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 SUMMARY. We consider a semiparametric regression model that relates a normal outcome to covariates
 and a genetic pathway, where the covariate effects are modeled parametrically and the pathway effect of
 multiple gene expressions is modeled parametrically or nonparametrically using least-squares kernel ma-
 chines (LSKMs). This unified framework allows a flexible function for the joint effect of multiple genes
 within a pathway by specifying a kernel function and allows for the possibility that each gene expression
 effect might be nonlinear and the genes within the same pathway are likely to interact with each other in a
 complicated way. This semiparametric model also makes it possible to test for the overall genetic pathway
 effect. We show that the LSKM semiparametric regression can be formulated using a linear mixed model.
 Estimation and inference hence can proceed within the linear mixed model framework using standard mixed
 model software. Both the regression coefficients of the covariate effects and the LSKM estimator of the ge-
 netic pathway effect can be obtained using the best linear unbiased predictor in the corresponding linear
 mixed model formulation. The smoothing parameter and the kernel parameter can be estimated as variance
 components using restricted maximum likelihood. A score test is developed to test for the genetic pathway
 effect. Model/variable selection within the LSKM framework is discussed. The methods are illustrated using
 a prostate cancer data set and evaluated using simulations.

 KEY WORDS: BLUPs; Kernel function; Model/variable selection; Nonparametric regression; Penalized
 likelihood; REML; Score test; Smoothing parameter; Support vector machines.

 1. Introduction

 Analysis of microarray data has been mainly focused on detec-
 tion of individually significantly expressed genes (Efron et al.,
 2001; Tusher, Tibshirani, and Chu, 2001). This approach has
 some major limitations: (1) long list of individually signifi-
 cant genes without a single encompassing theme is difficult
 to interpret; (2) cellular processes often affect sets of genes
 and individually highly ranked genes are often downstream
 genes, so moderate changes in many genes may give more
 insight into biological mechanisms than dramatic change in
 a single gene (Mootha et al., 2003); (3) individually highly
 ranked genes can be poorly annotated and are often not re-
 producible across studies (Fortunel et al., 2003). Researchers
 have now become more interested in knowledge-based studies
 on gene sets, for example, genetic pathways that are more bio-
 logically interpretable and reproducible (Goeman et al., 2005;
 Subramanian et al., 2005).

 A data example motivating the proposed research is the
 data from the Michigan prostate cancer study (Dhanasekaran
 et al., 2001). Prostate-specific antigen (PSA) has been

 routinely used as a biomarker for screening prostate cancer.
 Recently there have been significant breakthroughs in the
 effort of finding candidate genes related to prostate cancer.
 The early results of Dhanasekaran et al. (2001) indicate that
 certain functional genetic pathways seemed dysregulated in
 prostate cancer relative to noncancerous tissues. One is inter-
 ested in studying the genetic pathway effects on PSA after
 adjusting for effects of clinical and demographic covariates.
 Due to the complicated unknown relationships between genes
 and PSA, we propose a flexible framework to model the ge-
 netic pathway effect parametrically or nonparametrically.

 There is a vast literature on multidimensional nonparamet-
 ric modeling. Methods such as multivariate kernel smooth-
 ing (Wand and Jones, 1995), projection pursuit regression
 (Friedman and Stuetzle, 1981), and multivariate adaptive re-
 gression splines (MARS) (Friedman, 1991), are usually com-
 putationally expensive. Popular spline-based methods include
 generalized additive models (GAMs) (Hastie and Tibshirani,
 1990), thin-plate splines (Wahba, 1990; Green and Silverman,
 1994), penalized regression splines (Ruppert, Wand, and
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 Carroll, 2004), and smoothing spline ANOVA (Gu, 2002).
 These methods require the specification of the smoothness
 condition of an unknown function using differentiability con-
 ditions, which is much more involved and awkward in multi-
 dimensional settings.

 In the past decade, the kernel machine method has been
 developed in machine learning as a powerful learning tech-
 nique for multidimensional data (Vapnik, 1998; Sch6lkopf and
 Smola, 2002; Suykens et al., 2002; Rasmussen and Williams,
 2006). Popular examples of kernel machine methods include
 support vector machine (SVM) (Vapnik, 1998) and Bayesian
 Gaussian process (Rasmussen and Williams, 2006). In the
 context of function approximation, kernel machine methods
 and spline-based methods share a similar theoretical founda-
 tion, but their model-fitting philosophies are different. Kernel
 machine methods start with a kernel function that implicitly
 determines the smoothness property of the unknown function.
 By contrast, spline-based methods start with the smooth-
 ness conditions of the unknown function and a corresponding
 kernel function can usually be derived from these conditions
 (Wahba, 1990). Kernel machine methods hence greatly sim-
 plify specification of a nonparametric model, especially for
 multidimensional data.

 In this article, we propose a semiparametric model for co-
 variate and genetic pathway effects on a continuous outcome
 (e.g., PSA), where covariates effects are modeled paramet-
 rically and genetic pathway effect is modeled parametri-
 cally or nonparametrically using least-squares kernel machine
 (LSKM). We establish a connection between LSKM and lin-
 ear mixed models, and show that the LSKM estimator of the
 regression coefficients and the pathway effect can be obtained
 by fitting a linear mixed model. This connection provides a
 unified framework for inference of parameters in models with
 multidimensional covariates, including the regression coeffi-
 cients, the nonparametric function, and smoothing param-
 eters. Our work extends the connection between univariate

 smoothing splines and linear mixed models (Speed, 1991;
 Wang, 1998; Zhang et al., 1998) to multivariate smoothing
 with an arbitrary kernel function. We also propose a score
 test to test for the nonparametric genetic pathway effect,
 and a model/variable selection method within the LSKM
 framework.

 The rest of the article is organized as follows. In Section 2,
 we present the semiparametric model for Gaussian outcomes.
 In Section 3, we describe the LSKM method. In Section 4,
 we establish a connection between LSKMs and linear mixed

 models and propose a score test for testing for the genetic
 pathway effect. We discuss the variable selection problem in
 LSKM in Section 5. The performance of the proposed method
 is evaluated by simulations in Section 7, and is illustrated
 using the prostate cancer microarray data in Section 6. The
 article ends with a discussion in Section 8.

 2. Semiparametric Model for Multidimensional Data
 2.1 The Model

 Suppose the data consist of a subjects. For subject i (i =
 1,..., n), y, is a normally distributed continuous outcome, x,
 is a q x 1 vector of clinical covariates and zi is a p x 1 vector
 of gene expressions within a pathway. We assume an inter-
 cept is included in x2. The outcome yi depends on x2 and zi
 through the following partial linear model

 y x = + h(z2) + eT, (1)

 where 0 is a q x 1 vector of regression coefficients, h(z.) is
 an unknown centered smooth function, and the errors e, are
 assumed to be independent and follow N(0, a'2).

 Model (1) models covariate effects parametrically and the
 pathway effect parametrically or nonparametrically. When
 h(.) = 0, (1) reduces to the standard linear regression model.
 When xi - 1, it reduces to LSKM regression (Suykens et al.,
 2002).

 2.2 Specifications of a Function Space of h(z) Using a Kernel

 We assume the nonparametric function h(z) lies in a func-
 tion space '1K generated by a positive definite kernel function
 K(.-, .). From Mercer's theorem (Cristianini and Shawe-
 Taylor, 2000), under some regularity conditions, a kernel
 function K(., .) implicitly specifies a unique function space
 spanned by a particular set of orthogonal basis functions
 (features) { O(z)}fj. In other words, any h(z) E RK can be

 represented using a set of bases as h(z)- J_> w q3(z) O(z)TW (the primal representation), where w is a vector of
 coefficients. Equivalently, h(z) can also be represented using a

 kernel function K(- -) as h(z) z L alK(z7, z; p) (the dual
 representation), for some integer L, some constants aq and
 some {z(,... , zI) E R'. For a multidimensional z, it is more
 convenient to specify h(z) using the dual representation, be-
 cause explicit basis functions or features might be complicated
 to specify, and the number of features might be high or even
 infinite.

 Two popular kernel functions and the corresponding func-
 tion spaces are as follows: (1) The dth Polynomial Kernel:
 K(zi, z2) (zTz2 + p)d, where p and d are tuning pa-
 rameters. The dth polynomial kernel generates the function

 space 7-c spanned by all possible dth-order monomials of the
 components of z. For example, if d 1, the first polynomial
 kernel generates the linear function space with basis functions

 {j (z)} = {z1, ,... ,zp, ). If d - 2, the second polynomial kernel corresponds to the quadratic function space with basis func-

 tions {5j (z)I} {zA, -zZk k} (k, k'- 1, . . . , p), that is, the main
 effects, all two way interactions and quadratic main effects of
 the zk's. (2) The Gaussian Kernel: K(z1. z2) =exp{- z1 -

 z2 2/p}, where I - z2 2 - = E=l(Zlk - Z2k)2. The Gaussian kernel generates the function space spanned by radial basis
 functions. See Buhmann (2003) for their mathematical prop-
 erties and desirable features. Examples of other choices of
 kernel functions include the sigmoid and neural network ker-
 nels, and the B-spline kernel (Scholkopf and Smola, 2002).
 The choice of a kernel function determines which function

 space one would like to use to approximate h(z).

 3. LSKM Estimation in the Semiparametric Model

 Assume h(.) E ]-K, the function space generated by a kernel
 function K(.- , .). Estimation of /3 and h(.) in (1) proceeds by
 maximizing the scaled penalized likelihood function

 J(h,/3) = 1 {ys - x - h(z)}2 -A h 2 (2)

 where A is a tuning parameter which controls the tradeoff be-
 tween goodness of fit and complexity of the model. When
 A = 0, the model interpolates the gene expression data,
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 whereas when A = o00, the model reduces to a simple linear
 model without h(.).

 By the Representer theorem (Kimeldorf and Wahba, 1970),
 the general solution for the nonparametric function h(.) in (2)
 can be expressed as

 n

 h(.) = aiK(.,zi), (3)
 i=l

 where a = (al,... , an)T are unknown parameters. Substitut-
 ing (3) back into (2) we have

 J(ý3, a)

 1 i - XT K(z n 1AaTKa,
 i=1 j=1

 (4)

 where K is an n x n matrix whose (i, j)th element is K(zi,
 zj). Differentiating J(3, a) with respect to 3 and a, some
 calculations give

 -= {XT(I + A-1K)-1X}-1XT(I + A-1K)-ly (5)
 a = A-1(I+ A-1K)'(y - X3), (6)

 where X = (T,... ,zx)T and y = (yl,... ,y,)T. Plugging
 (6) into (3), we have that the function h(.) evaluated at the

 design points (zl,. •., z,)T is estimated as
 h = K& = A-1K(I + A-'K)-'(y - X3). (7)

 Using (3) and (6), h(.) at an arbitrary z is

 h(z) = A-1{K(z, zl),..., K(z, z,)}(I + A-1K)-l(y - X3).
 (8)

 Equivalently, if h(z) = 4(z)Tw, where {q$(z)} are orthogo-
 nal basis functions, the corresponding LSKM regression coef-
 ficients Lw are

 ^(z) = A-1{ (zl),..., f(z,)}(I + ) -lK)-'(y - XJ3). (9)
 The kernel function K(., -) usually depends on an unknown

 parameter p, such as the scale parameter in Gaussian kernel.
 Inference on ,, h(z) depends on A, p and the residual variance
 a2, which need to be estimated. Cross-validation can be used
 to estimate A; however, its computation is often intensive.
 Little literature is available on the systematic estimation of p
 and a2. In the machine learning literature, p is often preset at

 some fixed values. Further, estimation of a2 needs to properly
 account for the loss of degrees of freedom from estimating /3
 and h(.). Hence it is desirable to develop a systematic method
 to estimate these parameters simultaneously. We accomplish
 this by establishing a connection between LSKM and linear
 mixed models.

 4. LSKMs and Linear Mixed Models

 4.1 Connection Between LSKMs and Linear Mixed Models

 Linear mixed models have commonly been used for analyz-
 ing longitudinal and hierarchical data (Harville, 1977; Laird
 and Ware, 1982). A connection between smoothing splines
 and linear mixed models has been established (Speed, 1991;
 Wang, 1998; Zhang et al., 1998). We show here that the LSKM

 estimator in model (1) corresponds to the best linear unbi-
 ased predictor (BLUP) estimator from a linear mixed model,
 and the regularization parameters (T, p) and the residual
 variance a2 can be treated as variance components and es-
 timated simultaneously using restricted maximum likelihood
 (REML).

 To see this connection, simple calculations show that / and

 h from equations (5) and (7) can be equivalently obtained
 from the equations

 XT R1X XT R-l1 [ [ R-1y

 R-1X R-1 +(rK)- IJ R-ly J (10)

 where R = a2I1 and T = A-`12. Equation (10) corresponds
 exactly to the normal equation of the linear mixed model

 y = XP + h + e, (11)

 where / is a q x 1 vector of regression coefficients, h is an
 n x 1 vector of random effects with distribution N(O, rK),
 and e , N(O, a2I). A comparison of (11) with model (1) in-
 dicates that they have exactly the same form except that h
 is now treated as random effects. It follows that the BLUPs

 of the regression coefficients / and the random effects h un-
 der the linear mixed model (11) correspond to the LSKM
 estimator given in Section 3. In fact, one can easily see that
 the regression coefficient estimator 3 in (5) is the weighted
 least-squares estimator under the linear mixed model repre-
 sentation (11) using the marginal covariance of y under (11)

 as V = o21 + TK, i.e., /3 = (XTV-1X)-1XTV-ly.
 The linear mixed model representation of the LSKM in

 the semiparametric model (1) can also be considered as a
 Bayesian Gaussian process regression (Schdlkopf and Smola,
 2002). Note that this Bayesian correspondence is finite-
 dimensional (Wahba, 1990; Green and Silverman, 1994). It
 is not strictly equivalent to a continuous Bayesian Gaussian
 process (Rasmussen and Williams, 2006), because the finite-
 dimensional representation of h(.) does not lead to a coher-
 ent Bayesian model (Green and Silverman, 1994; Tipping,
 2001; Sollich, 2002. To see the Bayesian representation, we
 can treat {h(z)} as a random vector with a Gaussian process

 (GP) prior, with mean 0 and covariance cov{h(z1), h(z2)}
 = TK(zi, Z2). Note that the positive definiteness of the ker-
 nel function K(., .) ensures it is a proper covariance function.
 Now we assume

 y I (/, h(z)) ~ N{xT/p + h(z), a2},

 h(.) ~ GP{0, 7K(., .)}, /3 Oc 1.

 One can easily see that under this Bayesian model, the semi-
 parametric model (1) becomes the linear mixed model rep-
 resentation (11). This connection extends the connection be-
 tween scalar smoothing splines and mixed models and their
 Bayesian formulations (Wang, 1998; Zhang et al., 1998) to
 multidimensional regression problems under the kernel ma-
 chine framework.

 The covariances of / and h(.) can be calculated in two
 ways. The first approach is to treat the true h(.) as a fixed
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 unknown function and the variance of yi as a2. Using (5) and
 (7), the covariances of ~ and h(.) are

 covF(,3) = C2(XTV-IX)-IXV-IV-IX(XTV-IX)-1,
 (12)

 covF(h) = a2(TK)P2(TK), (13)
 covF{h(z)} = ca2(K T) P2(TKz) for arbitrary z,
 where P = V-1 - V-1X(XTV-1X)-1XTV-1 and Kz =
 {K(z, zi),..., K(z, z,)}T for an arbitrary z. We term these
 covariances as frequentist covariances.

 The second approach is to use the linear mixed model rep-
 resentation (11) and treat the true h(.) as a random func-
 tion following the mean zero Gaussian process with covariance

 rK(., .). The covariances of j and h(.) can then be calculated
 as a byproduct of the covariance of the fixed and random ef-
 fects of the linear mixed model (11) and are

 covB(0) = (XTV-lX)-1, (14)

 covB(h) = cov(h - h) = rK - (rK)P(grK), (15)

 covBs{h(z)} = cov{h(z) - h(z)}
 = -rK(z,z) - -(TK)P(rTK).

 We term these covariances as Bayesian covariances.

 4.2 Estimation of the Regularization Parameters
 and the Residual Variance

 We discuss in this section estimation of the regularization

 parameter T, the residual variance a2 and the scale parameter
 p in K(., .). Using the mixed model representation of LSKM,
 we propose to estimate (7, p, a2) simultaneously by treating
 them as variance components in the linear mixed model (11)
 and estimating them using REML.

 Specifically, the REML under the linear mixed model (11)
 can be written as

 R(a2, T, p) = -log IV() 1- log IXTV-1 ()X| 2 2

 2 (y - Xp)TV-1(0)(y - XP), (16)

 where 0 = (T, p, a2)T. The score equations of (T, p, a2) are

 1 1

 - tr(KP) + -(y - X )TV-KV- (y - X3) = 0,

 1 (KK 1
 --tr Tp 1-(y - X~)TV-1 2 Op 2

 x K) V'(y - X )= 0,

 1 1

 -tr(P) + -(y - X3)TV-lV-l(y - X3) = 0, (17)

 where P = V-1 - V-1X(X V-1X)-'XTV-1. Let A de-
 note the hat matrix so that XT, + h = Ay. Using the

 identities V-l(y - XP) = {o2}-1(y - XT/ - h) and P =
 {o2}-1(1 - A) (Harville, 1977), one can show using equa-

 tion (17) that o2 = {n - tr(A)}-1 Z_{yi - xT7 - (z)} Hence tr(A) represents the loss of degrees of freedom from

 estimating 3 and h(.) when estimating a2. The covariance of
 0 = (T, I, a2) can be estimated using the information matrix

 of the REML likelihood 1eo1, = ½tr{P Pv() pOV(O) }.
 4.3 Test for the Nonparametric Function

 Because we are interested in the effect of a whole genetic path-
 way rather than individual genes, it is of significant practical
 interest to test Ho : h(z) = 0. In the PSA microarray example,
 this tests for a genetic pathway effect on PSA controlling for
 the effects of covariates. Assuming h(z) E Rk, one can eas-
 ily see from the linear mixed model representation (11) that
 Ho : h(z) = 0 is equivalent to testing the variance component
 T as Ho:T = 0 versus HI:T > 0. Note the null hypothesis
 places T on the boundary of the parameter space. Because
 the kernel matrix K is not block diagonal, unlike the stan-
 dard case considered by Self and Liang (1987), the likelihood
 ratio for Ho - = 0 does not following a mixture x~ and X.
 We consider a score test in this article.

 Zhang and Lin (2002) proposed a score test for Ho: = 0 to
 compare a polynomial model with a smoothing spline. Unlike

 the smoothing spline case, a general kernel function K(.,.)
 in LSKM might depend on an unknown scale parameter p.
 However, for smoothing splines, K(., .) does not depend on
 any unknown parameter. One can easily see from the linear
 mixed model (11) that under Ho : T = 0, the kernel matrix K
 disappears, and hence the scale parameter p disappears and
 becomes inestimable.

 Davies (1987) studied the problem of a parameter disap-
 pearing under Ho and proposed a score test by treating the
 score statistic as a Gaussian process indexed by the nuisance
 parameter and then obtaining an upper bound to approxi-
 mate the p-value of the score test. This approach, however,
 does not work for our setting due to the unboundedness of
 the parameter space.

 We here propose to test for Ho : = 0 using the score test by
 fixing p and varying its value and examining sensitivity of the

 score test for Ho0: = 0 with respect to p. The REML version
 of the score statistic of T under Ho: T = 0 can be written as
 Q,(3, C2, p) - tr{PoK(p)}, where ~ and c2 are the MLEs of
 ,3 and a2 under the linear model yi = xi3 + ei, the model
 under Ho, Po = I - X(XTX)-1X, and

 Q,(63, a2, p) = (y - XP)TK(p)(y - XP),

 which is a quadratic function of y and follows a mixture of
 chi-squares under H0.

 Following Zhang and Lin (2002), for each fixed p, we use
 the Satterthwaite method to approximate the distribution

 of QT (.; p) by a scaled chi-square distribution ,x(, where
 the scale parameter i and the degrees of freedom v are
 calculated by equating the mean and variance of Q,(.; p)
 and those of r, . Specifically, one can show that I = I /28

 and i= 22/I,, where I, = I,,I, -1 I22I I =T277 tr(PoK(p))2/2, Ie2 = tr(PoK(p)Po)/2, and Ia2,2 = tr(Pf)/
 2. 8 = tr(PoK)/2. Computation of the proposed score test is
 quite simple, because one only needs to fit the simple linear
 model yi = xT'1 + es. We evaluate the performance of the
 score test using simulations.
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 5. Model Selection within the Kernel

 Machine Framework

 The kernel machine method requires a kernel function to be
 explicitly specified. Section 2.2 provides wide choices of kernel
 functions. A question of substantial interest is which kernel
 function to choose. This kernel selection problem has much
 broader implications. We consider two types of kernel selec-
 tion problems. The first is to choose between different para-
 metric and nonparametric models with different smoothness
 properties. The second problem involves variable selection.

 As stated in Section 2.2, a kernel function fully specifies a

 function space 7F-K where the unknown function h(.) resides.
 Hence this function space determines the type of models used
 to fit h(.). For example, a dth-degree polynomial kernel spec-
 ifies a parametric model with dth order monomials; the ker-

 nel K(s, u) = f (s - t),(t - u)+dt specifies a cubic smoothing
 spline model (Wahba, 1990); and the Gaussian kernel assumes
 an infinitely smooth function. It is therefore clear that model
 selection within the kernel machine framework is in fact a

 special case of kernel selection.
 Variable selection can also be treated as a kernel selection

 problem within the kernel machine framework. For example,

 let zp be a p-dimensional vector and zp, a p' dimensional sub-
 vector of z, with p' < p. Then two kinds of kernel functions
 can be specified: one based on z, and another one based on
 zP,. The unknown function can then be fitted separately based
 on each kernel. If the fitted curves are not "far away" from

 each other, then the model using zp, provides an equally good
 but more parsimonious fit than that using z,. This demon-
 strates that variable selection is also a special case of kernel
 selection.

 These discussions show that model selection is a very
 interesting and important topic within the kernel machine
 framework. However, little work has been done in this
 area. We propose AIC and BIC as kernel selection crite-
 ria within the kernel machine framework. Equations (5) and
 (7) show that the estimated response Y can be expressed
 as Y = Ay, where A = (I + A-1K)-I[A-1K + X{XT(I +
 A-1K)-1X}-1XT(I + A-1K)-1] is the LSKM smoothing ma-
 trix. Let r = trace(A) be the degree-of-freedom of the kernel
 machine smoother A. We define the least squares kernel ma-
 chine (KM) AIC and BIC as

 KM_AIC = n log(RSS) + 2r,

 KMBIC = n log(RSS) + r log(n),

 where RSS = (y - I )T(y_ - ). Models with smaller KM_
 AIC/KMBIC values are preferred.

 6. Application to the Prostate Cancer Genetic
 Pathway Data

 We applied the proposed semiparametric model to the analy-
 sis of prostate cancer genetic pathway data described in Sec-
 tion 1. The data set contained 59 patients who were clinically
 diagnosed with local or advanced prostate cancer. The objec-
 tive of the study was to evaluate whether a genetic pathway
 has an overall effect on PSA after adjusting for covariates.
 We focus in this article on the cell growth pathway, which
 contains five genes. The outcome was pre-surgery PSA level.
 A log transformation was performed to make the normality

 Table 1

 Parameter estimates of the semiparametric model and the
 score test for the genetic pathway effect for the PSA data
 using the LSKM via the linear mixed model representation

 Covariate Estimate SE p-value

 Intercept -1.7722 1.1915 0.1425
 Age 0.0177 0.0114 0.1259
 Gleason 0.4461 0.1055 0.0001

 T 2.8182 3.7720
 p 6.3635 13.5708
 a2 0.3712 0.0816 0.001

 p S v p-value
 Score test for the genetic pathway effect H0 : h(z) = 0

 3 31.010 14.924 0.0085
 5 28.750 11.223 0.0028
 10 26.598 8.295 0.0010
 30 23.264 5.970 0.0007

 assumption plausible. Two covariates included age and Glea-
 son score, a well-established histological grading system for
 prostate cancer.
 The semiparametric model (1) provides a convenient frame-
 work to evaluate the effect of the cell growth pathway on
 PSA by allowing for complicated interactions among the genes
 within the pathway. Specifically, we consider the model

 log(PSA) = 30 + l3age + 32gleason + h(genel,...,gene5) + e,
 (18)

 where h(.) is a nonparametric function and e - N(0, o2). We
 fit this model using the LSKM method via the linear mixed
 model representation (11) and using the Gaussian kernel in
 estimating h(.). Under the linear mixed model representa-
 tion, we estimated (10, 1, 132) and h(.) using BLUPs, and
 estimated the smoothing parameter T, the kernel parameter
 p and the residual variance a2 simultaneously using REML.
 The results are presented in Table 1, indicating Gleason score
 was highly significant, while age was not.

 We tested for the cell growth pathway effect on PSA,
 Ho: h(z) = 0 versus H1: h(z) E HK using the score test de-
 scribed in Section 4.3. Table 1 gives the score test statistics
 and p-values for a range of p values. The p-values are not
 sensitive to the choice of p and range from 0.0007 to 0.0085,
 suggesting a strong cell growth pathway effect on PSA.

 Even though the five genes are believed to function together
 biologically, it is of interest to investigate whether there are a
 small number of relatively important genes in the cell growth
 pathway that most affect PSA. We investigated this problem
 using the proposed variable selection method. An all-possible-
 subset selection procedure of genes was performed using the
 Gaussian kernel. The kernel machine AIC and BIC proposed
 in Section 5 were used as the model selection criteria. The

 result shows that the model with the lowest AIC and BIC

 values is the one containing genes FGF2 and IGFBP1. The
 detailed results are given in Web Table 1 in the Supplemen-
 tary Materials. These two genes can be studied further in
 laboratory settings to explore their detailed relationship with
 PSA.
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 7. Simulation Studies

 7.1 Simulation Study for the Parameter Estimates

 We conducted a simulation study to evaluate the performance
 of the proposed LSKM estimation method for the semipara-
 metric model (1) by fitting the linear mixed model (11). We
 considered the following model

 Yi = xi + h(zil,..., zip) + ei, (19)
 where ei ~ N(0, 1). To allow for xi and (zil,...,zip) to be
 correlated, xi was generated as xi = 3cos(zil) + 2ui with
 ui being independent of zil and following N(0, 1), zij(j =
 1,... ,p) were generated from Uniform(0, 1). The nonpara-
 metric function h(-) was allowed to have a complex form with
 nonlinear functions of the z's and interactions among the z's.
 In our simulations, we first fit the model using the same set of
 z's as that in the true model. In practice, without advanced
 knowledge, the true set of z's is often unknown and the set of
 z's that is used might be larger than the true set and contains
 some noisy z's that are irrelevant to the outcome y. To mimic
 such a scenario, in the second set of simulations, we added
 some noisy z's in the set of z's and fit (19).

 We considered four configurations by varying n (the sample
 size) and p (the number of covariates z's). For each setting,
 only the Gaussian kernel is used and 300 simulations were
 run.

 Setting 1: n = 60, p = 5, true h(z) = 10cos(zi) - 15z' +
 10exp(-z3)z4 - 8sin(z5)cos(z3) + 20z1Zs. Fit the model with
 the five true z's. This setting mimics the PSA data.

 Setting 2: n = 100, p = 8, h(-) is the same as setting 1. Fit
 the model (19) by including 3 additional irrelevant z6, z7, z8
 besides the true z 1,..., z5.

 Setting 3: n = 200, p = 10, true h(zi,..., zio) = 10cos(zi) -
 15z2+ 10exp(-z3)z4 - 8sin(z5)cos(z3) + 20zz5 +
 9z6sin(z7) - 8cos(z6)z7 + 20zssin(zg)sin(zlo) - 15z3 -
 10zsz9 - exp(zio)cos(zio). Fit the model assuming these 10
 true z's are used.

 Setting 4: n = 300, p = 15, h(.) is the same as that in setting
 3. Fit the model with additional 5 irrelevant noisy predictors

 Zll,... , z15 besides the true z1,..., zo0.
 The point estimate results are presented in Table 2. Be-

 cause it is difficult to graphically display the fitted value of
 h(.) as a function of z, we summarized the goodness of fit of
 h(.) in the following way. For each simulation data set, we re-
 gressed the true h on the fitted h, both evaluated at the design
 points. We then empirically summarized the goodness of fit of
 h(.) by reporting the average intercepts, slopes, and R2's ob-
 tained from these regressions over the 300 simulations. If the
 intercept from this regression is close to zero and the slope is
 close to one and R2 is close to one, it would provide empirical
 evidence that the estimated multi-dimensional function h(.)
 is close to the true manifold.

 The results in Table 2 show that, when the true set of
 z's was included in fitting h(.) and all the model parameters
 {1, h(-), 7T, p, a2 were estimated simultaneously, the LSKM
 method via the mixed model framework performed well in
 estimating 0, h(.) and a2. However, if the scale parameter
 p in the Gaussian kernel was fixed, which is often done in
 traditional machine learning, the model estimators could be
 subject to considerable bias, especially for the estimate of a2.
 When p was fixed at values close to the estimated one, the
 bias was small. Because in practice, p is unknown, our results
 suggest it is useful to estimate the scale parameter p using
 the data. When extra irrelevant covariates z's besides the true

 set of z's were used in fitting h(.), the proposed method still
 performed well if all model parameters were estimated.

 Table 3 compares the estimated standard errors of / using
 the frequentist method (12) and the Bayesian method (14)
 with the empirical ones. The results show that both the fre-
 quentist and the Bayesian standard error estimates were close
 to their empirical counterparts. Table 3 also compares the es-
 timated standard errors of h (including intercept) using the
 frequentist method (13) and the Bayesian method (15) with
 the empirical standard errors. For the ease of presentation, for

 Table 2

 Simulation results of estimated regression coefficients , and the nonparametric function h(-) in model
 y = x, + h(z) + e based on 300 runs. True = 1 and true a2 = 1

 Model parameter estimates Reg of h on h

 Setting True # z Used # z n a12 p Intercept Slope R2
 1 5 5 60 1.00 0.96 5.34a (estimated) -0.04 1.00 0.99

 100 1.01 0.96 7.24 (estimated) -0.01 1.00 0.99
 100 1.00 0.92 1.00 (fixed) -0.01 1.00 0.99
 100 1.00 1.01 100.00 (fixed) -0.02 1.00 0.99

 2 5 8 100 1.05 0.89 6.74 (estimated) 0.16 1.00 0.98
 100 1.06 0.30 1.00 (fixed) 0.36 0.98 0.97
 100 1.12 2.15 100.00 (fixed) 0.23 1.01 0.96

 3 10 10 200 0.98 0.93 12.83 (estimated) -0.07 1.00 0.99
 200 0.92 0.30 1.00 (fixed) -0.18 0.99 0.98
 200 0.98 1.15 100.00 (fixed) -0.04 1.00 0.99

 4 10 15 300 1.01 0.82 14.02 (estimated) 0.03 1.00 0.99
 300 1.01 0.75 10.00 (fixed) 0.02 1.00 0.99
 300 1.01 1.17 100.00 (fixed) 0.02 1.00 0.99

 aAverage of the estimated p from 300 simulations.
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 Table 3

 Simulation study results of standard error estimates of / and h(.) in model y = zp +
 h(z) + e based on 300 simulations

 True Used Empirical Bayesian Frequentist
 Setting # z # z n SE SE SE p

 SEs of j

 1 5 5 60 0.088 0.088 0.083 5.34 (estimated)
 100 0.054 0.057 0.055 7.24 (estimated)
 100 0.062 0.066 0.058 1.00 (fixed)
 100 0.055 0.056 0.055 100.00 (fixed)

 2 5 8 100 0.066 0.065 0.058 6.74 (estimated)
 100 0.070 0.078 0.034 1.00 (fixed)
 100 0.082 0.081 0.078 100.00 (fixed)

 3 10 10 200 0.044 0.047 0.042 12.83 (estimated)
 200 0.050 0.077 0.024 1.00 (fixed)
 200 0.041 0.047 0.045 100.00 (fixed)

 4 10 15 300 0.039 0.042 0.033 14.02 (estimated)
 300 0.039 0.044 0.032 10.00 (fixed)
 300 0.037 0.041 0.039 100.00 (fixed)

 SEs of h

 1 5 5 60 0.635 0.662 0.601 5.34 (estimated)
 100 0.482 0.515 0.464 7.24 (estimated)
 100 0.614 0.664 0.576 1.00 (fixed)
 100 0.458 0.470 0.456 100.00 (fixed)

 2 5 8 100 0.662 0.683 0.604 6.74 (estimated)
 100 0.933 0.540 0.449 1.00 (fixed)
 100 0.741 0.731 0.645 100.00 (fixed)

 3 10 10 200 0.606 0.667 0.583 12.83 (estimated)
 200 0.954 0.541 0.450 1.00 (fixed)
 200 0.559 0.630 0.596 100.00 (fixed)

 4 10 15 300 0.712 0.721 0.636 14.02 (estimated)
 300 0.737 0.717 0.634 10.00 (fixed)
 300 0.632 0.732 0.684 100.00 (fixed)

 each setting, we averaged the SE estimates across all the grid
 points and presented these averages. The results show that
 when the scale parameter p was estimated, both the frequen-
 tist and the Bayesian standard error estimates were close to
 their empirical counterparts. When the scale parameter was
 fixed, the Bayesian and frequentist SEs were still close but
 could be quite different from the empirical SEs. These results
 further indicate that it is useful to estimate the scale param-
 eter p in practice.

 7.2 The Simulation Study for the Score Test

 We next conducted a simulation study to evaluate the per-
 formance of the proposed variance component score test for

 Ho : h(.) = 0 versus H1 : h(.) E ctk. The true model is the same
 as (19), where x and z's were generated in the same way
 as that in Section 6.1 and h(z) = ahl(z), hi(z) = 2 cos(zi) -
 3zi + 2e-3z4 - 1.6 sin(z5)cos(z3) + 4zzs5 and a = 0, 0.2, 0.4,
 0.6, 0.8, 1. We studied the size of the test by generating data
 under a = 0, and studied the power by increasing a. The ker-
 nel parameter p was fixed at a wide range of values: 0.5, 1, 5,
 10, 25, 50, 100, 200. The sample size was 60, mimicking the
 PSA data example. For the size calculations, the number of
 simulations was 2000, whereas for the power calculations, the
 number of runs was 1000.

 Table 4 reports the empirical size (a = 0) and power (a >
 0) of the variance component score test for Ho. The results

 Table 4

 Simulation results for the score test for Ho: h(z) = 0

 Scale Size Power
 p a = 0 a = 0.2 a = 0.4 a = 0.6 a = 0.8 a= 1.0

 0.5 0.050 0.158 0.487 0.865 0.989 1.000
 1 0.047 0.137 0.509 0.869 0.991 1.000
 5 0.050 0.127 0.482 0.865 0.987 1.000
 25 0.051 0.139 0.484 0.886 0.990 1.000
 50 0.046 0.138 0.508 0.863 0.990 1.000
 100 0.048 0.134 0.497 0.867 0.988 1.000
 200 0.054 0.148 0.494 0.874 0.991 1.000

 show that the size of the test was very close to the nominal
 value 0.05 and was not sensitive to the choice of the scale

 parameter p. As a increased, the power quickly approached
 1. The power was not much affected by the value of p if a
 moderate p was specified, but was more affected if a large
 value of p was specified

 7.3 The Simulation Study for Kernel Selection

 A simulation study was also conducted to assess the perfor-
 mance of kernel selection using the kernel machine AIC and
 BIC criteria. The true model we considered is
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 y = x + 10 cos(zi) + 3zi + exp(z3/3)z4

 + 8 cos(z5) + Z5Z21 + e,

 where e ~ N(0, 1), x was generated as x = 3 cos(zi) + 2u with
 u being independent of zl. All u and zj (j = 1,..., 5) were gen-
 erated from N(0, 1). The sample size was 50, and the number
 of runs was 300. Three types of kernel functions were used in

 the simulation: the Gaussian kernel K(u, v) = exp(-Ilu -
 v 112/p), the second-degree polynomial kernel K(u, v) =
 (uTv + 1)2, and the first-degree polynomial kernel that corre-
 sponds to ridge regression K(u, v) = u Tv. For each simulated
 data set, the AIC and the BIC were calculated based on the
 model with three different kernels.

 The mean AIC and BIC across 300 simulations for the

 Gaussian kernel are 190.79 (51.31) and 284.21 (50.21), re-
 spectively (the numbers within parenthesis are standard
 deviations), those for the second-degree polynomial kernel are
 269.07 (10.00) and 308.91 (9.58), respectively, and those for
 the ridge regression are 363.67 (2.63) and 371.61 (2.51), re-
 spectively. The AIC and BIC values from each simulated data
 set are plotted in Figures 1 and 2. These results show that the
 kernel machine AIC and BIC of the model with Gaussian ker-

 nel are the smallest, whereas those of ridge regression are the
 largest. Hence the Gaussian kernel is preferred to both the
 second-degree polynomial kernel and the ridge regression ker-
 nel, which is desired in light of the complicated functional
 forms of the x's.

 8. Discussion

 In this article, we have developed the LSKM method for
 semiparametric regression with Gaussian outcomes, where
 we model the covariate effects parametrically and the ge-
 netic pathway effect parametrically or nonparametrically.
 The kernel machine method does not require an explicit
 analytical specification of the smoothness conditions on
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 Figure 1. Simulation result of model selection using
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 Figure 2. Simulation result of model selection using
 KMB IC.

 the nonparametric function and unifies the model building
 procedure in both one- and multiple-dimensional settings.
 Therefore, it is a more general and flexible method for multi-
 dimensional smoothing.

 A key contribution of this article is that we have established
 a close connection between kernel machine methods and linear

 mixed models and all the model parameters can be estimated
 within the unified linear mixed model framework. This mixed

 model connection greatly facilitates the estimation and infer-
 ence for multidimensional nonparametric regressions and can
 be easily implemented using familiar statistical software such
 as SAS PROC MIXED or Splus NLME.

 We proposed a score test for the genetic pathway effect.
 This can be easily implemented using existing software. Al-
 though it requires fixing the scale parameter p, our results
 show that the test is not sensitive to the choice of p and has
 good performance. Alternatively, a Bayesian approach, such
 as the one proposed by Chen and Dunson (2003), might be
 used. This method has the advantage that there is no need to
 fix the scale parameter by proper prior specifications. How-
 ever, its theoretical properties are unknown. It is of further
 research interest to study the performance of this Bayesian
 method and to develop better frequentist methods of testing
 -r in the kernel machine setting.

 Kernel selection within the kernel machine framework is an

 important and complicated problem. It includes model selec-
 tion and variable selection as special cases. In this article we
 propose to use kernel machine AIC/BIC as kernel selection
 criteria. Our simulation results show AIC/BIC performs well.
 Further research is still needed to examine their theoretical

 properties in detail before they can be adopted as a universal
 criteria.

 We have considered in this article a single nonparametric
 function of multi-dimensional covariates. One could generate
 the proposed semiparametric model to incorporate multiple
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 multi-dimensional nonparametric functions. For example, if
 one is interested in modeling multiple genetic pathway effects,
 one could consider an semiparametric additive model

 y = XT3 + hj(zl) + " - - + hm(zm) + e,
 where zj (j = 1,..., m) denotes a pj x 1 vector of genes in
 the jth pathway and hj (.) denotes the nonparametric function
 associated with the jth genetic pathway.

 Machine learning is an emerging area of research in statis-
 tics. The field has experienced a rapid development in the
 past decade mainly by computer scientists dealing with multi-
 dimensional data. It has shown increasing promises and wide
 applications in biomedical research, especially in bioinformat-
 ics. These techniques however are somewhat disconnected
 with well-established biostatistical methods. Our effort of

 establishing a close connection between LSKMs and linear
 mixed models is an attempt to build a bridge between ker-
 nel machines that are familiar to computer scientists but less
 familiar to biostatisticians. This connection opens a door for
 adopting other well-established statistical techniques used in
 mixed models, such as Bayesian approaches, to handle multi-
 dimensional data via the machine learning framework. It also
 opens a new research direction for model/variable selection
 methods within the kernel machine framework. Such an in-

 terface is still in its infancy and has a lot of room for further
 developments.

 9. Supplementary Materials
 The kernel machine AIC and BIC estimates of models con-

 taining all the subsets of genes in the cell growth pathway for
 the analysis of the prostate cancer data are given in Web
 Table 1 at the Biometrics website http://www.tibs.org/
 biometrics.
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