0.901 0.882 0.872 0.873 0.843 0.835 0.835
SPU(7) 0.899 0.881 0.868 0.869 0.836 0.830 0.828
SPU(8) 0.898 0.876 0.863 0.864 0.833 0.834 0.826
SPU(16) 0.885 0.860 0.848 0.852 0.821 0.814 0.814
SPU(32) 0.878 0.855 0.844 0.850 0.817 0.807 0.810
SPU(N) 0.877 0.852 0.844 0.846 0.814 0.801 0.806
aSPU 0.923 0.898 0.894 0.869 0.842 0.829 0.811
aSum+ 0.940 0.893 0.866 0.801 0.677 0.607 0.532
aSum2d 0.921 0.857 0.805 0.719 0.618 0.504 0.453
aSSU 0.900 0.867 0.847 0.819 0.767 0.695 0.658
KBAC 0.903 0.785 0.722 0.613 0.466 0.331 0.283
aSum 0.948 0.892 0.855 0.756 0.636 0.480 0.407
PWST 0.823 0.729 0.698 0.613 0.508 0.400 0.380
EREC 0.943 0.901 0.887 0.833 0.738 0.656 0.579
BhGLM 0.934 0.863 0.779 0.619 0.434 0.299 0.248
SKAT 0.927 0.914 0.906 0.870 0.823 0.800 0.749
SKAT-O 0.940 0.915 0.899 0.858 0.799 0.767 0.696

All results were based on 1000 simulation replicates. The highest powered
nonadaptive and adaptive tests are italic.
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which would suggest using a bootstrap replication number up
to 106 to 107.

None of the tests detected any significant genes. None-
theless, we highlighted the top five most significant genes
based on each test to show their differing operating
characteristics. In Figure 1, it is clear that the three repre-
sentative SPU tests gave overlapping but different sets of the
top genes. It is interesting to note that the aSPU test com-
bined the results of the SPU tests.

As a comparison, Figure 1 also shows the results for the
parametric bootstrap- and asymptotics-based SKAT and
SKAT-O tests. First, we note the differences among the top
genes between the resampling- and asymptotics-based tests,
although their overall trends were similar, implying that one
has to be cautious in using asymptotics-based tests for anal-
ysis of RVs. Second, we note the difference between the
results of SKAT and SKAT-O; the latter had some similarity
to that of the SPU(1) test, as expected. Most importantly,
although similar to some extent, the top ranked genes by the
aSPU, SKAT, and SKAT-O tests were still different, suggest-
ing the potential usefulness of the aSPU test as a complement

to SKAT and SKAT-O. We also note that most of the genes
contained no more than 30 RVs; otherwise, the difference
between the aSPU and SKAT or SKAT-O could be larger, as
suggested in our simulations.

Power comparison: With the 200 replicated sets of the
binary phenotype, the GAW17 data offer a unique opportu-
nity to estimate the power of any test when applied to real
sequence data. Due to the small sample size and relatively
small effect sizes of the causal RVs, there was low power to
detect any causal RVs in the GAW17 data. Accordingly, we
used a less stringent gene-wise significance level of 0.05
(i.e., without multiple testing adjustment) and estimated the
power of a test as the sample proportion of its rejecting the
null hypothesis among the 200 sets of the replicated pheno-
types. We considered all 35 causal genes (with at least one
causal RV) and tested on each separately. The main results
are shown in Table 4.

We excluded the genes for which the maximum power of
all the tests was,10% and partitioned the remaining causal
genes into three groups based on whether the aSPU test was

Figure 1 Manhattan plots for the GAW17 data.
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more powerful than both SKAT and SKAT-O, or between
them or less than them. It is clear that for some genes, the
aSPU test was more powerful than SKAT and SKAT-O. For
gene PIK3C2B, due to the connections between SPU(1) and
burden tests and between SPU(2) and SKAT, given that the
SPU(1) was more powerful than SPU(2), it is not surprising
to see that SKAT-O (which combines SKAT and a burden
test) was more powerful than SKAT; furthermore, perhaps
due to the relatively high signal sparsity, the SPU(3) turned
out to be the most powerful among the SPU tests, leading to
the aSPU test being more powerful than both SKAT and
SKAT-O. A similar but different situation was found with
gene VNN1. That the SPU(1) test was less powerful than
SPU(2) might explain why SKAT was more powerful than
SKAT-O; however, interestingly, since the SPU(5) test was
most powerful among the SPU tests while SPU(4)–SPU(8)
were also relatively high powered, we found the aSPU test
more powerful than both SKAT and SKAT-O. On the other
hand, when SPU(1) or SPU(2) was (nearly) more powerful
than other SPU tests, the aSPU test combining all the SPU

tests (with only one or two high powered but more low-
powered ones) lost edge to either SKAT or SKAT-O, but
not both, as for gene RRAS. In some situations, as for gene
KDR, since both SPU(1) and SPU(2) were far more superior
than other SPU tests, the aSPU test ended up being less
powerful than both SKAT and SKAT-O. In summary, we
found that, as expected, there was no uniform winner
among the aSPU, SKAT, and SKAT-O tests; under some sit-
uations, the aSPU test could be more powerful than both
SKAT and SKAT-O.

Since all the causal genes contained only a relatively
small number of noncausal RVs, and all causal RVs were
deleterious (Almasy et al. 2011), most often the SPU(3) test
was most powerful among the SPU tests. In contrast, per-
haps as expected, the SPU(N) was almost always least pow-
erful. Importantly, we note that the power of the SPU(3) test
could be much larger than SPU(1) and SPU(2), representa-
tives of the burden tests and variance-component tests. For
example, for gene PIK3C2B with 23 causal RVs among a total
of 60 RVs, the power of SPU(3) was 0.650, much larger than

Figure 1 (Continued).
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0.565 and 0.445 for SPU(1) and SPU(2), respectively. It is
also confirmed that, even with the same association direc-
tion but also with nonassociated RVs, the SPU(1) test might
lose power, as for gene VNN1 and BCHE. These points re-
inforce what was observed in simulation studies: we may
need to use SPU tests beyond SPU(1) and SPU(2) to yield
high power, supporting the use of the aSPU test in some
applications.

We briefly mention two limitations of the GAW17 data.
First, the number of RVs in any gene was often relatively
small in this mini-exome sequence data set; hence the clear
advantage of SPU(g) tests with g . 3 did not show up,
which in turn limited the potential advantage of the aSPU
test. However, with the increasing availability of whole-
genome sequence data, we expect a much larger number of
RVs in or near a gene, for which we may see a more dra-
matic advantage of the aSPU test. Second, since all the
causal SNVs were deleterious, it favored SKAT-O, which
might not perform as well otherwise (as shown in simula-
tions; see Table 3).

We also performed a simulation study to confirm that our
methods could control type I error rates satisfactorily with
real sequence data at a higher significance level. We ran-
domly selected three genes, RRAS, HIF3A, and PIK3C2B,
with 5, 15, and 60 RVs, respectively. To mimic the GAW17
phenotype data, we randomly generated a binary phenotype
Yi with Pr(Yi = 1) = 0.3 under H0 for each of the 697
subjects. We then tested H0 for possible association between
the phenotype and each gene with 105 simulation replicates
so that we could obtain more accurate type I error estimates
for a higher significance level a. As shown in Table 5, our
methods could satisfactorily control the type I error rate. We
note that, for gene RRAS with only 5 RVs, many tests could
be conservative with type I errors lower than the nominal
level a, due to the highly discrete null distributions of the
test statistics. Furthermore, due to its higher-level discrete-
ness and extreme-value-type test statistic, the tail distribu-
tion of the SPU(N) statistic had larger variability, which in
turn could perturb that of the aSPU test. As shown in Table 4,

since the SPU(N) test was almost always lowest powered,
we suggest excluding it when testing on a few RVs with a
binary phenotype. Here, for the purpose of demonstration,
we included the SPU(N) test.

SNV selection: The aSPU test can be used for SNV selection.
For comparison, we also included two methods: one was the
UminP test as used in GWAS, and the other was Lasso-
penalized logistic regression (Tibshirani 1996; Zhou et al.
2010). For UminP, we ranked the RVs based on their corre-
sponding P-values. We used R package glmnet to fit Lasso-
penalized logistic regression. There is a tuning parameter
l $ 0 in Lasso; as one reduces the value of l, there will
be more nonzero coefficient estimates ~bj, thus selecting
more RVs to be included. In this way, we counted the num-
ber of nonzero ~bj and the corresponding number of true
positives (i.e., the corresponding causal RVs). One problem
with Lasso-penalized regression with RVs was that it was
difficult to control the number of the nonzero coefficient
estimates; as shown in Figure 2 for gene PIK3C2B, we could
not obtain 40 or so nonzero coefficients, even with some
labor-intensive fine tuning of l.

The methods were compared on the basis of the number
of true positives among a given number of their top-ranked
RVs for a causal gene. We found that aSPU and Lasso
performed similarly, but much better than UminP. Among
the 15 causal genes, if we looked at the top six ranked RVs, the
frequencies of selecting (0, 1, 2, 3, 4) true positives were the
following: (10, 5, 0, 0, 0) by UminP, (3, 6, 4, 1, 1) by Lasso,
and (4, 3, 6, 1, 1) by aSPU. Similar results were obtained for
other numbers of top-ranked RVs. The bad performance of the
UminP test could be due to the unstable variance estimate for
a RV, which was too close to 0 (with a too small MAF) and
thus dramatically inflated the corresponding test statistic. Fig-
ure 2 shows a few more examples in detail. It is confirmed
that aSPU and Lasso performed similarly. Given the simplicity
of the aSPU test and that Lasso may not yield some given
numbers of nonzero coefficient estimates, the use of aSPU
for ranking and selecting RVs seems to be promising.

Table 4 Estimated power for some causal genes with the GAW17 data

Chr Gene
No. of
RVs

No. of
causal SPU(1) SPU(2) SPU(3) SPU(4) SPU(5) SPU(6) SPU(7) SPU(8) SPU(N) aSPU SKAT SKAT-O

1 PIK3C2B 60 23 0.565 0.445 0.650 0.400 0.395 0.355 0.360 0.350 0.340 0.600 0.435 0.560
6 VNN1 6 1 0.185 0.230 0.315 0.235 0.380 0.320 0.350 0.325 0.140 0.270 0.215 0.185
3 BCHE 28 13 0.110 0.190 0.215 0.185 0.175 0.165 0.165 0.165 0.160 0.210 0.195 0.175
8 LPL 15 2 0.090 0.130 0.135 0.110 0.115 0.110 0.115 0.115 0.110 0.135 0.125 0.125

10 SIRT1 23 9 0.095 0.105 0.110 0.065 0.070 0.060 0.055 0.055 0.015 0.105 0.090 0.100
14 SOS2 7 2 0.100 0.270 0.285 0.265 0.275 0.265 0.275 0.265 0.245 0.220 0.255 0.200
19 RRAS 5 2 0.235 0.140 0.155 0.145 0.155 0.150 0.155 0.150 0.100 0.180 0.135 0.200
8 PLAT 25 8 0.225 0.135 0.145 0.110 0.105 0.100 0.100 0.100 0.070 0.155 0.130 0.195
9 VLDLR 23 8 0.080 0.120 0.125 0.110 0.120 0.105 0.115 0.105 0.075 0.090 0.125 0.090

17 SREBF1 21 10 0.050 0.085 0.090 0.105 0.100 0.105 0.100 0.105 0.100 0.085 0.090 0.070
4 KDR 14 8 0.365 0.350 0.160 0.105 0.105 0.100 0.100 0.100 0.020 0.280 0.365 0.390

13 FLT1 25 8 0.125 0.160 0.170 0.150 0.160 0.155 0.155 0.160 0.065 0.125 0.150 0.165
14 HSP90AA1 20 3 0.050 0.275 0.180 0.195 0.170 0.140 0.110 0.120 0.030 0.155 0.335 0.250
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Discussion

We have proposed and studied a class of SPU tests, which are
versatile in the sense that in many scenarios at least one of
the SPU tests has high power, although the identity of a more
powerful SPU test may change with the varying scenario. The
SPU tests are based on the score vector of a regression model,
rendering it both computationally efficient and general to
cover a wide range of applications with binary, quantita-
tive, ordinal, and survival traits and possible covariates. In
particular, compared to several other adaptive tests based
on estimated (marginal) regression coefficients (e.g., Feng
et al. 2011; Zhang et al. 2011; Lin and Tang 2011), the
SPU tests, as any score-based test, requires only fitting a sim-
plified model under the null hypothesis. In addition to its
computational simplicity, a score-based test is more stable
with RVs: for example, with a binary trait, the MLE of a re-
gression coefficient for a RV does not exist if the minor allele
appears in only cases or controls (but not both), leading to no
convergence with an iterative algorithm to obtain the MLE.
On the other hand, as shown earlier, the MLE of a (marginal)
regression coefficient is approximately proportional to its
score component, implying that, as expected, the score vector
is as informative as a vector of the estimated regression coef-
ficients while being computationally much simpler. Our major
contribution is that, by recognizing the limitation of the exist-
ing adaptive tests with a fixed choice of weights, we allow
many possible choices of weights indexed by a single param-
eter g $ 1. There is a simple interpretation, and thus a guid-
ance, on parameter g: as the value of g increases, we
upweight the larger components of the absolute value of
the score vector, |U|; that is, with a decreasing proportion
of the causal RVs in the group to be tested, we expect a SPU
(g) test with a larger value of g to be more powerful because
its upweighting of the larger components of |U| essentially
reduces or even eliminates noisy perturbations from many
nonassociated RVs to the test statistic, thus maintaining high
power in the presence of many nonassociated RVs. In addi-
tion, in the presence of both positive and negative association
directions for causal RVs, an even number of g will eliminate
the canceling effect of positive and negative components of U.
In particular, as compared with some new adaptive tests, such
as KBAC, PWST, aSSU, EREC, and SKAT-O, our proposed
aSPU test was more adaptive and performed much better in
simulations when there were a large number of nonassoci-
ated RVs.

For its highly adaptive and versatile performance, the
aSPU test has a wide spectrum of applications with other
types of traits and/or other genetic variants. For example,
our preliminary results showed promising performance of
the aSPU test for polygenic testing on association between a
binary trait and thousands of CVs (International Schizophrenia
Consortium 2009). In principle, the aSPU test can be also
applied to gene set or pathway analysis (Liu et al. 2008;
Wang et al. 2010).

The relatively good performance of the SSU test and its
close relatives, KMR or SKAT (Wu et al. 2010, 2011) and C-
alpha test (Neale et al. 2011), was attributed to its treating
the regression coefficients b as random effects and then
testing on the variance component of the random effects
(Basu and Pan 2011). Here, based on the formulation of
the SPU tests, more general than the SSU test, we feel that
it can be viewed from another angle: the good performance
of the SSU test, or more generally, any SPU(g) test, is due to
the weighting of each score component Uj by itself or its
power Ug21

j . Since Uj contains association information about
RV j, such weights are both simple and informative: specifi-
cally, since U has a null distribution N(0, V), a larger compo-
nent of |Uj| corresponds to stronger evidence of association
between the jth RV and the trait and thus assigning a higher
weight Uj or Ug21

j will help boost power by reducing the
noises introduced to the test statistic with nonassociated
RVs. However, depending on the unknown truth, such as
the proportion of associated RVs and their specific association
effects, a SPU(g) test with a suitable g will be more powerful
than others. For example, in the presence of many nonasso-
ciated RVs, we would expect a larger g to be more effective:
a nonassociated RV is expected to have a smaller |Uj|, and
thus almost a zero weight with Ug21

j , and may successfully
eliminate the negative effects of many nonassociated RVs on
testing. In particular, when the group of RVs to be tested
contains a large proportion of nonassociated RVs, we found
that a SPU(g) test with g . 2 could be much more powerful
than the Sum and SSU tests, explaining when and why the
aSPU test could outperform SKAT-O and other tests combin-
ing a burden test like SPU(1) and a variance component test
like SPU(2) (Lee et al. 2012; Derkach et al. 2013; Sun et al.
2013). We also found that a SPU(g) test with a large g . 8
gave results similar to that of the SPU(N) test in our simu-
lations, suggesting that searching g over 1 to 8 perhaps suf-
fices in many applications.

Table 5 Empirical type I error rates at the nominal significance level a based on 105 simulation replicates

Gene a SPU(1) SPU(2) SPU(3) SPU(4) SPU(5) SPU(6) SPU(7) SPU(8) SPU(N) aSPU SKAT SKAT-O

RRAS 0.01 0.00689 0.00974 0.00968 0.00963 0.00967 0.00965 0.00965 0.00968 0.00600 0.00791 0.00940 0.00908
0.001 0.00041 0.00099 0.00102 0.00100 0.00097 0.00100 0.00100 0.00100 0.00032 0.00063 0.00085 0.00072

HIF3A 0.01 0.00902 0.00905 0.00922 0.00927 0.00924 0.00938 0.00931 0.00936 0.01019 0.00958 0.00980 0.00808
0.001 0.00106 0.00086 0.00099 0.00095 0.00101 0.00098 0.00102 0.00097 0.00126 0.00101 0.00088 0.00074

PIK3C2B 0.01 0.00943 0.00901 0.00903 0.00894 0.00898 0.00915 0.00902 0.00917 0.00977 0.00933 0.00980 0.00995
0.001 0.00094 0.00081 0.00097 0.00095 0.00090 0.00093 0.00089 0.00095 0.00093 0.00116 0.00086 0.00106
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Since the SPU tests use a mechanism of weighting
to minimize the effects of nonassociated RVs, they are
analogous to model averaging in the literature of model
selection, in contrast to the adaptive Neyman-type tests, such
as the aSSU test (Pan and Shen 2011), which are more in the
line of model or RV selection. In the current context of anal-
ysis of RVs, due to limited information contained within each
individual RV, model averaging is expected to outperform
model selection, as supported by our empirical results when
comparing between the aSPU and aSSU tests. Since in gen-
eral neither model selection nor model averaging can domi-
nate the other (Yuan and Yang 2005; Shen and Huang 2006),
there may be a merit in combining the two approaches in
other applications. In addition, a few modifications or exten-
sions are possible. First, in our current implementation of the
aSPU test, we simply take the minimum P-value (minP) to
combine multiple SPU tests; other combining methods may
be equally applied and may be preferred in certain situations
(Pan et al. 2010). Second, it appears straightforward to

extend the SPU tests to the case with variable thresholds (Price
et al. 2010), which is related to adaptive Neyman-type tests
(Pan and Shen 2011). Third, we have not evaluated the per-
formance of the SPU tests in the presence of interactions
among RVs; in particular, it would be interesting to compare
their performance with the KBAC test that was partly
designed to detect interactions (Liu and Leal 2010). Finally,
although we have pointed out some possible extensions of the
aSPU test for (1) analysis of CVs, (2) joint analysis of both
CVs and RVs, and (3) pathway analysis of CVs and/or RVs,
these topics warrant further investigation in future research.
R code is posted on our website at http://www.biostat.
umn.edu/�weip/prog.html.
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Simulation results with independent RVs

When all the RVs were in linkage equilibrium (with ρ = 0 in simulations), all the

tests seemed to have satisfactory Type I error rates that were well controlled around

the specified nominal level α = 0.05 (Table 1). Next we investigated their power

properties.

First, we considered a situation with a common association effect: all the 8 causal

RVs had an equal odds ratio OR = exp(βj) = 2 associated with the binary trait,

which was ideal to the pooled association tests. As shown in Table 2, among the

SPU tests, when the number of non-associated RVs was small, the SPU(1) (i.e. Sum)

test was most powerful; however, as the number of non-associated RVs increased,

SPU(3) became most powerful. This observation is in agreement with Basu and Pan

(2011), showing the deteriorating performance of the Sum (and other similar pooled

association tests) in the presence of many non-associated RVs. The reason for better

performance of the SPU(3) test, or more generally of a SPU(γ) test with a large value

of γ, in the presence of many non-associated RVs is the following: as the number of

non-associated RVs increased, more and more components of the score vector U were

just noises; using a larger value of γ corresponds to down-weighting those smaller,

and likely noisy, components of U . However, there is a trade-off: a too large value

of γ will also down-weight and thus diminish those smaller signals in U ; an extreme

is that, the SPU(∞) only uses the largest component of |U |, ignoring the signals

contained in |U | for other causal RVs. We also note that, although the SPU(2) (i.e.

SSU) test performed well, it was always less powerful than SPU(3), and their power

difference was large in the presence of many non-associated RVs. A SPU(γ) test with

a large value of γ, e.g. γ > 8, performed similarly to SPU(∞).

Among the adaptive tests, the KBAC test was most powerful with no or few

non-associated RVs, but overall the aSum+ test performed best because, as the Sum

test, the aSum+ test used the common OR assumption while having the capability
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of RV selection to deal with non-associated RVs. Interestingly, as the number of

the non-associated RVs increased, the aSPU test gradually caught up with power

almost the same as that of the aSum+ test. The EREC test was also high powered

with no or few non-associated RVs, but not in the presence of many non-associated

RVs. In particular, as the number of non-associated RVs increased, the aSPU test

was much more powerful than the EREC, PWST, KBAC and other adaptive tests

(except aSum+). It is noted that the aSPU test maintained high power close to the

winner in the class of the SPU tests.

Second, we considered a more realistic situation: there was no common association

strength but only a common association direction among the 8 causal RVs; the ORs

for the 8 causal RVs were randomly drawn from a uniform distribution between 1 and

3, U(1, 3), in each simulation (Table 3). Many of the earlier conclusions held. For

example, among the SPU tests, the SPU(1) (i.e. Sum) test was most powerful in the

absence of non-associated RVs; otherwise, the SPU(3) test was most powerful, though

several other SPU(γ) tests with γ > 3 were similarly powerful in the presence of 128

non-associated RVs. Again the SPU(16), SPU(32) and SPU(∞) behaved similarly.

However, there were also some deviations. Overall, the aSum+ test was most powerful

only for ≤ 32 non-associated RVs; otherwise, the aSPU test was most powerful. For

≥ 64 non-associated RVs, the aSSU test performed as well as the aSum+ test, much

more powerful than the KBAC, aSum, PWST and EREC tests, though much less

powerful than the aSPU test.

Third, we examined a case with both varying association strengths and varying

association directions for the 8 causal RVs (Table 4). As expected, the SPU(1) (i.e.

Sum) test performed terribly. Among the SPU tests, with a smaller number (≤ 32)

of non-associated RVs, the SPU(2) (i.e. SSU) test was most powerful; otherwise the

SPU(4) was the winner. Among the adaptive tests, with only a smaller number of non-

associated RVs, the SKAT was most powerful, closely followed by the PWST, EREC,
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aSPU and aSSU tests; otherwise, the aSPU and aSSU tests performed similarly and

were winners. Although the aSum+ test dramatically improved over the Sum test,

it still had deteriorating performance in the presence of many non-associated RVs

as compared to the aSSU test. Surprisingly, although the aSum2d was designed to

take account of both positive and negative associations, it did not perform better

than the aSum+ test. The reason was that, it was much difficult to detect negative

associations for RVs, unlike for CVs as shown in Pan et al (2011): the aSum- test

aiming to detect negative associations was consistently low powered across all the

scenarios (not shown). It is also noted that both BhGLM and KBAC did not perform

well.

Fourth, we investigated a more extreme case: there was only one causal RV with

a large effect with OR = 5, for which case the SPU(∞) was expected to perform

best due to its selecting only one RV with the largest |Uj| (Table 5). Interestingly,

any SPU(γ) test with γ > 4 performed similarly to each other, and were winners.

Again the aSPU test maintained high power close to the winners in the SPU test

family, and had a clear edge over other adaptive tests, especially in the presence of

many non-associated RVs; the aSSU test also performed well with no or only few

non-associated RVs.

Simulation results with higher signficance levels

We also considered using higher nominal significance levels α. The simulation set-ups

were the same as those presented in the paper; in particular, the RVs were correlated

with ρ = 0.9 being used for latent variables. As for the GAW17 data analysis, we

started with B = 103, then gradually increased B: if an estimated p-value was less

than 5/B, we increased B to ten times of its current value to re-estimate the p-value,

and the process was repeated until no estimated p-value was less than 5/B; we used

B up to B = 105.
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Table 6 shows the estimated Type I error rates with k − k1 = 96 null RVs at

various values of α based on 105 simulation replicates. It is clear that the SPU and

aSPU tests could control their Type I error rates satisfactorily. Table 7 shows the

estimated power based on 103 simulation replicates, again with k− k1 = 96 null RVs

but k1 = 8 causal RVs with their association ORs randomly drawn from U(1, 2). As

for α = 0.05, with more significant α levels the aSPU test was more powerful than

SKAT and SKAT-O; more interestingly, the advantage of the aSPU test was more

dramatic with a more significant α.

Simulation results with higher signficance levels and

a covariate

We considered a new simulation set-up with a single covariate. The correlated RVs

were generated as before with ρ = 0.9 being used for latent variables. A single

covariate was generated from a normal distribution N(0, 10); it was associated with

the binary trait with regression coefficient 1 in the logistic regression model. We used

105 simulation replicates. As for the GAW17 data analysis, we started with B = 103,

then gradually increased B: if an estimated p-value was less than 5/B, we increased

B to ten times of its current value to re-estimate the p-value, and the process was

repeated until no estimated p-value was less than 5/B; we used B up to B = 105. We

used the permutation method based on permuting residuals to calculate the p-values

for the SPU and aSPU tests. As shown in Table 7, the SPU and aSPU tests could

control Type I error rates satisfactorily at the various values of the significance level

α.
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Table 1: Empirical Type I error rates of various tests for the cases with 8 RVs plus

various numbers of non-associated RVs; all RVs were independent; all results were

based on 1000 simulation replicates.

# non-associated RVs

Test 0 8 16 32 64 96 128

UminP .031 .024 .021 .009 .008 .011 .009

SPU(1) .045 .051 .056 .059 .046 .042 .049

SPU(2) .047 .047 .052 .040 .042 .036 .043

SPU(3) .043 .038 .046 .031 .033 .030 .033

SPU(4) .042 .045 .053 .029 .033 .036 .029

SPU(5) .042 .033 .048 .027 .040 .044 .031

SPU(6) .042 .039 .051 .030 .039 .033 .029

SPU(7) .041 .033 .049 .030 .037 .043 .031

SPU(8) .042 .037 .049 .033 .041 .042 .031

SPU(16) .041 .036 .046 .028 .042 .040 .030

SPU(32) .041 .035 .046 .028 .041 .041 .032

SPU(∞) .040 .035 .046 .028 .041 .041 .033

aSPU .046 .056 .054 .042 .042 .049 .048

aSum+ .052 .055 .054 .041 .041 .041 .070

aSum2d .053 .052 .056 .047 .039 .043 .033

aSSU .050 .047 .059 .040 .041 .054 .055

KBAC .060 .051 .056 .047 .046 .043 .050

aSum .054 .046 .060 .046 .047 .049 .049

PWST .061 .051 .053 .046 .042 .047 .057

EREC .062 .048 .056 .044 .039 .045 .051

BhGLM .052 .056 .056 .059 .043 .042 .055

SKAT .060 .047 .056 .050 .050 .050 .055
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Table 2: Empirical power of various tests for the cases with 8 causal RVs with ORs=(2,

2, 2, 2, 2, 2, 2, 2); all RVs were independent; all results were based on 1000 simulation

replicates. The highest powered non-adaptive and adaptive tests in each case are

bold-faced.

# non-associated RVs

Test 0 8 16 32 64 96 128

UminP .421 .281 .230 .156 .115 .076 .076

SPU(1) .953 .790 .654 .461 .269 .211 .183

SPU(2) .742 .673 .615 .516 .418 .306 .278

SPU(3) .769 .718 .666 .557 .472 .391 .361

SPU(4) .632 .594 .550 .460 .411 .352 .324

SPU(5) .629 .588 .531 .444 .415 .357 .337

SPU(6) .573 .529 .488 .397 .383 .318 .295

SPU(7) .574 .535 .487 .397 .383 .333 .301

SPU(8) .546 .515 .465 .380 .368 .299 .283

SPU(16) .514 .482 .427 .354 .346 .286 .270

SPU(32) .508 .470 .419 .349 .337 .281 .265

SPU(∞) .506 .464 .419 .347 .338 .279 .265

aSPU .914 .767 .697 .571 .458 .381 .351

aSum+ .912 .834 .776 .661 .522 .396 .354

aSum2d .867 .758 .683 .557 .415 .307 .174

aSSU .632 .582 .526 .442 .387 .293 .281

KBAC .953 .858 .765 .596 .392 .225 .183

aSum .937 .765 .644 .485 .348 .246 .221

PWST .764 .641 .558 .413 .319 .229 .195

EREC .915 .805 .734 .571 .411 .299 .265

BhGLM .952 .808 .671 .469 .285 .215 .184

SKAT .773 .676 .615 .512 .413 .284 .275
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Table 3: Empirical power of various tests for the cases with 8 causal RVs with ORs

randomly chosen from U(1,3); all RVs were independent; all results were based on

1000 simulation replicates. The highest powered non-adaptive and adaptive tests are

bold-faced.

# non-associated RVs

Test 0 8 16 32 64 96 128

UminP .552 .427 .336 .281 .199 .178 .146

SPU(1) .900 .749 .593 .442 .270 .232 .177

SPU(2) .795 .737 .655 .607 .501 .428 .357

SPU(3) .818 .765 .684 .645 .571 .537 .437

SPU(4) .730 .688 .620 .599 .542 .492 .442

SPU(5) .732 .682 .618 .577 .548 .510 .456

SPU(6) .696 .652 .587 .560 .527 .475 .446

SPU(7) .688 .639 .579 .544 .518 .475 .449

SPU(8) .670 .630 .570 .533 .507 .464 .434

SPU(16) .648 .609 .552 .516 .487 .443 .412

SPU(32) .646 .599 .544 .507 .483 .429 .407

SPU(∞) .641 .597 .542 .507 .480 .423 .408

aSPU .879 .783 .692 .643 .565 .523 .451

aSum+ .905 .846 .760 .670 .517 .465 .377

aSum2d .863 .778 .693 .580 .408 .366 .193

aSSU .721 .665 .594 .535 .483 .433 .379

KBAC .925 .837 .719 .593 .330 .255 .171

aSum .892 .746 .613 .483 .329 .277 .217

PWST .785 .682 .583 .464 .344 .287 .230

EREC .902 .816 .701 .578 .408 .358 .273

BhGLM .905 .766 .619 .465 .280 .235 .179

SKAT .798 .722 .641 .562 .467 .401 .318
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Table 4: Empirical power of various tests for the cases with 8 causal RVs with ORs=(3,

1/3, 2, 2, 2, 1/2, 1/2, 1/2); all RVs were independent; all results were based on 1000

simulation replicates. The highest powered non-adaptive and adaptive tests are bold-

faced.

# non-associated RVs

Test 0 8 16 32 64 96 128

UminP .486 .351 .295 .208 .171 .145 .133

SPU(1) .276 .190 .142 .101 .072 .051 .068

SPU(2) .797 .690 .638 .513 .409 .336 .292

SPU(3) .603 .515 .495 .418 .347 .307 .288

SPU(4) .706 .602 .569 .478 .452 .403 .380

SPU(5) .634 .522 .498 .430 .404 .372 .343

SPU(6) .674 .565 .535 .455 .444 .399 .369

SPU(7) .624 .527 .492 .423 .411 .380 .351

SPU(8) .655 .551 .512 .430 .437 .390 .356

SPU(16) .637 .532 .494 .421 .420 .384 .348

SPU(32) .628 .526 .488 .413 .419 .380 .347

SPU(∞) .626 .522 .485 .413 .418 .377 .349

aSPU .718 .598 .564 .469 .421 .360 .339

aSum+ .689 .562 .509 .377 .283 .228 .196

aSum2d .694 .523 .470 .330 .240 .201 .106

aSSU .692 .597 .557 .484 .418 .368 .320

KBAC .699 .485 .389 .250 .163 .116 .096

aSum .670 .505 .402 .284 .241 .173 .137

PWST .784 .645 .579 .421 .328 .256 .197

EREC .769 .630 .518 .376 .277 .215 .202

BhGLM .490 .303 .219 .134 .080 .060 .071

SKAT .810 .685 .625 .504 .404 .318 .291
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Table 5: Empirical power of various tests for the cases with only one causal RV with

OR=5; all RVs were independent; all results were based on 1000 simulation replicates.

The empirical power for all the tests was around 0.850 in the absence of non-associated

RVs. The highest powered non-adaptive and adaptive tests are bold-faced.

# non-associated RVs

Test 8 16 32 64 96 128

UminP .696 .629 .556 .496 .479 .461

SPU(1) .365 .263 .160 .096 .088 .086

SPU(2) .710 .664 .580 .520 .470 .427

SPU(3) .717 .664 .634 .585 .569 .541

SPU(4) .731 .697 .653 .633 .605 .574

SPU(5) .727 .692 .654 .627 .622 .593

SPU(6) .732 .701 .651 .637 .620 .598

SPU(7) .731 .696 .652 .634 .621 .596

SPU(8) .730 .699 .656 .634 .623 .600

SPU(16) .729 .700 .653 .638 .624 .594

SPU(32) .730 .700 .652 .638 .626 .594

SPU(∞) .730 .700 .651 .640 .627 .594

aSPU .707 .683 .645 .615 .592 .571

aSum+ .731 .627 .512 .329 .278 .256

aSum2d .668 .561 .432 .263 .202 .187

aSSU .736 .685 .628 .561 .518 .481

KBAC .629 .483 .330 .193 .128 .103

aSum .447 .314 .215 .152 .130 .126

PWST .665 .533 .405 .280 .211 .174

EREC .685 .545 .424 .272 .197 .184

BhGLM .480 .385 .257 .157 .127 .121

SKAT .713 .638 .544 .436 .379 .333
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Table 6: Empirical Type I error rates based on 105 simulation replicates with 96 + 8

null RVs and ρ = 0.9. For comparison, the results for resampling-based SKAT and

SKAT-O and asymptotics-based SKAT and SKAT-O (A-SKAT and A-SKAT-O) are

also included.
α SPU(1) SPU(2) SPU(3) SPU(4) SPU(5) SPU(6) SPU(7) SPU(8) SPU(15) SPU(16) SPU(31) SPU(32) SPU(∞) aSPU A-SKAT SKAT A-SKAT-O SKAT-O

0.05 0.04875 0.04964 0.04976 0.05028 0.04970 0.04956 0.04931 0.04961 0.04968 0.04957 0.04967 0.04956 0.03359 0.04862 0.05050 0.05070 0.05300 0.05119

0.01 0.00904 0.00935 0.00917 0.00937 0.00922 0.00924 0.00933 0.00913 0.00925 0.00915 0.00926 0.00915 0.00587 0.00882 0.00978 0.01023 0.01085 0.00982

0.005 0.00362 0.00396 0.00421 0.00442 0.00431 0.00446 0.00419 0.00427 0.00408 0.00416 0.00409 0.00416 0.00274 0.00445 0.00520 0.00418 0.00547 0.00442

0.001 0.00086 0.00084 0.00082 0.00088 0.00089 0.00085 0.00086 0.00087 0.00078 0.00085 0.00078 0.00085 0.00056 0.00083 0.00104 0.00095 0.00117 0.00083

0.0005 0.00034 0.00037 0.00039 0.00051 0.00048 0.00042 0.00035 0.00036 0.00035 0.00035 0.00035 0.00035 0.00025 0.00045 0.00060 0.00041 0.00050 0.00038

Table 7: Empirical power based on 103 simulation replicates with 8 causal RVs, 96

null RVs and ρ = 0.9. For comparison, the results for resampling-based SKAT and

SKAT-O and asymptotics-based SKAT and SKAT-O (A-SKAT and A-SKAT-O) are

also included.
α SPU(1) SPU(2) SPU(3) SPU(4) SPU(5) SPU(6) SPU(7) SPU(8) SPU(15) SPU(16) SPU(31) SPU(32) SPU(∞) aSPU A-SKAT SKAT A-SKAT-O SKAT-O

0.05 0.29700 0.83300 0.81900 0.86000 0.84600 0.85400 0.84600 0.84800 0.83800 0.84100 0.83800 0.84100 0.79600 0.84400 0.79600 0.79900 0.76800 0.76200

0.01 0.14600 0.70300 0.72600 0.77400 0.76100 0.75700 0.74700 0.74100 0.72800 0.72500 0.72600 0.72400 0.66700 0.73300 0.65000 0.64500 0.59600 0.57200

0.005 0.09900 0.65500 0.68200 0.73400 0.72100 0.71300 0.70000 0.69100 0.65900 0.66200 0.65800 0.66100 0.58700 0.68600 0.58400 0.55200 0.53400 0.51200

0.001 0.04500 0.52200 0.58600 0.61900 0.60400 0.58700 0.57000 0.55600 0.52700 0.52600 0.52500 0.52500 0.46200 0.57100 0.45300 0.44600 0.42000 0.39800

Table 8: Empirical Type I error rates based on 105 simulation replicates with a

covariate, 96 + 8 null RVs and ρ = 0.9.
α SPU(1) SPU(2) SPU(3) SPU(4) SPU(5) SPU(6) SPU(7) SPU(8) SPU(15) SPU(16) SPU(31) SPU(32) SPU(∞) aSPU

0.05 0.05024 0.05037 0.05007 0.04938 0.05014 0.04949 0.04939 0.04917 0.04895 0.04886 0.04888 0.04883 0.04889 0.04738

0.01 0.00993 0.00961 0.00999 0.00966 0.00982 0.00993 0.00994 0.01017 0.01001 0.00996 0.00979 0.00980 0.00985 0.00865

0.005 0.00460 0.00459 0.00494 0.00487 0.00490 0.00478 0.00477 0.00472 0.00457 0.00458 0.00450 0.00451 0.00451 0.00471

0.001 0.00092 0.00102 0.00108 0.00101 0.00121 0.00107 0.00107 0.00112 0.00114 0.00112 0.00113 0.00113 0.00111 0.00093

0.0005 0.00037 0.00049 0.00043 0.00052 0.00053 0.00049 0.00050 0.00048 0.00051 0.00053 0.00051 0.00051 0.00051 0.00040
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