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SUMMARY

Genome-wide association studies (GWASs) and expression-/methylation-quantitative trait loci
(eQTL/mQTL) studies constitute popular approaches for investigating the association of single
nucleotide polymorphisms (SNPs) with disease and expression/methylation, respectively. Here, we
propose to integrate QTL studies to more powerfully test the SNP effect on disease in GWASs when they
are conducted among different subjects. We propose a model for the joint effect of SNPs, methylation, and
gene expression on disease risk and obtain the marginal model for SNPs by integrating out methylation
and expression. We characterize all possible causal relations among SNPs, methylation, and expression
and study the corresponding null hypotheses of no SNP effect in terms of the regression coefficients
in the joint model. We develop a score test for variance components of regression coefficients to evaluate
the genetic effect. We further propose an omnibus test to accommodate different models. We illustrate
the utility of the proposed method in an asthma GWAS study, a brain tumor study, and numerical
simulations.
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1. INTRODUCTION

Genetic association studies have been a popular approach for assessing the association of single nucleotide
polymorphisms (SNPs) with various phenotypic traits. Genome-wide association studies (GWASs) have
been widely used in investigating the genetic etiology of diseases. In addition, genetic methylation or
gene expression can also be construed as a kind of phenotypic trait on the molecular scale. Such types of
genetic association studies focusing on expression- and methylation-quantitative trait loci, respectively, are
so-called eQTL and mQTL studies. Unlike GWASs where usually only peripheral blood samples or buccal
cells are required for genotyping, eQTL or mQTL is tissue-specific because the methylation or expression
profile varies across different organs and tissues. Methods are available to integrate multiple genomic
data to draw inference on the structure of a biological network (Schadt and others, 2005; Zhu and others,
2008). We focus in this paper on gene-based analyses of multiple eQTL and mQTL SNPs of a gene and
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the corresponding methylation and mRNA expression for their effects on disease phenotypes, assuming
that the causal structure of SNPs, methylation and expression is known.

As both GWASs and QTL studies become a standard practice in genetic studies, considerable inter-
est emerges in integrating the two. In fact, there have been published studies that combine eQTL stud-
ies with GWAS for diseases (Moffatt and others, 2007; Xiong and others, 2012). These studies consider
SNP-disease and SNP-expression associations separately. The association of the QTL SNPs with methyla-
tion/expression is not necessarily translated to be a contribution to the disease risk. To address this, we have
proposed to jointly analyze SNP and expression data from the same subjects (Huang and others, 2014).
However, a GWAS and QTL study are likely to be conducted in different subjects due to the availability of
tissue samples and the tissue specificity of expression and DNA methylation. Thus, we extend the method-
ology to analyze the data from different subjects, and propose a general framework to incorporate more
than two genomic data.

This article is motivated by an asthma study, in which the association between SNPs at the ORMDL3
gene and the risk of childhood asthma was discovered in the MRCA dataset, a case–control study, and
validated in other studies (Moffatt and others, 2007). The MRCE dataset is a case–control study for eczema
where SNP and expression data are also both available. Nevertheless, not many GWASs have available
expression data. Thus, we take the unique advantage of the MRCA and MRCE datasets to artificially
assemble them into one GWAS for asthma (MRCA) and an eQTL study for the ORMDL3 gene (MRCE or
MRCA). We integrate the two studies to jointly model the effect of SNPs and expression on asthma risk.

We are interested in the ORMDL3 gene, so instead of analyzing individual SNPs, we combine multiple
SNPs at ORMDL3. Such a multi-SNP approach has been advocated to jointly analyze multiple related SNPs
in a gene and to decrease the number of tests, which has also been shown to have better performance in a
breast cancer GWAS than the single SNP analysis (Wu and others, 2010). In addition to the evidence on
the relations among SNPs and gene expression of ORMDL3 and asthma risk (Moffatt and others, 2007),
there is also a molecular study on the joint effect of SNPs and methylation on regulation of ORMDL3
expression (Berlivet and others, 2012). Thus, we propose a method to analyze SNPs, methylation, and
expression jointly on disease risk. However, there is no publicly available methylation data in MRCA or
MRCE, and so we rely on numerical studies to study the performance of our method when analyzing the
SNP set, the methylation, and the expression jointly.

In this article, we propose an analytic way of integrating multiple genetic studies (e.g. eQTL and mQTL
studies and GWAS) in a regression framework, which is constructed based on biology. We jointly model an
SNP set within a gene, its methylation and expression, and the outcome using a regression model, and inte-
grate out methylation and expression to obtain a marginal model. The null hypothesis of no SNP effect in
the marginal model corresponds to different zero-coefficients in the joint model depending on the relations
of SNPs, methylation, and expression. We enumerate all possible SNP–methylation–expression relations
and provide causal interpretations under the framework of mediation modeling (Robins and Greenland,
1992; Mackinnon, 2008). According to SNP–methylation–expression relations, we develop efficient test-
ing procedures for the SNP effect.

The rest of the paper is organized as follows. In Section 2, we introduce the joint model for SNPs,
methylation, and gene expression on disease risk, and the marginal model for SNPs. In Section 3, we
introduce the null hypothesis of no SNP effect and study how different relationships among SNPs, methy-
lation, and gene expression can affect the correspondence between no SNP effect and coefficients in the
joint model. In Section 4, we propose a variance component score test for the SNP effect and construct
an omnibus test to optimize the test power across different underlying disease models. In Section 5, we
conduct numerical studies to evaluate the performance of our proposed test. In Section 6, we illustrate
the utility of our methods in an asthma study and a tumor genomic study. We conclude with a discussion
in Section 7.
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2. THE MODEL

Assume for subject i (i = 1, . . . , n), the outcome of interest Yi , with mean associated with q covariates
(Xi ), p SNPs (Si ), one methylation (Mi ), one mRNA expression (Gi ) of a gene, and their possible cross-
product interactions through the following model:

G[μcond(Yi |Si ,Mi ,Gi ,Xi )] = XT
i β0 + h(Si )

Tβ S + MiβM + GiβG + Mi h(Si )
Tβ SM

+ Gi h(Si )
Tβ SG + Mi GiβMG + Mi Gi h(Si )

Tβ SMG = ηcond,i , (2.1)

where G(·) is a strictly increasing function with differentiable inverse function G−1(·); h(·) is a differen-
tiable non-constant function; and μcond is a conditional mean. When the outcome of interest Yi is dichoto-
mous andG is the logistic link, it becomes a logistic model (Prentice and Pyke, 1979). Here, we defineβT =
(β S

T, βM , βG, βMG,β SM
T,β SG

T,β SMG
T). As methylation can be affected by SNPs (Berlivet and others,

2012) and gene expression can be affected by SNPs and methylation (Morley and others, 2004;
Berlivet and others, 2012), we further consider the following models for methylation M and
expression G:

Mi =μMi + εMi = XT
i δ0 + hM(Si )

TδS + εMi , (2.2)

Gi =μG|Mi + εG|Mi = XT
i α0 + hG(Si )

TαS + MiαM + Mi hG(Si )
TαSM + εG|Mi , (2.3)

where εMi ∼ FM(0, σM
2), εG|Mi ∼ FG|M(0, σG

2), FM , and FG|M can be any arbitrary distribution; hM(·)
and hG(·) are differentiable non-constant functions. NoteμMi = E(Mi |Xi ,Si ),μG|Mi = E(Gi |Xi ,Si ,Mi )

and we further defineμGi = E(Gi |Xi ,Si ) andμMGi = E(Mi Gi |Xi ,Si ). We also assume that εM and εG|M
are independent of S. By integrating out Gi and Mi , we can obtain the marginal distribution that only
depends on the SNPs Si and the covariates Xi , [Yi |Si ,Xi ]:

G[μmarg(Yi |Si ,Xi )] = G
{∫ ∫

μcond(Yi |Si ,Mi ,Gi ,Xi ) dFG|M(g|m) dFM(m)

}
= ηi . (2.4)

We will later develop testing procedures for both the joint model (2.1) and marginal model (2.4). We
show in supplementary material available at Biostatistics online that the conventional model assuming
linearity of SNP effect may misspecify the marginal model, but the two models will coincide under strong
assumptions.

3. NULL HYPOTHESIS

The null hypothesis of a genetic association study is that after adjusting for covariates X, the outcome Y
of the subjects carrying genotypes s1 is the same as those carrying s0:

H0 :�= G[μ(Y |X = x,S = s1)] − G[μ(Y |X = x,S = s0)] = 0. (3.1)

Different genetic models (dominant, recessive, or additive) follow the same null hypothesis: the outcome
of Y of the subjects carrying different genotypes is the same. Under the alternative, (3.1) can be changed
to accommodate a different genetic model, e.g. for additive model, HA :�=μ(Y |X, s2)− μ(Y |X, s1)=
μ(Y |X, s1)− μ(Y |X, s0) �= 0, where s2, s1, and s0 represent two, one, and zero minor alleles for SNPs,
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respectively. We will investigate how the SNP–methylation–expression relationships affect the regression
coefficients to be tested under the null (3.1). We consider six different conditions:

1. δS �= 0 and αMαS �= 0: SNPs are associated with both methylation and gene expression (independent
of methylation), and methylation is associated with gene expression.

2. δSαM �= 0 and αS = αSM = 0: SNPs are associated with methylation, and methylation is associated
with gene expression. SNPs are associated with gene expression only through methylation.

3. δSα
T
S �= 0, αM = 0 and αSM = 0: SNPs are associated with both methylation and gene expression,

but methylation is not associated with gene expression conditional on SNPs.
4. αS = αSM = 0, αM = 0 and δS �= 0: SNPs are associated with methylation, but both SNPs and methy-

lation are not associated with gene expression.
5. δS = 0 and αS �= 0: SNPs are associated with gene expression but not methylation.
6. δS = αS = αSM = 0: SNPs are not associated with methylation or gene expression.

With additional assumptions, we show in the supplementary material available at Biostatistics online that
Conditions 1–6 correspond to causal diagrams (Robins, 2003) in Figures 1(a)–(f), respectively. Here, we
would like to first discuss how these conditions have influences on the null hypothesis. We present in the

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Directed acyclic graphs of different causal relationships among SNPs S, methylation M, and gene expression
G. The solid arrow from A to B indicates a non-zero effect of A on B; the dashed arrow indicates the effect may or
may not exist; no arrow between A and B indicates no effect. Direct effect is the effect from S directly to G (S → G),
and indirect effect is the effect of S on G mediated through M (S → M → G).
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following propositions the correspondence of the null (3.1) with different elements of β, the coefficients
in model (2.1) (proof is provided in the supplementary material available at Biostatistics online).

The propositions that we will present next require the following assumptions: there exists b with ‖b‖>
0 such that E[G−1′

(bTh(Si )K )K ] (K = M,G,MG), E[G−1′
(bT M)], E[G−1′

(bTG)], E[G−1′
(bT MG)M],

and E[G−1′
(bT MG)G] are not zero; if two or more elements in β are not equal to zero, there does not exist

a combination of the non-zero elements for all S such that �= 0.

PROPOSITION 3.1 If Y , M, and G follow models (2.1–2.3), respectively, and any of the following:
(i) δS �= 0 and αMαS �= 0, (ii) δSαM �= 0 and αS = αSM = 0, (iii) δSα

T
S �= 0, αM = 0, and αSM = 0 (Condi-

tions 1–3) holds, then �= 0 ⇔ β = 0.

In the next three propositions, we further show the influence of Conditions 4–6 on the correspondence
of the null (3.1) with β.

PROPOSITION 3.2 If Y , M, and G follow models (2.1–2.3), respectively, and αS = αSM = 0, αM = 0, and
δS �= 0 (Condition 4), then �= 0 ⇔ β(−G) = 0, where β(−G) denotes a vector containing all elements in
β except βG .

PROPOSITION 3.3 If Y , M, and G follow models (2.1–2.3), respectively, and δS = 0 and αS �= 0 (Condition
5), then �= 0 ⇔ β(−M) = 0, where β(−M) denotes a vector containing all elements in β except βM .

PROPOSITION 3.4 If Y , M, and G follow models (2.1–2.3), respectively, and δS = αS = αSM = 0 (Condi-
tion 6), then�= 0 ⇔ β(−M,−G,−MG) = 0 where β(−M,−G,−MG) denotes a vector of all elements in β except
βM , βG , and βMG .

Thus, depending on different associations among S, M, and G, we can evaluate �= 0 in (3.1) by
developing testing procedures for

H0 : β = 0, (3.2)

H0 : β(−G) = 0, (3.3)

H0 : β(−M) = 0, (3.4)

and

H0 : β(−M,−G,−MG) = 0. (3.5)

4. TEST FOR THE TOTAL GENETIC EFFECT

Using the results in Section 3, we would like to construct a testing procedure for the null (3.2–3.5) using the
asthma data where the asthma risk (yes/no) is modeled using logistic link with h(S)= hM(S)= hG(S)= S.
Other types of outcome or different G can be easily adapted following a similar development. If the number
of SNPs is small, we can perform conventional tests such as Wald test or likelihood ratio test (LRT) for
null (3.2–3.5). However, if the number of SNPs (p) in a gene is large or some might be highly correlated
due to linkage disequilibrium, the conventional test with a large degree of freedom (DF) has limited power
(Huang and others, 2014).

Downloaded from https://academic.oup.com/biostatistics/article-abstract/15/4/587/266554/Integrative-modeling-of-multiple-genomic-data-from
by guest
on 22 September 2017



592 Y.-T. HUANG

4.1 A score test for variance components

To overcome the limitation of LRT, we assume a working distribution β ∼ Fβ(0,D(τ )) where
D(τ )= diag{rep(τS, p), rep(τMG, 3), rep(τSM , p), rep(τSG, p), rep(τSMG, p)}, rep(A, B) indicates that
A is repeated B times and Fβ is an arbitrary distribution. Null (3.2) becomes equivalent to:

H0 : τ = 0. (4.1)

We will then construct a testing procedure based on this null hypothesis and other null hypotheses (3.3–3.5)
can be viewed as special cases. By a Taylor series at β = 0, the conditional log-quasilikelihood of model
(2.4), l can be approximated as

l(β)=
∑

i

li (0)+
∑

i

∂li

∂β

∣∣∣∣
β=0

β + 1

2
βT

(∑
i

∂li

∂β

∣∣∣∣
β=0

∑
i

∂li

∂βT

∣∣∣∣
β=0

+
∑

i

∂2li

∂β∂βT

∣∣∣∣
β=0

)
β + ε,

where li is the conditional log-quasilikelihood for subject i (Lin, 1997). The marginal log-quasilikelihood
can then be expressed with τ :

l(τ )= Eβl(β)=
∑

i

li (0)+ 1

2
tr

(
ZT

[
∂l

∂η

∂l

∂ηT
+ ∂2 l

∂η∂ηT

]
ZD(τ )

)
+ ε,

where ∂l/∂η is an n × 1 vector whose ith component is ∂li/∂ηi , ∂2 l/∂η∂ηT = diag{∂2li/∂η
2
i },

ZT = (Z1, . . . ,Zn), and ZT
i = (∂ηi/∂β

T
S , ∂ηi/∂βM , ∂ηi/∂βG , ∂ηi/∂βMG , ∂ηi/∂β

T
SM , ∂ηi/∂β

T
SG ,

∂ηi/∂β
T
SMG)|β=0.

From (2.4), it can be shown that, evaluating at β = 0,

∂ηi

∂β S
= Si ,

∂ηi

∂βM
=μMi ,

∂ηi

∂βG
=μGi ,

∂ηi

∂βMG
=μMGi ,

∂ηi

∂β SM
=μMi Si ,

∂ηi

∂β SG
=μGi Si , and

∂ηi

∂β SMG
=μMGi Si ,

(4.2)

where μMi = XT
i δ0 + ST

i δS , μGi = XT
i α0 + ST

i αS + μMi (αM + ST
i αSM), and μMGi =μMi (XT

i α0 +
ST

i αS)+ (αM + ST
i αSM)(μ

2
Mi + σ 2

M), and that the score, for each τ , U , follows a similar form
(Y − μ0)

T
K(Y − μ0)− tr(KW) with K = SST, CMGCT

MG , CSM CT
SM , CSGCT

SG , and CSMGCT
SMG

for τS , τMG , τSM , τSG , and τSMG , respectively, where W = diag{μi (1 − μi )}, ST = (S1, . . . ,Sn),
CT

MG = (CMG,1, . . . ,CMG,n), CT
SM = (CSM,1, . . . ,CSM,n), CT

SG = (CSG,1, . . . ,CSG,n), and
CT

SMG = (CSMG,1, . . . ,CSMG,n); CMG,i = (μMi , μGi , μMGi )
T, CSM,i =μMi Si , CSG,i =μGi Si , and

CSMG,i =μMGi Si . Also, the corresponding information follows the form I = 1T(K · H · K)1, where
A · B denotes the component-wise multiplication of conformable matrices A and B, 1 denotes a vector
of ones, and the diagonal and off-diagonal elements of H are hii = −4μ4

0i + 8μ3
0i − 5μ2

0i + μ0i and

hii ′ = 2[μ0i (1 − μ0i )][μ0i ′(1 − μ0i ′)], respectively. We can estimate μ̂0i = expit(β̂0
T
Xi ) and β̂0 can be

obtained from the logistic model under the null.
We can then construct the test statistics for H0 : τ = 0 as the weighted sum of scores:

Q = a1U ∗
τS

+ a2U ∗
τMG

+ a3U ∗
τSM

+ a4U ∗
τSG

+ a5U ∗
τSMG

= (Y − μ0)
T(a1SST + a2CMGCT

MG + a3CSM CT
SM + a4CSGCT

SG + a5CSMGCT
SMG)(Y − μ0),
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where U ∗ is the non-zero-centered counterpart of U : U ∗ = U + tr(KW). Various weighting schemes (a1-
a5) can be chosen. For example, a1 = · · · = a5 correspond to D(τ )= diag{rep(τ, 4p + 3)}. Or, we can
choose to weight by their respective information I .: a1 = I −1/2

τS
, a2 = I −1/2

τMG
, a3 = I −1/2

τSM
, a4 = I −1/2

τSG
, a5 =

I −1/2
τSMG

, which allows each score to have variance one and be comparable.
We are able to calculate a p-value for the statistic Q if its distribution can be obtained.

Note that Q is a quadratic form of Y and, asymptotically, it follows a mixture of χ2 distri-
butions, which can be approximated with Davies’ method by inverting the characteristic func-
tion (Davies, 1980). Alternatively, we can perform a resampling perturbation procedure based on
the asymptotic distribution of Q (Parzen and others, 1994). We show in the supplementary mate-

rial available at Biostatistics online that Q
D−→∑

l(Alε)
2, where D = [ DX X DX V

DV X DV V
] = n−1ZTWZ, VT

i =
(
√

a1ST
i ,

√
a2CT

MG,i ,
√

a3CT
SM,i ,

√
a4CT

SG,i ,
√

a5CT
SMG,i ), Z = (Z1, . . . ,Zn)

T, Zi = (XT
i ,VT

i ), Al is the lth
row of A = [−DT

X V D−1
X X , I4p+3].

4.2 Tests for different models

Note that the above derivation is based on the marginal model (2.4) and the results involve the expectation
of M , G, and MG: μM , μG, and μMG . If we are able to collect Si , M, and G from the same subjects, we
can also derive the score and information based on the joint model (2.1), which leads to very similar results,
except that μM , μG, and μMG would be replaced by their observed counterparts M , G, and MG. Thus, we
can carry out the proposed testing procedure if SNP, methylation, and expression data are collected from
the same subjects. The advantage of the proposed method is that it can still be applied in the setting where
methylation and/or expression data are not collected in the subjects of GWAS but their association with
SNPs can be consistently estimated from external mQTL and eQTL studies.

In addition to model (2.1) where the main effects and interactive effects of SNPs, methylation and
expression on outcome are assumed to exist, one can specify more parsimonious models. For example,
if we assume that there is no three-way interaction, we can test H0 : τS = τMG = τSM = τSG = 0. Different
model specification depends on our assumption for the true disease model. Here for null (4.1), we consider
six disease models: (1) SNPs-only (H0 : τS = 0); (2) main effects with possible methylation-by-expression
interaction (H0 : τS = τMG = 0); (3) (2) plus SNPs-by-methylation interaction (H0 : τS = τMG = τSM = 0);
(4) (2) plus SNPs-by-expression interaction (H0 : τS = τMG = τSG = 0); (5) the union of (3) and (4) (H0 :
τS = τMG = τSM = τSG = 0); (6) all effects up to three-way interaction (H0 : τ = 0). Although different
parameters are tested under different model specification, they correspond to the same null (3.1) and are
all valid tests.

4.3 Omnibus test

Since we do not know which one of the above six candidate models is the truth in reality, it is desirable to
develop a test that can accommodate different models to maximize the power. Thus, we further propose an
omnibus test where we identify the strongest evidence among the six models in Section 4.2. Specifically,
we compute the minimum p-value among candidate models and compare the observed minimum p-value
to its null distribution, approximated by a resampling perturbation procedure.

As shown in Section 4.1, Q converges in distribution to Q(0)=∑l(A
T
l ε)

2. The empirical distribution
of Q(0) can be estimated using the perturbation (Parzen and others, 1994). Set ε̂ = n−1/2

∑n
i=1 ZT

i (Yi −
μ̂i )Ni , where Ni ’s are independent N (0, 1) (i = 1, . . . , n). By generating independent N = (N1, . . . ,Nn)

repeatedly, the perturbed realization of Q(0) can be obtained, denoted by {Q̂(0)(b), b = 1, . . . , B}, where
B is the number of perturbations. The p-value can be approximated using the tail probability by comparing
{Q̂(0)(b), b = 1, . . . , B} with the observed Q. Hence one can calculate the p-values of the six candidate
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models by inputting Vi with different combinations of S, CMG , CSM , CSG , and CSMG , generating their
perturbed realizations of the null counterpart for the candidate model k as {Q̂k(0)(b)}, and comparing them
with corresponding observed values Qk (k = 1, . . . , 6). Note that, for each perturbation b, the perturbation
random variable N (b) is the same across the six tests. Let P̂k = Sk(Qk) be the p-value for the candidate
model k, where Sk(q)= pr{Q̂k(0)(b) > q}. The null distribution of the minimum p-value, P̂min = mink P̂k

can be approximated by P̂ (b)
min = mink{Sk(Q̂k(0)(b))} (b = 1, . . . , B). The omnibus p-value hence can be

calculated by comparing P̂min with its empirical null distribution.

5. NUMERICAL STUDIES

5.1 Settings

To mimic the motivating data example of the asthma genetic study, we simulated the data based on
the ORMDL3 gene. We simulated 99 HapMap SNPs at the region where the ORMDL3 gene is located
using HAPGEN (Marchini and others, 2007). Nine out of the 99 HapMap SNPs are included in the
Illumina HumanHap 300 K array, which are the so-called typed SNPs. We assumed two untyped SNPs
(S∗ = (Scausal1, Scausal2)) out of the 99 HapMap SNPs to be causal. The methylation, gene expression and
disease outcome were generated using the two causal untyped SNPs, but the analyses were based on
the 9 typed SNPs. The methylation is generated by the model: Mi = 0 + S∗

i
TδS + εM,i , where εM,i fol-

lows a Beta(α = 2, β = 5) distribution that is further standardized to have mean zero and variance 1.
The gene expression is generated by the model: Gi = 0 + S∗

i
TαS + MiαM + Mi S∗

i
TαSM + εG,i , where

εG,i ∼ N (0, sd = 0.4)+ 0.5 × U (−0.3, 0.3); U denotes a uniform distribution. The outcome Y was gen-
erated by a logistic regression model: logit[P(Yi = 1|S∗

i ,Mi ,Gi )] = −1.2 + S∗
i

Tβ S + MiβM + GiβG +
Mi S∗

i
Tβ SM + Gi S∗

i
Tβ SG + Mi GiβMG + Mi Gi S∗

i
Tβ SMG . Note G and M follow arbitrary distributions to

illustrate the flexibility of the proposed method.
For each simulation, we generated a cohort with 1000 subjects, from which we selected 150 cases and

150 controls for the genetic association study of the disease Y (case–control GWAS data) and selected
another 300 subjects to study the association among S, M, and G using models (2.2) and (2.3) (QTL
data). As our primary interest is to study the genetic etiology of the disease, QTL data serve as an external
source to study the relationship of S, M, and G. We investigated the performance of our methods using
the nine typed SNPs and the observed or estimated methylation and gene expression in case–control data,
i.e. (S,M,G,MG) or (S, μ̂M , μ̂G, μ̂MG), where μ̂Mi = XT

i δ̂0 + ST
i δ̂S , μ̂Gi = XT

i α̂0 + ST
i α̂S + μ̂Mi (α̂M +

ST
i α̂SM), and μ̂MGi = μ̂Mi (XT

i α̂0 + ST
i α̂S)+ (α̂M + ST

i α̂SM)(μ̂
2
Mi + σ̂ 2

M); δ̂0, δ̂S , α̂S , α̂M , α̂SM , and σ̂ 2
M are

least squares estimates from the QTL data, and Xi and Si are from the case–control GWAS data. By setting
different configurations of δ’s and α’s, we were able to generate data according to different conditions
illustrated in Figure 1. Different configurations of β’s will be studied.

5.2 Size and power

For both observed and estimated M and G, the size of the test is well protected using either Davies’
method or perturbation when the null hypotheses are correctly specified (Table 1). However, the tests are
biased if we use the observed M and G test for the null (3.2): β = 0 while the data are generated under
Figures 1(d)–(f). But the type I errors are still protected if the estimated μ̂M and μ̂G are used, as explained
in supplementary material available at Biostatistics online.

We also compared our proposed testing procedure with the conventional LRT and Fisher combination
of marginal analyses for SNPs and gene expression (Fisher, 1925). The size of p< 0.05 is slightly inflated
for the SNP-only analyses (H0 : β S = 0), but as the number of parameters becomes large, the size is lower
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than 5% (Table 1). The conservativeness due to the large DF is also observed in power (cf. Table S1 of
supplementary material available at Biostatistics online with Table 2). The size for Fisher’s combination is
also inflated, which may be again due to the large DF for SNP-set analyses. Moreover, the independence
assumption of Fisher’s combination for SNPs, methylation and expression effects is obviously violated as
SNPs are correlated to each other and to expression/methylation.

Table 2 presents the power when analyzing data generated under the causal diagram in Figure 1(a),
and the results corresponding to Figures 1(b)–(f) are provided in the supplementary material available at
Biostatistics online. In general, the tests can reach or almost reach the optimal performance when models
are correctly specified, and the omnibus tests are very close to the optimal one. In Table 2, for example,
under the setting of βT

S = (0.5,−0.25) and other β’s equal zero, the test for τS = 0 has the optimal power
(68.8%) and the omnibus test has power of 69.1%; under the setting of βT

S = (0.1,−0.05), βM = βG =
βMG = 0.2, βT

SM = βT
SG = (0.2,−0.1), βSMG = 0, the test for τS = τMG = τSM = τSG = 0 has the optimal

power (87.0% and 60.3%) and the omnibus test has power of 82.4% and 56.4% for the observed and
expected methylation/expression, respectively.

A few settings that reflect different interesting biology requires further attention. For example, we may
observe SNPs to be eQTL and mQTL (δS �= 0, αS �= 0) but expression and methylation do not affect the
outcome (βM = βG = 0) if we measure the irrelevant tissue. Under this setting (the first row of Table 2),
the joint analyses are subject to power loss compared to SNP-only analyses. In addition, the fourth row of
the Table 2 indicates that SNPs have no direct effect on the disease outcome (βS = 0) and their effect is only
through gene expression and methylation (βM �= 0, βG �= 0) [again, the gene expression and methylations
are affected by the SNPs (δS �= 0, αS �= 0) in Figure 1]. The second and third rows are the special cases.
Under these settings, the SNP-only analysis does not perform well and the joint analyses perform much
better. Also note that model (2.1), we start with is a very general model that can reflect different biological
mechanisms with different parameter configurations.

The tests using the estimated μ̂M and μ̂G have power loss as compared to those using the observed
M and G. The power loss between observed and expected methylation and gene expression depends on
how well they are associated with SNPs. In Figures 1(a) and (c), SNPs are good determinants of methylation
and gene expression, so the power loss from the observed ones is less than that in Figure 1(b) where gene
expression can only be determined by SNPs through methylation, which also needs to be estimated.

We also study the performance of our method with only SNPs and expression data or only SNPs and
methylation data when the true model depends on all three of them (Table S7 of supplementary material
available at Biostatistics online). Without including either methylation or expression, the type I error is
well protected. The tests not including methylation lose power when methylation indeed has an effect on
the outcome by comparing the results between Table 2 and Table S7 of supplementary material available
at Biostatistics online. However, if only SNPs and gene expression but not methylation affect the outcome,
then ignoring methylation performs better than the joint analyses of the three. Similar results for the setting
without gene expression.

6. DATA APPLICATIONS

6.1 ORMDL3 gene and asthma risk

We demonstrate the utility of the theoretical results and the proposed testing procedure in single-SNP
analyses of the ORMDL3 gene (Figure 2), SNP-set analyses of ORMDL3 (Table 3) and genome-wide
SNP-set analyses of MRCA data (Figure S1 of supplementary material available at Biostatistics online)
to investigate the risk of childhood asthma (Dixon and others, 2007; Moffatt and others, 2007). We used
another dataset, the MRCE data to study the association between SNPs and expression of the ORMDL3
gene. The MRCA dataset actually also collected gene expression data, so we can compare the results
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598 Y.-T. HUANG

Fig. 2. Single SNP analyses of the 9 typed SNPs at ORMDL3. The lower panel is the linkage disequilibrium plot
where the darker indicates higher correlation between SNPs. (a) Observed gene expression G. (b) Expected expression
μG,MRCA, using the MRCA eQTL model. (c) Expected expression μG,MRCE, using the MRCE eQTL model.
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Table 3. p-values of re-analyzing the 9 SNPs at ORMDL3 gene with MRCA data

Dominant Additive

G μG,MRCA μG,MRCE G μG,MRCA μG,MRCE

τS = 0 0.0036 0.0108
τS = τG = 0 0.0015 0.0015 0.0015 0.0045 0.0043 0.0049
τS = τG = τSG = 0 0.0062 0.0028 0.0018 0.0119 0.0050 0.0065
Omnibus 0.0028 0.0028 0.0022 0.0088 0.0076 0.0063

τS = τSG = 0 0.0137 0.0015 0.0024 0.0451 0.0054 0.0112
τS = 0 with eQTL

weighting
0.0039 0.0110

Fisher: SNP,
expression

0.0140 0.0749

G: joint analysis with observed expression of the ORMDL3 gene; μG,MRCA: analysis with the mean
expression estimated from the model developed using the MRCA data; μG,MRCE: analysis with the mean
expression estimated from the model developed using the MRCE data. The omnibus test chooses the
optimal test among H0 : τS = 0, H0 : τS = τG = 0, and H0 : τS = τG = τSG = 0. Fisher, the Fisher combi-
nation of p-values of marginal effects of SNP and expression.

between using the observed gene expression and using the expected expression from the MRCE and MRCA
data. The MRCA data contain 219 asthma cases and 99 controls. Genotype data were collected with the
Illumina 300 K chip and gene expression was collected using the Affymetrix U133 Plus 2.0 in the MRCA
data and Illumina Human6V1 in the MRCE data. Gene expression data were collected from an EBV-
transformed lymphoblastoid cell line from study subjects and normalized with the RMA algorithm for
Affymetrix array and quantile normalization for Illumina array (Liang and others, 2013).

There are 9 SNPs at the ORMDL3 gene found to be highly associated with asthma risk in MRCA and
also genotyped in MRCE data. We first model the association between the ORMDL3 expression and the
nine SNPs (i.e. eQTL model) in the MRCE data (n = 487) using the weighted least squares estimator.
Because the MRCE data are case–control data designed for studying eczema, to obtain unbiased esti-
mates, we need to reweight the case and control by π/d and (1 − π)/(1 − d), respectively, where π is the
prevalence of eczema and d is the proportion of eczema cases in the MRCE data. Since expression data
were actually collected in the MRCA data, we can also evaluate the SNP-expression association in MRCA
(n = 318). The association is highly significant in both datasets: p< 2.20 × 10−16 (R2 = 0.30) in MRCE;
p = 5.16 × 10−10 (R2 = 0.19) in MRCA. Since the SNPs and expression are highly associated, we should
evaluate the H0 : τS = τG = τSG = 0, the equivalent of null (4.1) for two genomic data. ORMDL3 is differ-
entially expressed in cases and controls (p = 0.0085). With these two eQTL models, we predict the gene
expression in MRCA using the 9 SNPs, denoted as μG,MRCE and μG,MRCA. To study the SNP effects of the
9 SNPs on asthma risk in the MRCA data, we perform joint analysis of SNPs at ORMDL3 and its gene
expression, including the observed expression G, the expected expression using eQTL models of MRCA
(μG,MRCA) and MRCE (μG,MRCE).

For single-SNP analyses, inclusion of gene expression using LRT provides smaller p-values in many
SNPs compared to SNP-only analyses (Figure 2). For multi-SNP analyses of ORMDL3, we applied our
proposed score test for variance components. As shown in Table 3, joint analyses of SNPs and expression
yield more significant results than SNP-only analyses in both additive and dominant models. Gene expres-
sion that is actually observed, estimated internally or externally can all improve the significance level. The
analyses focusing on main effects of SNPs and gene expression provide the most significant results across
different settings and the omnibus test can almost approach them.
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We further perform a genome-wide analyses of the entire MRCA data (Figure S1 of supplementary
material available at Biostatistics online). We first choose the SNP-expression pairs with false discovery
rate (FDR)<1% from the cis-eQTL results (Liang and others, 2013). To illustrate the utility of combining
different studies, we estimate the gene expression using the cis-SNP set, and for each gene, we group the
cis-SNP set and its estimated gene expression and apply our proposed procedure to investigate its effect on
the gene level. Our proposed omnibus test identifies 25 genes that are highly associated with asthma risk
with FDR< 10%, whereas the SNP-only analyses without eQTL weighting identify 5 genes. The omnibus
test from the joint analyses outperforms the SNP-only approach even with different cutoffs: for FDR<5%,
8 genes are identified in omnibus tests and 3 genes in SNP-only tests; for FDR <15%, 35 and 18 genes,
respectively; with Bonferroni correction, 2 and 1 genes, respectively.

6.2 GRB10 methylation and mortality of glioblastoma multiforme

Here, we would like to illustrate the utility of our method beyond GWAS. Glioblastoma multiforme (GBM)
is the most common malignant brain tumor that is rapidly fatal with a median survival time between 12.1
and 14.6 months (Stupp and others, 2005). It is thus important to identify genes that may be associated
with its poor prognosis. Multiple genomic data of GBM as well as its survival information have been
archived in The Cancer Genome Atlas. We integrate DNA methylation, micro-RNA, and gene expression
data to jointly model the survival of 271 GBM patients. The survival is dichotomized at 390 days (the
median survival). From our unpublished analyses of methylation and gene expression, we have found
that the GRB10 gene is significantly associated with GBM survival (Smith and others, 2014). Here, we
combine 12 methylation loci within GRB10 and its expression value and micro-RNA miR-633 expression
to perform a gene-based analysis. Based on our statistical analyses of GRB10 and miR-633, we set up a
model as in Figure 1a with S, M, and G being 12 methylation loci of GRB10, miR-633 expression and
GRB10 expression, respectively.

The joint effect of GRB10 on GBM survival under the main effect model (p = 0.004) is more significant
than models with only methylation (p = 0.146) or with higher-order interactions (p = 0.038 and 0.054 with
2-way and 3-way, respectively). Owing to the non-convergence issue from the multi-locus analyses using
LRT, we compare our methods with single-locus analyses where we calculate the permutation-adjusted
minimum p-values from LRT. The p-values of our proposed omnibus test for variance components are
more significant than the omnibus p-value from permutation-adjusted single-locus analyses (p = 0.006
vs. 0.026). We conclude that GRB10 methylation has a significant effect on GBM survival, which may be
through miR-633 and/or GRB10 expression.

7. DISCUSSION

This paper has two major contributions. First, we propose an integrative approach to model genetic effect
on clinical outcome. In genetic association studies, SNPs and the disease status are collected, but not
gene expression/methylation, and in QTL studies, SNPs and gene expression/methylation are collected,
but not the disease status. Here we develop a method that can integrate (1) multiple genomic data (e.g.,
SNPs, methylation and gene expression) and (2) different studies (e.g. GWAS, eQTL, and mQTL studies)
to investigate genetic etiology for complex diseases. Secondly, we characterize all possible relationships
among multiple genomic measures and investigate its correspondence to the regression parameters under
the null. We further develop an efficient testing procedure that accounts for multiple correlated genetic
markers and accommodates different underlying disease models.

Both methylation and gene expression are tissue-specific, but most GWASs only collect blood samples.
Thus, for most GWASs, it may be difficult to obtain DNA and RNA samples from the ideal target tissue
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for methylation and expression. The advantage of the proposed method is that as long as we are able to
obtain consistent estimates of the QTL association parameters from other studies to estimate μG and μM ,
we can still perform the joint analysis. However, we rely on the assumption that the two studies are ran-
domly sampled from a common base population, which needs to be carefully evaluated when assembling
different studies.

The inclusion of SNP by gene expression or SNP by methylation interaction is biologically plausible.
For example, single nucleotide change of an oncogene can lead to a detrimental mutation that has a syner-
gistic effect from both undue biological consequences of the gene product and its uncontrolled expression
(Carlo, 2008): the combination of the aberrant gene product due to the nucleotide change (i.e. mutation)
and its high expression would lead to uncontrolled cell growth, which may not occur if only either one
condition exists.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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