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ABSTRACTMany genetic association studies collect a wide range of complex traits. As these traits may be correlated and share a common
genetic mechanism, joint analysis can be statistically more powerful and biologically more meaningful. However, most existing tests for
multiple traits cannot be used for high-dimensional and possibly structured traits, such as network-structured transcriptomic pathway
expressions. To overcome potential limitations, in this article we propose the dual kernel-based association test (DKAT) for testing the
association between multiple traits and multiple genetic variants, both common and rare. In DKAT, two individual kernels are used to
describe the phenotypic and genotypic similarity, respectively, between pairwise subjects. Using kernels allows for capturing structure while
accommodating dimensionality. Then, the association between traits and genetic variants is summarized by a coefficient which measures
the association between two kernel matrices. Finally, DKAT evaluates the hypothesis of nonassociation with an analytical P-value calcu-
lation without any computationally expensive resampling procedures. By collapsing information in both traits and genetic variants using
kernels, the proposed DKAT is shown to have a correct type-I error rate and higher power than other existing methods in both simulation
studies and application to a study of genetic regulation of pathway gene expressions.
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LARGE-SCALE, genome-wide association studies and next
generation sequencingassociation studieshave resulted in

the identification of a wide range of genetic variants, common
and rare, related to a host of complex traits and disorders
(McCarthy et al. 2008; Welter et al. 2014). Traditional genetic
association analyses have focused on identifying associations
between individual genetic variants or groups of genetic vari-
ants with a single trait of interest. However, this approach
proves inadequatewhen a single variable does not fully capture
the trait or phenotype of interest and further may result in
power loss. In many situations, joint analysis of multiple traits,
simultaneously, may prove advantageous as compared to single
trait analysis for a number of reasons. First, joint analysis tends

to be statistically more powerful than individual trait analysis,
especially whenmany of the traits are correlated and each trait
has only modest association with genotypes. Joint analysis can
exploit the correlation structure by borrowing information
across multiple traits and amplifying the modest marginal as-
sociation signals (Klei et al. 2008; Aschard et al. 2014). Second,
joint analysis facilitates the elucidation of shared genetic mech-
anisms and pleiotropic relationships, thus serving as an appro-
priate means for improving biological understanding (Chesler
et al. 2005; Andreassen et al. 2015). Finally, many traits are
inherentlymulti-phenotypic. For example,metabolic syndrome,
which increases risk for heart disease, diabetes, and stroke, is
defined based on the presence of three out of five conditions
(Alberti et al. 2005); information can be gained by using all five
conditions as trait measures rather than considering only the
formal diagnosis of metabolic syndrome.

Awide rangeof statistical andcomputationalmethodshave
been developed for analyzing multiple phenotypes. Broadly
speaking, these methods fall into three main categories. The
first category is based on directly integrating univariate re-
sults from analyzing each trait separately (Yang et al. 2010;
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van der Sluis et al. 2013). Generally thesemethods can handle
at most a moderate number of traits (e.g., ,20 traits) and
do not directly harness correlation and relationships among
the traits. The second category of methods is based on apply-
ing classical dimension-reduction methods, e.g., principal
component analysis (Klei et al. 2008) and canonical correla-
tion analysis (Ferreira and Purcell 2009), to collapse multiple
traits into a single score. However, results based on dimension-
reduction methods are difficult to interpret and lose power
when the weights for collapsing the multiple traits are
imperfect (Aschard et al. 2014). The final category is
the broadest and is based on multivariate-regression meth-
ods, which often assume a parametric model for the relation-
ships between multiple traits and a single SNP (O’Reilly et al.
2012; Zhou and Stephens 2014; Wu and Pankow 2015; Joo
et al. 2016; Ray et al. 2016; Schaid et al. 2016). The specific
modeling strategies underlying each approach vary with
some approaches using classical mixed models and others
using alternative strategies, e.g., MultiPhen (O’Reilly et al.
2012), which uses ordinal regression to regress a SNP on
multiple traits. These methods often suffer when underlying
parametric assumptions are violated. Many of these methods
have been extended to accommodate multiple SNPs and
multiple traits (Maity et al. 2012; Hua and Ghosh 2015;
Broadaway et al. 2016; Kim et al. 2016; Wu and Pankow
2016), with the understanding that the multi-SNP analysis
can oftentimes improve power for the same reasons that
multi-trait analysis can improve power.

There are considerable and increasing interests in high-
dimensional structured phenotypes, such as imaging traits or
other omics data, as they are often inherently interesting and
also can serve as intermediate traits, which help in elucidating
the underlying molecular mechanisms while being more di-
rectly related to etiology. However, despite interest, pheno-
types such as imaging outcomes (Zhang et al. 2014) and other
sources of omics data such as gene expression, metabolomics
intensity (Zhan et al. 2015b), and microbiome composition
(Zhao et al. 2015), continue to pose grand challenges. Be-
yond the intrinsic high dimensionality and scale of the data,
such phenotypes are often statistically complex in that they
have underlying structure that needs to be accommodated.
Examples of structures include network/pathway relation-
ships in metabolomic data and gene expression data, and
phylogenetic relationships in microbiome data. Most existing
multivariate-trait-association methods do not generally ac-
commodate high-dimensional structured phenotypes. Meth-
ods based on univariate analysis and collapsing rapidly lose
power as dimensionality increases (Yang et al. 2010; van der
Sluis et al. 2013), since they typically suffer from power loss
due to a heavy multiple-testing burden, which comes with
the high-dimensional traits. Dimension reduction-based as-
sociation analysis usually considers surrogate outcomes (e.g.,
principal components), which breaks down the inherent
structures in the original phenotypes. More complicated
multivariate-regression modeling strategies often become un-
stable or computationally intractable when dimensionality of

traits increases (Maity et al. 2012; Wu and Pankow 2016).
None of the methods directly consider the issue of incorporat-
ing high-dimensional structured traits, which leads to poten-
tial power loss of detecting existing associations (Freytag et al.
2014). Thus, new methods are necessary.

A powerful approach in genetic association analysis is the
kernel machine regression (KMR) framework, which has
proven to be a useful tool for association studies with both
common and rare variants (Kwee et al. 2008; Wu et al. 2010,
2011; Ionita-Laza et al. 2013; Zhan et al. 2016). Under the
original KMR framework, a single phenotype is modeled to be
related to a group of genetic variants. The relationship is cap-
tured by way of a kernel function which measures similarity
among the risky variants. Then testing proceeds by comparing
pairwise similarity in genetic variant profiles between subjects
(measured by the kernel matrix) to pairwise similarity in phe-
notypes (measured by the cross-product matrix of traits), with
correspondence in similarity indicative of association. By in-
telligently choosing kernels, structure in the genetic variants
can be directly accommodated (Schaid 2010a,b)while dealing
with high dimensionality.

Motivated by these kernel-based genetic association tests,
we propose the dual kernel-based association test (DKAT)
which is designed to assess the association between high-
dimensional, possibly structured, phenotypes of interest with
multiple genetic variants, though the approach trivially ap-
plies to single genetic variant analysis as well. The idea of
DKAT is thatwepropose tousenotonly akernel for thegenetic
variants but also a kernel for the high-dimensional and struc-
tured traits. In other words, we replace the cross-product
matrix for traits in the existing KMR framework with a kernel
matrix to better capture the high dimensionality as well the
structure of the traits. To associate the traits (now embedded
within a kernel) and a group of genetic variants, we again
compare similarity in genetic variant profiles to similarity in
phenotypic profiles. In particular, the normalized Frobenius
inner product between two kernel matrices is used as the
statistic to summarize the genotype–phenotype association.

Besides being able to incorporate high-dimensional struc-
tured traits in genetic association analysis, another major
contribution of DKAT is that we introduce a new test design
for genetic association testing. Currently, twomost popular P-
value calculation methods for genetic association analysis is
either based on large-sample asymptotic theory (Wu et al.
2010, 2011; Broadaway et al. 2016; Wu and Pankow 2016)
or via permutations (Hua and Ghosh 2015; Pan et al. 2015;
Joo et al. 2016; Kim et al. 2016). However, the large-sample
asymptotic theory-based P-value calculation can lead to a
conservative test with accumulated estimation error (Lee
et al. 2012; Chen et al. 2016), as in studies with small samples
or high-dimensional traits. On the other hand, the permuta-
tion test is inefficient when a stringent P-value is required, as
in many genome-wide association studies. We propose a fast
pseudopermutation technique for DKAT, which approximates
the empirical distribution of all n! potential permuted DKAT
statistics by moment matching. In this new test design, we
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only calculate the first three samplemoments of permutations,
without explicitly calculating the permutations themselves.
Then, the Pearson type III density with the same moments is
used to approximate the empirical distribution of all permuta-
tions, where a Pearson type III density is selected in this article
due to its good approximation performance for DKAT-similar
statistics (Josse et al. 2008; Minas et al. 2013; Zhan et al.
2017). Fortunately, the first three sample moments of these
n! permutations have closed-form expressions (Kazi-Aoual
et al. 1995). Thus, we can analytically calculate both the Pear-
son type III density and the DKAT P-value. Our DKAT test de-
sign is more efficient and accurate than those currently used
for genetic association tests, since it neither requires explicit
permutations nor relies on large-sample asymptotic theory.

Methods

Notations

Throughout this article, we assume a study with n unrelated
individuals who have been genotyped and phenotyped.
For the ith subject (i ¼ 1; . . . ; n), let Gi ¼ ðgi1; . . . ; gimÞ de-
note the vector of genotypes, where gij ¼ 0, 1, or 2 represents
the number of minor alleles, Yi ¼ ðyi1; . . . ; yipÞ denote the set
of p traits (e.g., the expression values of p genes in a pathway
or the abundances of p metabolites in a pathway), and
Xi ¼ ð1; xi1; . . . ; xiqÞ denote covariates such as age, gender
and principal components of genotypes. The objective is to
test the global association between the group of traits and the
group of genetic variants after accounting for the effect of
covariates, which will be accomplished by using the kernel
machine framework. We emphasize that although our focus
is on the setting in which we have multiple genetic variants,
our method trivially applies to the scenario whenm ¼ 1; that
is, when we are interested in the relationship between a sin-
gle variant and multiple traits.

Single kernel-based association tests

Before discussing multi-trait association analysis, we first
briefly review the KMR framework, which has been widely
used to test the association between a set of genetic variants
and a single trait (Liu et al. 2007, 2008; Kwee et al. 2008; Wu
et al. 2010, 2011; Ionita-Laza et al. 2013; Zhan et al. 2016).
Specifically, the KMR relates the trait (continuous or dichot-
omous) to the set of genotype values using the following
generalized partial linear model (Liu et al. 2007, 2008):

g½Eð yijXi;GiÞ� ¼ Xiaþ f ðGiÞ; (1)

wherea ¼ ða0;a1; . . . ;aqÞ9 are the regression coefficients for
the covariates; f ð�Þ is a generally specified function belonging
to a space spanned by a kernel function kgð�; �Þ; and gð�Þ is a
link function, such as an identity function for continuous
traits and logit function for dichotomous traits. The kernel
kgð�; �Þ is the genotype kernel and has corresponding kernel
matrix KG; where KGði; jÞ ¼ kgðGi;GjÞ; i; j ¼ 1; . . . ; n: The key
to this KMR framework is usage of a positive semidefinite

kernel function kgðGi;GjÞ as a similarity measure between ge-
notypes Gi and Gj (Schaid 2010a,b), which can facilitate cap-
ture of structure and relationships among genetic variants.

In the KMR model (1), the trait is related to the variants
through fð�Þ: Hence, testing the hypothesis of no association
between the trait and genetic variants after adjusting for
covariates is equivalent to testing f ð�Þ ¼ 0: Through connec-
tions between KMR and generalized linear mixed models
(Liu et al. 2007, 2008), we can treat f ðGÞ as a vector of
subject-specific random effects with mean zero and variance
tKG: Then testing f ð�Þ ¼ 0 is equivalent to testing whether the
variance component t is equal to zero, which can be easily
accomplished using a variance component score test with
the following test statistic

S :¼ 1
2f

ðy2ŷÞ9KGðy2 ŷÞ ¼ 1
2f

tr
h
KGðy2 ŷÞðy2ŷÞ9

i
; (2)

where y ¼ ðy1; . . . ; ynÞ9; ŷ is the estimated trait values under
the null model of f ð�Þ ¼ 0; and trð�Þ denotes the trace of a
matrix. When the trait is continuous, f ¼ ŝ2; with ŝ2 being
estimated under the null model. When the trait is dichoto-
mous, f ¼ 1: Under the null, Q follows a mixture of x2 dis-
tributions which can be approximated using exact methods
(Davies 1980).

Test statistic (2) is essentially the sum of the element-wise
product of two n3 nmatrices. One is KG and the other is the
cross product of the trait residuals ðy2 ŷÞðy2ŷÞ9: In genetic
association analysis, the kernel matrix KG is often used to
measure the subject-pairwise similarity in terms of genotypes
(Kwee et al. 2008; Wu et al. 2010, 2011), and the cross
product of residuals ðy2 ŷÞðy2ŷÞ9 is often used to measure
subject-pairwise similarity of phenotypes (Tzeng et al. 2009,
2011). Heuristically speaking, statistic S compares the subject-
pairwise similarity in the trait to that in genotypes, where a
high correspondence usually leads to a large statistic value
and suggests existence of association.

There are two straightforward ways to extend the single
kernel-based association test statistic (2) to accommodate
multiple traits Y: One is to stack the columns of Y into a huge
column vector y* ¼ vecðYÞ and apply the statistic (2) to y*:
This approach is evaluated in Maity et al. (2012). However, a
major limitation is that this approach can be computationally
intractable with high-dimensional traits since it needs to
eigendecompose an np3 np matrix. The other approach
to incorporate multiple traits is simply to replace the uni-
variate trait residuals cross-product matrix ðy2 ŷÞðy2ŷÞ9
by the multivariate traits residuals cross-product matrix
ðY2 ŶÞðY2ŶÞ9; where Ŷ is estimated under the null model
Y ¼ XBþ E; assuming all traits are continuous. The second
approach typically loses power when traits are highly or even
modestly correlated with each other (Wu and Pankow 2016).
Furthermore, both approaches fail to capture any compli-
cated structures within traits (e.g., inherent regulatory net-
work structure within transcriptomic pathway expressions),
which can further lead to power loss (Freytag et al. 2014). To
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address this issue, we propose the DKAT approach in the
following section to allow for testing association between
high-dimensional, possibly structured, traits and one or more
genetic variants.

A DKAT

To address the aforementioned limitations, we propose to
use a phenotype kernel KY to model multiple traits simulta-
neously. Similar the genotype kernel KG; the phenotype ker-
nel KY is used to summarize the phenotypic similarity.
Comparedwith the cross-productmatrix ðY2 ŶÞðY2ŶÞ9 used
in some existing methods, DKAT is able to capture complex
structures among the multiple phenotypes by embedding the
phenotypes in a kernel.

Like the single kernel-based association tests in KMR, we
test the association between multiple traits and multiple ge-
netic variants by comparing the phenotypic similarity matrix
and genotypic similarity matrix across pairs of individuals.
Motivated by works of relating two matrices from the same
individuals (Josse et al. 2008; Minas et al. 2013; Zhan et al.
2017), we propose the new DKAT statistic as

D :¼ trðHKGHKY Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðHKGHKGÞtrðHKYHKY Þ

p ; (3)

where H ¼ In 2 1 1 9=n is a centering matrix, In is the nth
order identity matrix, and 1 is an n-dimensional vector of
ones. Since H is idempotent, the numerator trðHKGHKY Þ is
essentially the same as trðHKGHHKYHÞ;which is the element-
wise multiplication of centered genotype kernel matrix
HKGH and centered phenotype kernel matrix HKYH: Hence,
our DKAT statistic shares the same spirit of comparing two
similarities as the single kernel-based association tests statis-
tic (2). Moreover, if the phenotype kernel is picked as
KY ¼ ðY2 ŶÞðY2ŶÞ9; then the DKAT statistic reduces to the
form of the KMR statistic in (2). Therefore, most existing
kernel association tests (Liu et al. 2007, 2008; Kwee et al.
2008;Wu et al. 2010, 2011;Maity et al. 2012;Wu and Pankow
2016; Zhan et al.2016) can be viewed as special forms of DKAT.
As an alternative to comparing two kernel matrices, there exist
some similar statistics either comparing two input matrices
(Josse et al. 2008) or two distance matrices (Minas et al.
2013). Kernels have been widely used to capture structures
among genotypes (Kwee et al. 2008; Wu et al. 2010, 2011;
Ionita-Laza et al. 2013; Broadaway et al. 2016). Following
this steam, specific kernels are used in this article to capture the
inherent structures among both genotypes and phenotypes.

Intuitively speaking, the larger theDKAT statistic, themore
likely the genotype kernel matrix resembles the phenotype
kernel matrix, which further implies that the phenotypes
might be associated with the genotypes in a specific way.
To calculate the exact critical value of a DKAT under a given
significance level, we need to study its distribution under the
null hypothesis of no association. Two current standard ap-
proaches of calculating the null distribution of a genetic
association test statistic are permutation-based resampling

methods (Hua and Ghosh 2015; Pan et al. 2015; Joo et al.
2016; Kim et al. 2016) and large sample-based asymptotic
methods (Kwee et al. 2008;Wu et al. 2010, 2011; Broadaway
et al. 2016; Wu and Pankow 2016). However, both methods
have potential limitations. On one hand, it is computationally
expensive to use permutations to achieve genome-wide sig-
nificance. On the other hand, it is observed that asymptotic
methods can be conservative when the sample size is small or
modest (Lee et al. 2012; Chen et al. 2016). To overcome these
potential limitations, we calculate the P-value of DKAT using
a fast-pseudopermutation method, closely following the
strategy being used in the RV-coefficient literature (Josse
et al. 2008; Minas et al. 2013; Zhan et al. 2017), where a
typical RV coefficient shares the same form of the DKAT sta-
tistic but uses totally different matrices other than KG and KY

(both introduced in the next section) as used in this article.
Specifically, a Pearson type III distribution is used to approx-
imate the permutation null distribution of DKAT by matching
the first three moments. Technical details of calculating
the Pearson type III density are presented in Supplemental
Material, Section S.1 in File S1. The advantages of the new
DKAT P-value calculation strategy are twofold. First, no ex-
plicit permutation is required as the finite-sample empirical
moments can be analytically calculated. Second, closed-form
expression of the Pearson type III density is available, and
thus our method allows a fast and analytic P-value calcula-
tion for genetic association analysis.

Choices of kernels

A key aspect of DKAT is the kernels, which appropriately
summarize thephenotypic andgenotypic similarities between
pairwise subjects; although DKAT is statistically valid in pro-
tecting the correct type I error, irrespective of the kernels being
used.However, goodchoiceof kernels,whichbetter reflect the
unique data features, can improve the test power (Freytag
et al. 2014; Zhao et al. 2015). In this section, we first briefly
review some genotype kernels widely used in existing kernel-
based association tests and some kernels that could poten-
tially be used for phenotypes. Then we propose a specific
phenotype kernel for the high-dimensional structured phe-
notypes considered in this article.

In the literature, many kernels have been proposed for
genotype data (Schaid 2010a,b). Some popular examples in-
clude the linear kernel and the identity-by-state (IBS) kernel:

Linear kernel: kgðGi;GjÞ ¼ G9
iGj ¼

Pm
l¼1gilgjl:

IBS kernel: kgðGi;GjÞ ¼ ð1=2mÞPm
l¼1ð22 jgil 2 gjljÞ:

The linear kernel assumes a linear association pattern. That
is, the function f ð�Þ in model (1) is of a linear form. It is simple
and can be powerful when the true underlying association
pattern is linear. The IBS kernel measures the similarity based
on identity-by-state (IBS) allele sharing and is positive definite
(Kwee et al., 2008). However, the space spanned by an IBS
kernel is less studied. Both the linear kernel and the IBS kernel
are additive forms, whichmakes it easy to incorporate weights
wl; l ¼ 1; . . . ;m for each genetic variant (Wu et al. 2011).
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On the other hand, few studies have described the use of
kernels for the complexmulti-dimensional traits as considered
in this article. In general, if all traits are continuous, then the
Gaussian kernel and the dth-order polynomial kernel are of-
ten used. Also, the binary kernel was shown to be a valid
kernel function for all multivariate binary traits.

Gaussian kernel: kyðYi;Yj; rÞ ¼ expf2Pp
l¼1ð yil2yjlÞ2=rg

Polynomial kernel: kyðYi;Yj; dÞ ¼
Pp

l¼1ð yil yjl þ 1Þd:
Binary kernel: kyðYi;YjÞ ¼

Pp
l¼1I½ yil 6¼ yjl�

If thetraitsaremixed(acombinationofcontinuousvariables
and binary variables), then we can define kernels for both the
continuous and binary parts separately and thenmultiply them
together as the final kernel function, which has been shown to
be valid for association analysis (Zhan et al. 2016).

Nomatter how large the dimension p is, the information in
all traits is pooled into a scalar by using the phenotype kernel.
In this sense, DKAT is robust against high-dimensional phe-
notypes, which can be a major advantage over most existing
multivariate regression-based testing methods (Maity et al.
2012;Wu and Pankow 2016). Besides the robustness to high-
dimensional traits, another major concern of this article is to
address the network-type traits, such as expression of genes
belonging to the same pathway. For such gene pathway data,
a network-based kernel has been proposed of the form
KY ¼ YNY9 (Freytag et al. 2014), where N is the undirected
adjacency matrix, Nij ¼ 1 represents that gene i and gene j
interact with each other in an activating fashion, and
Nij ¼ 21 represents an inhibition pattern.

In reality, it is difficult to know the functional relationship
between each gene pair within the pathway. Hence, we re-
place the adjacency matrix N with the precision matrix Q

(also called inverse covariance matrix S21), which can be
estimated from the data without any prior biological knowl-
edge. The precision matrix Q is useful in estimating partial
correlations, which incorporates the functional mechanism of
the whole pathway. For example, under the Gaussian as-
sumption, Qij ¼ 0 indicates that gene i and gene j are condi-
tionally independent given all other genes in the network/
pathway, or equivalently speaking, gene i and j are uncon-
nected in the gene network/pathway (Friedman et al. 2008).
Similar to the undirected adjacency matrix N; Q can also
incorporate the underlying network structure. Thus, we pro-
pose the phenotype kernel matrix as KY ¼ YQ̂Y9; where Q̂ is
the estimated precision matrix. A simple estimator is the
sample precision matrix Q̂s; and the corresponding pheno-
type kernel matrix KY is proportional to the so-called projec-
tion similarity matrix in the literature (Wessel and Schork
2006; Broadaway et al. 2016). When the dimension of traits
is high, the sample precisionmatrix Q̂s is unstable or even not
estimable. In such a high-dimensionality scenario, we esti-
mate the precision matrix via regularization. For example, a
graphical lasso estimator Q̂gl can be derived by maximizing
the lasso-penalized log likelihood (Friedman et al. 2008).

In practice, it is often true that multiple kernels K1
G; . . . ;K

t
G

and K1
Y ; . . . ;K

s
Y are available for testing in DKAT. Without

knowing the true underlying associationmodel, it is of impor-
tance to accommodatemultiple candidate kernels. In general,
there are two approaches to tackle this issue. The first aver-
age-type strategy is to calculate an omnibus Ko

G which is usu-
ally a linear combination of K1

G; . . . ;K
t
G; and another omnibus

Ko
Y which is usually a linear combination of K1

Y ; . . . ;K
s
Y : Then a

final DKAT(Ko
G;K

o
Y) test is applied. The other minimum-type

approach to accommodate multiple candidate kernels is to
pick the most significant kernel pair. That is, K*

G and K*
Y are

selected such that DKAT(K*
G;K

*
Y) has the smallest P-value over

all ts kernel pairs ðKi
G;K

j
Y Þ; i ¼ 1; . . . ; t; j ¼ 1; . . . ; s: However,

the minimum P-value is no longer a genuine P-value and
permutations are often needed to establish the final signifi-
cance. Details of these two approaches of accommodating
multiple candidate kernels, along with numerical evalua-
tions, can be found in Section S.2 of File S1.

Besides the kernels, another important practical issue is to
adjust for the confounding covariates effects, such as age,
gender, and principal components of genotypes (for adjusting
population structures). In genetic association tests, a common
strategy of adjusting for covariates is the residual-based ap-
proach (Tzeng et al. 2009, 2011; Wu et al. 2010, 2011; Hua
and Ghosh 2015; Broadaway et al. 2016). That is, we first fit
the nullmodelwith covariates only: g½EðyijXiÞ� ¼ Xia and then
calculate the residuals eY ¼ Y2 Ŷ of the null model. Next, one
can construct the phenotype kernel on the residuals as the
subject-wise trait similarity after adjusting for covariates. That
is, the phenotype kernel matrix KY ¼ ðY2 ŶÞQ̂ðY2ŶÞ9 is used
in DKAT, where Q̂ is the estimated precision matrix of resid-
uals. Existing numerical studies have shown that it can have
the correct type I error as long as the number of covariates is
much smaller than the sample size (Wu et al. 2010, 2011; Hua
and Ghosh 2015; Broadaway et al. 2016).

Simulation studies

We conducted extensive simulation studies under different
scenarios to evaluate the performance of DKAT in testing the
association between high-dimensional structured traits and
genotypes. To mimic a relatively high-dimensional scenario,
p ¼ 200 traits (e.g., expressions of genes belonging to a path-
way)were considered in our simulation. As a comparison,most
existing multivariate association tests usually considered ,20
traits (Klei et al. 2008; Maity et al. 2012; van der Sluis et al.
2013; Broadaway et al. 2016; Ray et al. 2016; Schaid et al.
2016; Wu and Pankow 2016). Two different correlation struc-
tures were used in this simulation. One was the compound
symmetry covariance structure as commonly used in the liter-
ature (Maity et al. 2012; Broadaway et al. 2016; Ray et al.
2016; Schaid et al. 2016; Wu and Pankow 2016). That was
Sii ¼ 1 and Sij ¼ r for all i 6¼ j; where S was the covariance
matrix of the traits. The other correlation structure was the
banded inverse covariance (precision) matrix Q with
Qi;i ¼ 1; Qi;i21 ¼ Qi21;i ¼ r; and zero otherwise, where
Q ¼ S21 was the precision matrix of traits. Assuming all
traits were continuous, then Rijj2fi;jg ¼ 2Qij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
QiiQjj

p
;where

Rijj2fi;jg was the partial correlation between trait i and j given
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all other traits. Thus, the banded precision matrix Q repre-
sented such a pathway that each gene was only related to its
nearby genes conditional on all other genes in the pathway. In
contrast to the compound symmetry covariance structure, the
banded inverse covariance structuremimicked the complicated
functional-regulatory mechanisms in a gene pathway. For sim-
plicity, we denoted these two covariance structures as S1 and
S2 ¼ Q21 in the rest of the simulation section. To guarantee
positive definiteness ofS1 andS2;we simply simulated r from
uniform (0, 0.5) distribution. Finally, we conducted three dif-
ferent simulation studies, where simulation I was for a single
SNP, simulation II was for multiple SNPs, and simulation III
was for multiple rare variants. Under each simulation scenario,
we considered a sample size of either 500 or 1000 subjects.

Simulation I: This simulation was designed to mimic the
pleiotropy effect, where a common SNP affected multiple
traits. The data were generated from the model

yij ¼ bj � gi þ eij; i ¼ 1; . . . ; n; j ¼ 1; . . . ; p; (4)

where yij was the expression value of gene j for subject i and gi
was a single SNP taking values 0, 1, and 2, with a minor allele
frequency (MAF) of 0.3. For each i, eij; j ¼ 1; . . . pwas distrib-
uted as multivariate Gaussian with mean zero and covariance
matrix S; where S ¼ S1 or S2: For simplicity, we did not
consider covariates in the model since they could be easily
adjusted via the residual-based approach described previ-
ously. Under the null model, all bj ¼ 0: Under the alternative
model, we set a proportion (g ¼ 10%; 20%; 30%) of traits to be
truly associated with the SNP (with nonzero b-coefficients).
Without loss of generality, we set the first p* ¼ gp traits as
relevant ones with coefficients bj generated from a uniform
(0,

ffiffiffiffiffiffiffiffiffiffiffi
30=n

p
) distribution, for j ¼ 1; . . . ; p*; and bj ¼ 0 for

j ¼ ðp*þ 1Þ; . . . ; p: The effect sizes [following uniform
(0,

ffiffiffiffiffiffiffiffiffiffiffi
30=n

p
) distribution] changed with sample size and hence

it wasmeaningless to compare test powers under different sam-
ple sizes. These effect sizes were selected to better distinguish
different tests under each scenario.

Simulation II: In the second simulation scenario, we tested
the association between multiple SNPs and multiple traits.
The multiple SNPs were generated based on the linkage
disequilibrium (LD) structure of gene acid ceramidase
1 (ASAH1), as used inWu et al. (2010). A total of 93 HapMap
SNPs are located within this gene. Based on the LD structure
of the ASAH1 gene, we usedHAPGEN (Spencer et al. 2009) to
generate SNP genotype data at each of the 93 loci. After the
SNPs were simulated, we generated the traits from the fol-
lowing model:

yij ¼
X93

k¼1

bkjgik þ eij; i ¼ 1; . . . ; n; j ¼ 1; . . . ; p; (5)

where relevant model parameters (e.g., g;S) were the same
as the previous Simulation I. We selected 29 typed SNPs on

Affy6 to calculate the genotype kernel KG in the analysis.
Under the null model bkj ¼ 0; k ¼ 1; . . . ; 93; j ¼ 1; . . . ; p: Un-
der the alternative model, we selected the first p* ¼ gp traits
as causal ones which were truly associated with the SNPs. For
each causal trait, we randomly selected 3 SNPs from the
93 SNPs as the causal SNPs for that trait, and simulated the
nonzero bkj-coefficient from uniform (0,

ffiffiffiffiffiffiffiffiffiffiffi
30=n

p
) distribution

for k ¼ j1; j2; j3 2 f1; . . . ; 93g and j ¼ 1; . . . ; p*; where differ-
ent traits could have different causal SNPs. Finally, to allow
for the heterogeneous effect of different loci, we randomly
assigned a sign for the b-coefficient of each SNP with even
probability.

Simulation III: For the simulation of rare variants, we con-
sidered the design of Wu et al. (2011) to generate rare var-
iants. We simulated 10,000 haplotypes for a 1-Mb region on
the basis of COSI (Schaffner et al. 2005) to mimic the LD
pattern, local recombination rate, and population history of
European descent. Only those variants with MAF ,3% were
included in the analysis. After rare variants being simulated,
we generated the traits according to model (5). Under the al-
ternative model, we randomly selected 10% of the rare variants
as causal ones and simulated the nonzero b-coefficients from
uniform ð0; 2 ffiffiffiffiffiffiffiffiffiffiffi

30=n
p Þ3 jlog10ðMAFÞj: Other simulation set-

tings were the same as Simulation II.

Competing methods: After the data were generated, DKAT
was applied to test the association between genotypes
and phenotypes. The phenotype kernel used in DKAT was
KY ¼ ðY2 ŶÞQ̂glðY2ŶÞ9; where Ŷ was the phenotypes’ sam-
ple mean and the graphical lasso regularization parameter
was set as rgl ¼ 0:1 in our simulation. The graphical lasso
method was used for illustrative purposes of constructing
the phenotype kernel, incorporating the high dimensionality
as well as network structures in traits. An optimal graphical
lasso regularization parameter was beyond the scope of this
article.

Along with DKAT, we also evaluated other methods for
comparison. Among existing multivariate-trait association
tests, both multiple testing-adjusted univariate trait methods
(Yang et al. 2010; van der Sluis et al. 2013) and dimension
reduction-basedmethods (Klei et al. 2008; Ferreira and Purcell
2009) can be limited with high-dimensional traits. Other
multivariate traits–single SNP association testing methods
(O’Reilly et al. 2012; Joo et al. 2016) suffer from power loss
when there are systematic but weak marginal effects for each
SNP. Tomake the comparison fair, we focus on existingmeth-
ods that test association between multivariate traits and mul-
tiple SNPs/rare variants. Two of such methods are the gene
association with multiple traits (GAMuT) test (Broadaway
et al. 2016) and the multivariate sequence kernel association
tests (MSKAT) (Wu and Pankow 2016), which are briefly
introduced in the following paragraph.

The GAMuT test statistic (Broadaway et al. 2016) is actu-
ally the numerator of the DKAT statistic in (3). However, it
calculates the P-value differently, using large-sample results
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(Broadaway et al. 2016). The asymptotic distribution of the
GAMuT statistic is

Pn
i¼1

Pn
j¼1lijjx

2
ij; where li; jj are eigen-

values of HKGH and HKYH; respectively, and x2
ij are indepen-

dent and identically distributed x2 with 1 degree of freedom.
Then, the GAMuT P-value is calculated based on this as-
ymptotic distribution with quadratic form approximations
(Davies 1980). To make a fair comparison, the same pheno-
type kernel KY ¼ ðY2 ŶÞQ̂glðY2ŶÞ9 in DKAT was applied in
GAMuT in our simulations. The other method, MSKAT, as-
sumes a linear model between each individual trait with mul-
tiple genetic variants, and considers the score test statistics sjk
between the kth trait and jth variant, where k ¼ 1; . . . ; p;
j ¼ 1; . . . ;M: Let Sj ¼ ðsj1; . . . sjpÞ9 be the score vector be-
tween the jth variant and all traits. Ignoring the weights,
the MSKAT statistic has been proposed as Q ¼ PM

j¼1S
9
jQ̂sSj

(Wu and Pankow 2016), where Q̂s is the sample precision
matrix. Unlike Q̂gl-based DKAT and GAMuT, the MSKAT sta-

tistic uses Q̂s ¼ Ŝ
21

; which requires n. p: To avoid this po-
tential limitation, another variant of statistic Q2 ¼ PM

j¼1S
9
jSj

is also considered (Wu and Pankow 2016), which is termed
as MSKAT2 in our simulations. MSKAT2 represents a broad
class of multivariate-trait association testing methods that
ignore the correlation structures among outcomes [such as
DKAT and GAMuT with the linear phenotype kernel
K9
Y ¼ ðY2 ŶÞðY2ŶÞ9�:MSKAT andMSKAT2 P-values are calcu-

lated in a similar way as GAMuT, which is based on its asymp-
totic quadratic form approximation (Wu and Pankow 2016).

As pointed out in Wu and Pankow (2016), MSKAT and
MSKAT2 implicitly used the (weighted) linear kernel for ge-
netic variants. To make the comparison fair, the same linear
kernels were used in DKAT and GAMuT. In particular, we
used the same linear kernel for the SNPs simulations (Simu-
lation I and Simulation II) and the weighted linear kernel for
the rare variants simulation (Simulation III). The weight for
each rare variant was specified as Beta(MAF,1,25) as sug-
gested in SKAT (Wu et al. 2011). Finally, under each simula-
tion scenario, we evaluated the type-I error of each test with
1,000,000 replicates under the null model, and the power
with 1000 replicates under the alternative model. The em-
pirical type-I error rate and power were calculated as the
proportion of replicates with a P-value smaller than the nom-
inal significance level.

Real data application

We applied the newly proposed DKAT approach to a Grady
Trauma Project data set that was collected as part of a larger
study investigating the role of genetic and environmental
factors in predicting response to stressful life events
(Gillespie et al. 2009). A total of 337 individuals were
recruited from the GradyMemorial Hospital in Atlanta, Geor-
gia. Blood samples were collected from these individuals who
provided informed consent and participated in a verbal in-
terview. For each individual, both gene expressions and ge-
notypes were measured. Demographic data such as gender,
age, and race were also collected. Details on data collection

and preprocessing can be obtained from previous publications
(Gillespie et al. 2009). Previous studies have shown that genetic
risk factors may account for up to 30–40% of the heritability of
developing post-traumatic stress disorder (PTSD) following a
trauma, and many gene pathways that are associated with
PTSD have been identified (Almli et al. 2014b). In this analysis,
we further studied the genetic regulation of expressions of
genes belonging to these pathways. In particular, we were par-
ticularly interested in the cis-regulation, that was, whether
pathway gene expressions were associated with the SNPs in
the same pathway. Expressions of 8588 genes belonging to
224 pathways (with more than one gene in each pathway)
weremeasured. In each pathway analysis, the phenotypeswere
the gene expression values and the genotypes were the SNPs in
that pathway. A total of 164,503 SNPs were mapped to the
8588 genes in 224 pathways. The median number of genes in
a pathway was 27, with the first and third quantiles being
14 and 48, respectively.

Two different sets of association analyses were conducted.
In the first set of association analysis, we evaluated the asso-
ciationbetweenthemultiplegeneexpressions inapathwayand
allSNPs inthesamepathwayusingDKAT,GAMuT,MSKAT,and
MSKAT2. In the secondsetofassociationanalysis,weevaluated
the importance of each individual gene for certain pathways
thatmight be of interest based on results of the first analysis. In
other words, we examined the association between the path-
way gene expressions and SNPs in each individual gene be-
longing to the pathway. For all association analyses, we
adjusted the covariate effects of gender, age, race, and the
top 10 principal components of the genotype data.

Data availability

An R software implementing the proposed DKAT method is
available at https://github.com/xyz5074/DKAT. The expres-
sion data are available at Gene Expression Omnibus acces-
sion number GSE58137. Details about the genotype data are
available in Almli et al. (2014a).

Results

Simulation results

Type-I error results: The empirical type-I error rates under
Simulation I are reported in Table 1. Based on the table, DKAT
is always able to protect the correct type-I error across differ-
ent scenarios. On the other hand, GAMuT and MSKAT are
conservative under each simulation scenario, especially
when the sample size is relatively small (n ¼ 500). MSKAT2
seems to be more conservative under S2 than S1: To further
explore the type-I error of all tests at more stringent signifi-
cance levels, we present the QQ plots of P-values under the
configuration of n ¼ 500 and S ¼ S1 in Figure 1. As we can
see, the P-values of DKAT stick with the 45� line, which indi-
cates that the type-I error of DKAT is well controlled under
different significance levels. For GAMuT and MSKAT, we can
see a clear departure from the 45� line with plots skewing
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downward, implying these tests are very conservative, which
are all consistent with the results from Table 1. QQ plots
under other simulation configurations are qualitatively simi-
lar and hence are not reported. Similar empirical type-I error
results have also been observed in Simulation II and Simula-
tion III (Tables S2 and S3in File S1).

It has been observed in single trait kernel association tests
that estimation error (due to small sample size) can lead to
conservative tests (Lee et al. 2012; Chen et al. 2016), which
also explains the conservativeness of GAMuT and MSKAT in
this simulation. Taking GAMuT as an example, the asymp-
totic null distribution of GMAuT depends on the eigenvalues
of matrix HKYH; where KY ¼ ðY2 ŶÞQ̂glðY2ŶÞ9; which fur-
ther requires accurate estimation of the precision matrix.
Given the high dimensionality of traits, many parameters in
the precision matrix need to be estimated. The accumulated
estimation errors in GAMuT deteriorate the performance of
the test, resulting in overprotected (conservative) P-values
(Lee et al. 2012; Chen et al. 2016). Unlike GAMuT and
MSKAT, which need to estimate the whole precision matrix
Q; MSKAT2 only needs to estimate the diagonals Sjj;

j ¼ 1; . . . p: The accumulated estimation errors in MSKAT2
is much smaller and hence it is less conservative than GAMuT
and MSKAT. Finally, the way DKAT calculates its P-value is
more robust to these estimation errors (Section S.1 in File
S1), and hence DKAT is robust to small samples and high-
dimensional traits. To summarize, the proposed DKAT always
has the correct type-I error rate even under a very stringent
nominal significance level. On the other hand, GAMuT,
MSKAT, and MSKAT2 can be conservative especially when
the sample size is relatively small or modest.

Power results: Without loss of generality, we compare the
power of all tests under significance level a ¼ 2:53 1026

(reflecting a genome-wide Bonferroni correction for 20,000
genes). The power under Simulation I is presented in Figure 2.
It is clear to see that DKAT is always the most powerful test
under each scenario. On the other hand,MSKAT2 always tends
to be the least powerful test (except for the small-sample
scenario, where MSKAT can have lower power due to the

its conservativeness as seen in the previous type-I error sim-
ulation results section). This is because the phenotype kernel
KY ¼ ðY2 ŶÞQ̂glðY2ŶÞ9 used in DKAT and GAMuT (or Q̂s

used in MSKAT) can incorporate the inherent correlation
structure among the multivariate traits, while MSKAT2 sim-
ply ignores the correlations among traits. The power gain of
DKAT/GAMuT/MSKAT over MSKAT2 increases with the
(partial) correlation strength among traits (i.e., r value in
S1 or S2). For each test considered in this simulation study,
the power of the test increases as the proportion (g) of asso-
ciated traits increases (i.e., as the genes are increasingly
pleiotropic). This is because it can further amplify the asso-
ciation signal by includingmore relevant traits into themulti-
trait association analysis. Qualitatively similar empirical
power results are also observed in Simulation II (Figure S2in
File S1) and Simulation III (Figure S3 in File S1).

To summarize, DKAT is always more powerful than
GAMuT, MSKAT, and MSKAT2. The power gain probably
comes from two aspects. One is the usage of phenotype kernel
to incorporate the complex structure of traits into association
analysis (compared to MSKAT2). The other is from the new
efficient and robust P-value calculation (compared to GAMuT
and MSKAT).

Data application results

To account for multiple testing, we set family-wise signifi-
cance level of 2:231024 ¼ 0:05=224; which corresponds to
a Bonferroni correction based on the number of pathways
being tested. Under this significance level, 18, 17, 16, and

Figure 1 QQ plots: 2log10 QQ plots for DKAT, GAMuT, MSKAT, and
MSKAT2 with ðn ¼ 500;S ¼ S1Þ under simulation I. The shading area is
the 95% confidence band for P-values.

Table 1 Empirical type-I error rates (divided by the nominal
significance level a) under simulation I

S n a DKAT GAMuT MSKAT MSKAT2

S1 500 1023 1.04 0.09 0.01 0.87
1024 1.06 0.01 0 0.67
1025 0.90 0 0 0.50

1000 1023 0.92 0.31 0.19 0.93
1024 1.07 0.13 0.12 0.56
1025 1.00 0 0 0.80

S2 500 1023 0.96 0.10 0.01 0.21
1024 1.03 0.02 0 0.12
1025 0.90 0 0 0.10

1000 1023 1.06 0.23 0.27 0.37
1024 0.89 0.14 0.10 0.23
1025 0.90 0 0 0.30
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1 pathways have been found where their gene expressions
were significantly associated with their SNPs by DKAT,
GAMuT, MSKAT, and MSKAT2, respectively. Compared with
MSKAT2, it is clear that incorporating the network-type gene
regulatory structure via the precision matrix (as in DKAT/
GAMuT/MSKAT) can largely enhance the discovery power
of association analysis between pathway gene expressions
and SNPs. The DKAT is slightly more powerful than GAMuT
and MSKAT, which is probably because the test design of
DKAT is more efficient for this data set.

Under the family-wise significance level, the only pathway
that was detected as associated with its SNPs by all DKAT,
GAMuT, MSKAT, and MSKAT2 methods was asthma (KEGG:
hsa05310). A further interesting analysis was to test which
individual gene regulates the asthma pathway gene expres-
sions. To this end, we tested the association between asthma
pathway gene expressions and all SNPs in a single gene
belonging to that pathway. In this data, a total of 167 SNPs
were detected in 10 genes in the asthma pathway. Under the
gene-level SNPs and pathway-level expression association
analysis, DKAT, GAMuT, and MSKAT all detected four genes
(HLA-DRA, HLA-DRB1, HLA-DQA1, and HLA-DQB1) which
regulated the asthma pathway expressions while MSKAT2

only detected two of them (HLA-DRB1 and HLA-DQA1).
Further functional study of these genes on asthma may be
of biological interest.

Discussion

In this article, we have proposed DKAT for evaluating the
association between high-dimensional structured traits and
multiple SNPs or rare variants. Compared with most existing
kernel association tests (e.g., SKAT), the novelties of DKAT are
twofold. First, an additional phenotype/trait kernel is used,
which can incorporate the inherently complex structure of
the traits and thereby improve the statistical power for
detecting an existing association signal. The numerical stud-
ies in this article are mainly designed to mimic the scenario
of high-dimensional, structured traits, where we propose a
network-type phenotype kernel by replacing the adjacency
matrix in Freytag et al. (2014) with the precision matrix.
We emphasize that it is possible to design new appropriate
kernels for other data types, which can lead to a useful and
powerful association analysis. Second, unlike existing associ-
ation tests, DKAT provides a new robust strategy to compute
P-values in genetic association testing. The DKAT P-value is

Figure 2 Power under simulation I: x-axis represents proportion of relevant traits (g ¼ 10%;20%;30%) and y-axis represents power.
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less sensitive to estimating errors in covariance terms compared
to other methods (e.g., GAMuT and MSKAT), and is extremely
appealing with high-dimensional traits, where it is difficult to
accurately estimate the trait covariance matrix given the di-
mensionality. Thus, DKAT is more robust than most existing
methods in testing the association between high-dimensional
structured traits and genotypes.

As an association test, DKAT has four advantages. First,
DKAT is methodologically flexible in testing the association
betweenanarbitrary set of traits andanarbitrary set of genetic
variants. It can test theassociationbetweenmultiple traits and
either single/multiple SNPs ormultiple rare variants, without
making parametric assumptions. On the contrary, many exist-
ingmultivariate-trait association tests canonlyhandle a single
SNP (O’Reilly et al. 2012; Zhou and Stephens 2014; Wu and
Pankow 2015; Joo et al. 2016; Ray et al. 2016; Schaid et al.
2016). Others often assume that traits are associated with
SNPs through a linear model (Maity et al. 2012; Wu and
Pankow 2016). Second, DKAT can evaluate biologically
meaningful hypotheses. The phenotype kernel in DKAT can
capture pleiotropy effects among the phenotypes and the ge-
notype kernel can capture epistasis effects among SNPs. With
prior biological knowledge, it can be of interest to apply DKAT
to test associations between a prespecified set of traits and a
prespecified region of genetic variants, the results of which
may further lead to meaningful biological insights. Third,
DKAT is also statistically very powerful. As illustrated previ-
ously in the SNP-set association test (Kwee et al. 2008; Wu
et al. 2010), a SNP kernel can amplify the association signal
by collapsing information across multiple SNPs. Moreover,
the phenotype kernel in DKAT can further amplify the asso-
ciation signal by collapsing information across multiple traits.
After amplifying twice, DKAT can greatly improve the statis-
tical power to detect any existing association signal. Fourth,
DKAT is also computationally scalable. Only matrix multiplica-
tion is required in DKAT. However, both GAMuT and MSKAT
requires eigendecomposition of n3 n matrices, which can be
computationally unstable for a large sample size. Furthermore,
the asymptotic P-value calculation in GAMuT and MSKAT re-
quires large n or small p, otherwise it can be conservative due to
estimation error (Lee et al. 2012; Chen et al. 2016). On the
other hand, DKAT is applicable to any sample size n and trait
dimension p. In this regard, DKAT is appropriate for the large p
small n problems frequently encountered in modern scientific
studies.

The design of simulation II (SNPs set) and simulation III
(rare variants) is in vein with previous simulation studies in
the literature (Wu et al. 2010, 2011). For example, the same
ASAH1 gene/LD structure is used in the article. Since no
relevant assumptions are made, we believe that our method
should also work well with other genes/LD structures. In this
article, we only considered an association study for unrelated
populations. Another important scenario is cohorts with pop-
ulation relatedness, such as family-based association studies
(Chen and Abecasis 2007; Schifano et al. 2012; Wang et al.
2016). It is of future interest to extend the current DKAT to

incorporate the family structure. As indicated in our numer-
ical studies, including more relevant traits in DKAT increases
the power to a large extent. However, when more noise traits
(not associated with the SNP set) are added, it may lead to
power loss. In practice, the true association signal may not be
known. Adaptive testing strategies could be used to address
this uncertainty (Pan et al. 2015; Zhan et al. 2015a; Kim et al.
2016). Finally, to aid interpretation of which genetic variants
or which traits are associated, it is of interest to prioritize
individual genetic variants/traits by incorporating variable
selection in DKAT (He et al. 2016). We believe these issues
are of importance and warrant further investigation.
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