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Supplemental Methods: 

1. Raw ChIA-PET sequencing data pre-processing 

The linker filtered PETs (Li, et al., 2010) were mapped to genome by Bowtie (Langmead, et al., 2009). 

Two PET ends were mapped separately and then paired together. The duplicated PETs were merged to 

reduce PCR bias. To determine genomic distance threshold between self-ligation PETs and intra-

chromosomal inter-ligation PETs, we computed the PET-count ratio between two types of PETs: one 

with two PET ends mapped to different strand of the genome (denoted as dsPETs), and the other with 

two PET ends mapped to the same strand (denoted as ssPETs). Intra-chromosomal inter-ligation PETs 

should be equiprobable to be dsPETs or ssPETs, while all self-ligation PETs must belong to dsPETs. 

Thus PET-count ratio between dsPETs and ssPETs would decrease along with the span of PETs and 

become constant once most of the PETs consist of intra-chromosomal inter-ligation PETs. Therefore, 

we classified dsPETs with genomic distance less than the distance threshold as self-ligation PETs and 

all PETs with distance larger than the distance threshold as intra-chromosomal inter-ligation PETs. 

After PETs classification, we used MACS (Zhang, et al., 2008) to call protein binding peaks from self-

ligation PETs. These peaks were used as anchor regions to call chromatin interactions. The total PETs 

that linked two different anchor regions were defined as a PET cluster. It should be noticed that we did 

not incorporate these raw data pre-processing steps into the MICC R package, since users might prefer 

a different mapping tool or peak calling tool or even a different way to cluster the raw PETs. These 

alternatives do not affect the use of MICC R package. Thus instead, the programs for raw data pre-

processing were provided as independent Perl scripts.  

2. A three-component mixture model to call chromatin interactions. 

We use a three-component mixture model to describe conditional distribution of PET-count from all 

the PET clusters. One component represents true interaction PET cluster (TiPC), and the other two for 

random collision PET cluster (RcPC) and random ligation PET cluster (RlPC), respectively. Let 𝑐𝐴𝐵  

denote the PET-count between two anchor regions for PET cluster (A, B), and 𝑐𝐴(𝑐𝐵) be the total PET-

count in anchor region A (B), and dAB be the genomic distance between anchor A and B (𝑑𝐴𝐵 = +∞ if 

A and B are in two different chromosomes). Let 𝐼𝐴𝐵 = 1 denote (A, B) as a TiPC, 𝐼𝐴𝐵 = 2 as an RcPC 

and 𝐼𝐴𝐵 = 3 as an RlPC. Then the full model can be described as: 

      𝑃(𝑐𝐴𝐵|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵) 

= 𝑃(𝑐𝐴𝐵|𝑐𝐴, 𝑐𝐵, 𝑑𝐴𝐵 , 𝐼𝐴𝐵 = 1)𝑃(𝐼𝐴𝐵 = 1|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵) 

    + 𝑃(𝑐𝐴𝐵|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵 , 𝐼𝐴𝐵 = 2)𝑃(𝐼𝐴𝐵 = 2|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵) 

    + 𝑃(𝑐𝐴𝐵|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵 , 𝐼𝐴𝐵 = 3)𝑃(𝐼𝐴𝐵 = 3|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵) 

(2-1) 

The prior probability for each component is not constant but depend on total PET-count 𝑐𝐴, 𝑐𝐵  and 

distance 𝑑𝐴𝐵 . For simplicity, we can remove some of the dependencies, such that 

 𝑃(𝑐𝐴𝐵|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵 , 𝐼𝐴𝐵 = 1) = 𝑃(𝑐𝐴𝐵|𝑑𝐴𝐵 , 𝐼𝐴𝐵 = 1) (2-2) 

 𝑃(𝑐𝐴𝐵|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵 , 𝐼𝐴𝐵 = 2) = 𝑃(𝑐𝐴𝐵|𝑑𝐴𝐵 , 𝐼𝐴𝐵 = 2) (2-3) 
 𝑃(𝑐𝐴𝐵|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵 , 𝐼𝐴𝐵 = 3) = 𝑃(𝑐𝐴𝐵|𝑐𝐴, 𝑐𝐵 , 𝐼𝐴𝐵 = 3) (2-4) 

 𝑃(𝐼𝐴𝐵 = 3|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵) = 𝑃(𝐼𝐴𝐵 = 3|𝑑𝐴𝐵) (2-5) 



And the other two priors can be spitted as 

 𝑃(𝐼𝐴𝐵 = 1|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵) = 𝑃(𝐼𝐴𝐵 = 1|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵 , 𝐼𝐴𝐵 ≠ 3)𝑃(𝐼𝐴𝐵 ≠ 3|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵) 

                                          = 𝑃(𝐼𝐴𝐵 = 1|𝑐𝐴, 𝑐𝐵 , 𝐼𝐴𝐵 ≠ 3)(1 − 𝑃(𝐼𝐴𝐵 = 3|𝑐𝐴, 𝑐𝐵, 𝑑𝐴𝐵)) 

                                          = 𝑃(𝐼𝐴𝐵 = 1|𝑐𝐴, 𝑐𝐵 , 𝐼𝐴𝐵 ≠ 3)(1 − 𝑃(𝐼𝐴𝐵 = 3|𝑑𝐴𝐵)) 

(2-6) 

 𝑃(𝐼𝐴𝐵 = 2|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵) = 𝑃(𝐼𝐴𝐵 = 2|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵 , 𝐼𝐴𝐵 ≠ 3)𝑃(𝐼𝐴𝐵 ≠ 3|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵) 

                                          = 𝑃(𝐼𝐴𝐵 = 2|𝑐𝐴, 𝑐𝐵 , 𝐼𝐴𝐵 ≠ 3)(1 − 𝑃(𝐼𝐴𝐵 = 3|𝑐𝐴, 𝑐𝐵, 𝑑𝐴𝐵)) 

                                          = 𝑃(𝐼𝐴𝐵 = 2|𝑐𝐴, 𝑐𝐵 , 𝐼𝐴𝐵 ≠ 3)(1 − 𝑃(𝐼𝐴𝐵 = 3|𝑑𝐴𝐵)) 

(2-7) 

The functional form for each item will be discussed in the following sections.  

2.1 PET-count distribution for PET clusters derived from true interactions, random collision 

and random ligation. 

We take the probability function of each component as the following distributions: 

 
𝑃(𝑐𝐴𝐵|𝐼𝐴𝐵 = 1, 𝑑𝐴𝐵) =

1

𝜁(𝜃1(𝑑𝐴𝐵))(𝑐𝐴𝐵)𝜃1(𝑑𝐴𝐵)
 (2-8) 

 
𝑃(𝑐𝐴𝐵|𝐼𝐴𝐵 = 2, 𝑑𝐴𝐵) =

1

𝜁(𝜃2(𝑑𝐴𝐵))(𝑐𝐴𝐵)𝜃2(𝑑𝐴𝐵)
 (2-9) 

 
𝑃(𝑐𝐴𝐵|𝐼𝐴𝐵 = 3, 𝑐𝐴, 𝑐𝐵) =

𝑑ℎ𝑦𝑝𝑒𝑟(𝑐𝐴𝐵 , 𝑐𝐴, 2𝑁 − 𝑐𝐴, 𝑐𝐵)

1 − 𝑑ℎ𝑦𝑝𝑒𝑟(0, 𝑐𝐴, 2𝑁 − 𝑐𝐴, 𝑐𝐵)
 (2-10) 

where 𝜁(𝜃) = ∑ 1/𝑘𝜃+∞
𝑘=1  is Remann Zeta function (Jessen and Winter, 1935), and  

𝑑ℎ𝑦𝑝𝑒𝑟(𝑐𝐴𝐵 , 𝑐𝐴, 2𝑁 − 𝑐𝐴, 𝑐𝐵) =
(

𝑐𝐴
𝑐𝐴𝐵

)(
2𝑁−𝑐𝐴

𝑐𝐵−𝑐𝐴𝐵
)

(
2𝑁
𝑐𝐵

)
 is probability mass function of hyper-geometric 

distribution and 𝑁 is the sum of PET-count from all included PET clusters. 

We use hyper-geometric distribution to describe count distribution of PETs derived from random 

ligations, as suggested by ChIA-PET tool (Li, et al., 2010). Since we could only observe the PET 

clusters with 𝑐𝐴𝐵 > 0 , the hyper-geometric distribution is zero-truncated. As the random ligation 

events happen in solution, they should be independent with the genomic distance between two anchors.  

For TiPC and RcPC, we find number of non-chimeric PET clusters that have PET-count 𝑐𝐴𝐵  (denoted 

as 𝑛𝑐𝐴𝐵
) is log-log linearly correlated with 𝑐𝐴𝐵  when 𝑐𝐴𝐵  is sufficiently large ( 𝑐𝐴𝐵 ≥ 3  for non-

chimeric PET clusters, Figure S1), which follows power-law. Thus we model each of them as a 

discrete Pareto distribution (Newman, 2005), i.e., Zeta distribution, respectively. The parameters of 

these Zeta distributions, 𝜃1  and 𝜃2 , should be related with genomic distance 𝑑𝐴𝐵 . Their functional 

forms will be discussed later. 

2.2 Prior probability of random ligation PET clusters 

As we can observe in Figure S4, log10-distance distribution of intra-chromosomal chimeric PETs, 

which is definitely random ligation products, has only one peak at a genomic distance larger than 

1Mbps. In the meanwhile, log10-distance distribution of intra-chromosomal non-chimeric PETs 

presents a bimodal distribution, with the first peak located at ~50kbps and second peak at the position 

very similar to that of chimeric PETs. It indicates that random ligation events can be well separated by 

genomic distance. Thus we give a distance related prior to describe probability to observe a PET 

cluster with specific genomic distance span, i.e., 

 
𝑃(𝐼𝐴𝐵 = 3|𝑑𝐴𝐵) =  𝜆0

1

1 + 𝑒𝑏1 𝑙𝑜𝑔(𝑑𝐴𝐵)+𝑏2
, 0 < 𝜆0 < 1 (2-11) 

Denote 

 𝜆(𝑑𝐴𝐵) = 𝑃(𝐼𝐴𝐵 = 3|𝑑𝐴𝐵) (2-12) 

Then we have 

 𝑃(𝐼𝐴𝐵 ≠ 3|𝑑𝐴𝐵) =  1 − 𝜆(𝑑𝐴𝐵) (2-13) 

For inter-chromosomal PET clusters, 𝑑𝐴𝐵  is set to be +∞ and 𝜆(+∞) = 𝜆0  

2.3 Prior probability of random collision PET clusters 

It is supposed that RcPC should be less likely to reproduce between two experimental replicates than 



TiPC. Thus we take a look at 𝑙𝑜𝑔 (𝑐𝐴𝑐𝐵) for two groups of PET 3+ clusters: one is shared between two 

replicates while the other is not. Taking PET 3+ clusters is to make sure that most of these PET 

clusters are not RlPCs. As is shown in Figure S3, 𝑙𝑜𝑔 (𝑐𝐴𝑐𝐵) is significantly larger for shared PET 3+ 

clusters. Thus total PET-count in anchor regions can act as an important feature to discriminate TiPCs 

and RcPCs. We incorporate it into prior probability to describe random collision events. More 

specifically, we set the prior probability of random collision PET clusters conditioned on 𝐼𝐴𝐵 ≠ 3 as 

 
𝑃(𝐼𝐴𝐵 = 2|𝑐𝐴, 𝑐𝐵, 𝐼𝐴𝐵 ≠ 3) =  

1 + 𝑒𝑐1 𝑙𝑜𝑔(𝑐𝐴)+𝑐2 + 𝑒𝑐1 𝑙𝑜𝑔(𝑐𝐵)+𝑐2

(1 + 𝑒𝑐1 𝑙𝑜𝑔(𝑐𝐴)+𝑐2)(1 + 𝑒𝑐1 𝑙𝑜𝑔(𝑐𝐵)+𝑐2)
 (2-14) 

Denote 

 𝜇(𝑐𝐴, 𝑐𝐵) =  𝑃(𝐼𝐴𝐵 = 2|𝑐𝐴, 𝑐𝐵 , 𝐼𝐴𝐵 ≠ 3) (2-15) 

 Then we have 

 𝑃(𝐼𝐴𝐵 = 1|𝑐𝐴, 𝑐𝐵 , 𝐼𝐴𝐵 ≠ 3) =  1 − 𝜇(𝑐𝐴, 𝑐𝐵) (2-16) 

2.4 Functional form for parameters of the Zeta distributions 

We have noticed that most of the PET clusters with 𝑑𝐴𝐵  less than 1Mbps are not RlPCs as the analysis 

in section 1.2. Among them, most of the PET clusters with only one PET are probably RcPCs. Thus 

the fraction of PET 1 clusters in all PET clusters at specific distance 𝑑𝐴𝐵  ( 𝑑𝐴𝐵 < 1 Mbps) is 

approximately equal to 
1

𝜁(𝜃2(𝑑𝐴𝐵))
, which is positively correlated with 𝜃2(𝑑𝐴𝐵) . Therefore, as the 

observation in Figure S4, we try to set a function 𝜃2(𝑑𝐴𝐵) to satisfy the following four conditions: 

• 𝜃2(𝑑𝐴𝐵) is bounded when 𝑑𝐴𝐵  goes to +∞ 

• 𝜃2(𝑑𝐴𝐵) goes to infinity when 𝑑𝐴𝐵  goes to 0 

• 𝜃2(𝑑𝐴𝐵) is first decreasing and then increasing 

• 𝜃2(𝑑𝐴𝐵) is approximately linear when 𝑑𝐴𝐵  is not large 

The quadratic fractional function is one of the simplest functions that satisfy these four conditions 

simultaneously. There is an assumption that the average interaction frequency of TiPC at specific dAB 

should always be higher than that of RcPC. It results that 𝜃1(𝑑𝐴𝐵) < 𝜃2(𝑑𝐴𝐵), i.e., 𝜃1(𝑑𝐴𝐵) + 𝜃0 =
𝜃2(𝑑𝐴𝐵), 𝜃0 > 0. For the sake of simplicity, 𝜃0 is set to be a constant independent with 𝑑𝐴𝐵 . 

Hence we can set 

 
𝜃1(𝑑𝐴𝐵) =  

𝑎1𝑑𝐴𝐵 + 𝑎2𝑎3

𝑑𝐴𝐵 + 𝑎2

+
𝑎4

𝑑𝐴𝐵

,  𝑎1 > 1, 𝑎2, 𝑎3, 𝑎4 > 0 (2-17) 

And 𝜃2(𝑑𝐴𝐵) as the same shape with 𝜃1(𝑑𝐴𝐵), but larger than it at anywhere. 

 𝜃2(𝑑𝐴𝐵) =  𝜃1(𝑑𝐴𝐵) + 𝜃0,  𝜃0 > 0 (2-18) 

2.5 Full model to call true interaction clusters 

For a specific PET cluster (A, B), we have 

 𝑃(𝑐𝐴𝐵|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵) 
= 𝑃(𝑐𝐴𝐵|𝑑𝐴𝐵 , 𝐼𝐴𝐵 = 1)𝑃(𝐼𝐴𝐵 = 1|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵) 

    + 𝑃(𝑐𝐴𝐵|𝑑𝐴𝐵 , 𝐼𝐴𝐵 = 2)𝑃(𝐼𝐴𝐵 = 2|𝑐𝐴, 𝑐𝐵 , 𝑑𝐴𝐵) 

    + 𝑃(𝑐𝐴𝐵|𝑐𝐴, 𝑐𝐵 , 𝐼𝐴𝐵 = 3)𝑃(𝐼𝐴𝐵 = 3|𝑑𝐴𝐵) 

= 𝑃(𝑐𝐴𝐵|𝑑𝐴𝐵 , 𝐼𝐴𝐵 = 1)𝑃(𝐼𝐴𝐵 = 1|𝑐𝐴, 𝑐𝐵 , 𝐼𝐴𝐵 ≠ 3)(1 − 𝑃(𝐼𝐴𝐵 = 3|𝑑𝐴𝐵)) by (2-6) 

    + 𝑃(𝑐𝐴𝐵|𝑑𝐴𝐵 , 𝐼𝐴𝐵 = 2)𝑃(𝐼𝐴𝐵 = 2|𝑐𝐴, 𝑐𝐵 , 𝐼𝐴𝐵 ≠ 3)(1 − 𝑃(𝐼𝐴𝐵 = 3|𝑑𝐴𝐵)) by (2-7) 

    + 𝑃(𝑐𝐴𝐵|𝑐𝐴, 𝑐𝐵 , 𝐼𝐴𝐵 = 3)𝜆(𝑑𝐴𝐵) by (2-12) 

= 𝑃(𝑐𝐴𝐵|𝑑𝐴𝐵 , 𝐼𝐴𝐵 = 1)(1 − 𝜇(𝑐𝐴, 𝑐𝐵))(1 − 𝜆(𝑑𝐴𝐵)) 

    + 𝑃(𝑐𝐴𝐵|𝑑𝐴𝐵 , 𝐼𝐴𝐵 = 2)𝜇(𝑐𝐴, 𝑐𝐵)(1 − 𝜆(𝑑𝐴𝐵)) 

    + 𝑃(𝑐𝐴𝐵|𝑐𝐴, 𝑐𝐵 , 𝐼𝐴𝐵 = 3)𝜆(𝑑𝐴𝐵) 

(2-19) 

Each item above can be substituted with a specific probability distribution function described in 

section 1.2-1.4 

Parameters of the model are fitted by EM algorithm (Dempster, et al., 1977) on all PET clusters. 

3. FDR estimation 

We randomly generate PET-count 𝑐𝐴𝐵  and labels of PET cluster (A, B), i.e., 𝐼𝐴𝐵 , from the trained 



model. Denote 𝑃𝑜𝑠𝑡(𝑛)  and 𝑟𝑛𝑑𝑃𝑜𝑠𝑡(𝑛)  as the posterior probability of the original dataset and 

randomly generated dataset, respectively. Then the FDR can be estimated as 

 
𝐹𝐷𝑅(𝑝) =  

#{𝑟𝑛𝑑𝑃𝑜𝑠𝑡(𝑛) > 𝑝 & 𝐼𝐴𝐵 ≠ 1}

#{𝑟𝑛𝑑𝑃𝑜𝑠𝑡(𝑛) > 𝑝}
 (3-1) 

Where #{} is a counting function. 

4. Real data implementation 

For ER ChIA-PET data (MCF7 cell), MICC is applied on the PET clusters derived from the original 

ChIA-PET paper (Fullwood, et al., 2009). This makes the comparison with ChIA-PET tool as 

objective as possible. The two higher-depth sequencing libraries are IHM001F and IHH015F, and the 

lower-depth sequencing library is IHH015M. 

For Pol2 ChIA-PET data (K562 cell), MICC is applied on the PET clusters derived from our 

processing steps since ChiaSig and ChIA-PET tool use different methods to cluster the PETs. 

  



Supplemental Figures: 

 

 
Fig. S1. PET-count 𝑐𝐴𝐵  and number of PET clusters 𝑛𝑐𝐴𝐵

 is log-log linearly correlated when 𝑐𝐴𝐵 > 2. (A) 

IHH015M library of ER ChIA-PET data. (B) Replicate 1 library of Pol2 ChIA-PET data. 

 

 
Fig. S2. Boxplot of 𝑙𝑜𝑔 (𝑐𝐴𝑐𝐵) for shared PET3+ clusters and specific PET3+ clusters between two 

replicates. (A) Shared PET3+ clusters are defined as PET3+ clusters from IHM001F library that overlap 

with PET3+ clusters from IHH015F library, and specific PET3+ clusters are defined as PET3+ clusters 

only present in IHM001F library. The p-value for this comparison is 2.91e-27, given by Wilcox test. The 

data is MCF7 ER ChIA-PET data.  (B) Shared PET3+ clusters are defined as PET3+ clusters from 

Replicate 1 that overlap with PET3+ clusters from Replicated 2, and specific PET3+ clusters are defined as 

PET3+ clusters only present in Replicate 1. The p-value for this comparison is 1.07e-151, given by Wilcox 

test. The data is K562 Pol2 ChIA-PET data. 

  



 

 
Fig. S3. Fraction of PET 1 clusters to all PET clusters at specific distance. (A) The two datasets are 

IHH001F and IHH015F libraries of ER ChIA-PET data (MCF7 cell). (B) The two datasets are two 

replicates of Pol2 ChIA-PET data (K562 cell). 

 

 
Fig. S4.  PET span distribution of intra-chromosomal non-chimeric and chimeric PETs. (A) IHH015M 

library of ER ChIA-PET data (MCF7 cell). (B) Replicate 1 library of Pol2 ChIA-PET data (K562 cell).  



Fig. S5. Differences of fraction of interactions in higher-sequenced libraries recovered from lower-

sequenced libraries between MICC and ChIA-PET tool (Recovery_RatioMICC - Recovery_RatioChIA-PETtool). 

The lower-sequenced libraries were selected by randomly sampling 50% PETs from each replicate for 100 

times. Error bar in the figure marks the standard deviation of 100 times sampling for K562 Pol2 ChIA-PET 

data replicate 1 (A) and replicate 2 (B). These results show that MICC can give more consistent predictions 

between lower-depth and higher-depth sequencing libraries. 

  
Fig. S6. Distribution for number of randomly sampled PET 2- clusters that overlap with 5C significant 

interactions. Dashed line marks the number of 5C validated interactions called by MICC. 

  



 
Fig. S7. Fraction of interactions in two higher-depth sequencing libraries (IHM001F and IHH015F) 

recovered from lower-depth sequencing library IHH015M. The data is ER ChIA-PET data (MCF7 cell). 

 

 
 

Fig. S8.  Fraction of interactions overlapped between top-ranked interactions from two ER ChIA-PET 

replicates detected by ChIA-PET tool and MICC, respectively. The number of ChiaSig detected 

interactions is very small, thus it is not used for this comparison. 

  



Supplemental Tables: 

 

Library Name Number of PET clusters Time cost 

K562 Pol2 ChIA-PET rep1 130,973 44m 

K562 Pol2 ChIA-PET rep2 135,214 52m 

MCF7 ERalpha ChIA-PET IHM001F 1,097,288 6h 59m 

MCF7 ERalpha ChIA-PET IHH015F 1,777,454 10h 56m 

MCF7 ERalpha ChIA-PET IHH015M 169,067 69m 

Table S1. Time cost of MICC for ChIA-PET data used in the paper. The system to run MICC is Linux 

2.6.18-274.el5 and the CPU is AuthenticAMD with 2000 MHz.  
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