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ABSTRACT

Motivation: Validation and reproducibility of results is a central and

pressing issue in genomics. Several recent embarrassing incidents

involving the irreproducibility of high-profile studies have illustrated

the importance of this issue and the need for rigorous methods for

the assessment of reproducibility.

Results: Here, we describe an existing statistical model that is very

well suited to this problem. We explain its utility for assessing the

reproducibility of validation experiments, and apply it to a genome-

scale study of adenosine deaminase acting on RNA (ADAR)-mediated

RNA editing in Drosophila. We also introduce a statistical method for

planning validation experiments that will obtain the tightest reproduci-

bility confidence limits, which, for a fixed total number of experiments,

returns the optimal number of replicates for the study.

Availability: Downloadable software and a web service for both the

analysis of data from a reproducibility study and for the optimal design

of these studies is provided at http://ccmbweb.ccv.brown.edu/repro

ducibility.html
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Supplementary information: Supplementary data are available at
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1 INTRODUCTION

The issue of validation and reproducibility of scientific results

has recently been the subject of intense discussion in the scientific

community. Several eye-opening reports have either claimed

insufficient validation of bold research findings or shown an

inability to replicate such results in genomics (DeVeale et al.,

2012; Gregg et al., 2010; Kleinman and Majewski, 2012; Lin

et al., 2012; Li et al., 2011b; Pickrell et al., 2012), genetics

(Hunt et al., 2012; Surolia et al., 2010), oncology (Begley and

Ellis, 2012), neuroscience (Button et al., 2013), pharmacology

(Prinz et al., 2011), proteomics (Bell et al., 2009) and psychology

(Shanks et al., 2013; Yong, 2012). Problems with reproducibility

have been demonstrated with widely-used technologies such as

microarrays (Ioannidis et al., 2009), siRNA-based screens

(Barrows et al., 2010) and mass spectrometry (Bell et al., 2009).

This has led to appeals for increased statistical rigor (Macleod,

2011; Vaux, 2012), platforms for the publication of neutral stu-

dies (Macleod, 2011) and attempted replicates, whether success-

ful or not (Editorial, 2012a), and a system-wide committed effort

toward generating work that is reproducible (MacArthur, 2012),

placing at least as much emphasis on reproducibility as is cur-

rently placed on novelty (Editorial, 2012b; Russell, 2013).
Recent attempts at addressing the issue of reproducibility in-

clude the Reproducibility Initiative, which, for a fee, will carry

out independent validation of research findings and issue a ‘cer-

tificate of reproducibility’ for those studies that validate (https://

www.scienceexchange.com/reproducibility), and ScienceCheck,

which provides a platform for researchers to report on the

‘reproducibility and utility of the literature method(s) that they

have worked with’ (http://www.sciencecheck.org). Although

these are extremely important contributions, neither organiza-

tion provides a quantitative measure of reproducibility.

In light of this, there is an urgent need for statistical tools for

quantitatively evaluating reproducibility. To help address this

need, we introduce the application of a well-suited Bayesian hier-

archical model for assessing the reproducibility of validation

experiments in the context of evaluating top-tier predictions of

high-throughput genomic studies. We focus on studies in which a

large number of predictions are made concerning a biological

phenomenon of interest. There are many studies of this type in

the recent literature, in Drosophila alone; Hoskins et al. (2011)

predict 2000 new gene promoters, Li et al. (2008) identify thou-

sands of targets of six transcription factors involved in regulation

of the anterior–posterior axis in the embryo, Nègre et al. (2010)

find414 000 binding sites of six proteins associated with insula-

tors, DNA sequences that block the spread of regions of mod-

ified chromatin and interaction between other regulatory

elements, and Zeitlinger et al. (2007) find evidence for 1600

genes whose transcription start sites are sites of polymerase II

stalling. Because validation of all predictions is typically infeas-

ible, often a few compelling and biologically interesting cases are

selected for further study (Hughes, 2009), leaving a long list of

unvalidated predictions. The reader is left unsure about both the

fraction of the list that is valid and the effect of biological and

sample preparation variation.
Our model takes advantage of multiple biological and tech-

nical replicates, in each of which validation of a random sample*To whom correspondence should be addressed.

2844 � The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

http://ccmbweb.ccv.brown.edu/reproducibility.html
http://ccmbweb.ccv.brown.edu/reproducibility.html
mailto:Charles_Lawrence@Brown.edu
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt508/-/DC1
,
; Kleinman and Majewski, 2012; 
Lin etal., 2012
; Gregg etal., 2010; DeVeale etal., 2012
; Hunt etal., 2012
,
; Shanks etal;, 2013
,
s
; 
Nature 
Editorial, 2012
``
''
indeed 
https://www.scienceexchange.com/reproducibility
https://www.scienceexchange.com/reproducibility
``
which 
''
http://www.sciencecheck.org
While 
-
over 
,
,
P
Since 
,
what 
is 


of the top-tier list is carried out. From these data, we can assess
the reproducibility of the validation studies and predict what
another investigator could reasonably expect to see in a follow-

up study.
The use of replicates, whether technical, biological or simu-

lated, has been shown to be useful in many contexts. McShane

et al. (2002) and Kerr and Churchill (2001) simulate microarray
replicates to determine the stability of clusters of genes that
exhibit similar expression patterns. In the search for differentially
expressed genes, technical replicates provide additional power for

microarrays (Pan et al., 2002), and biological replicates reduce
false positives in conclusions drawn from serial analysis of gene
expression data (Baggerly et al., 2003; Vêncio et al., 2004) and

improve accuracy in calls made from RNAseq data (Glaus et al.,
2012). Xia et al. (2011) use replicate time series datasets to
capture time-delayed associations between microbes. In a

larger-scale take on the replicates, meta-analyses of genome-
wide association studies like those described in Zeggini and
Ioannidis (2009) combine datasets from multiple laboratories

to gain enough power to detect associations between particular
genes and diseases such as type II diabetes (Zeggini et al., 2008)
and Crohn’s disease (Barrett et al., 2008).

In some cases, replicates have been incorporated into optimal
study design. Many articles have been written on the number of
replicates required to detect a certain fold-change in gene expres-

sion via microarray studies (Black and Doerge, 2002; Pan et al.,
2002; Tibshirani, 2005; Wei et al., 2004). For genome-wide asso-
ciation studies, Moonesinghe et al. (2008) find the required

number of samples to replicate an association across studies
with a certain level of between-study heterogeneity, and
Pahl et al. (2009) propose multistage designs which, for a given

budget, maximize the power to find associations. Auer and
Doerge (2010) advocate careful design of RNA-seq experiments,
including sampling, randomization, replication and blocking.

To our knowledge, no one in the biology community has used
biological or technical replicates to assess the reproducibility of
validation studies like those discussed here, or has proposed a

method for optimal design of such experiments with respect to
reproducibility.
There has been considerable work on assessing the reproduci-

bility of high-throughput experiments, especially in the context of
ranked lists of putative sites (Boulesteix and Slawski, 2009). In
this context, reproducibility is most closely related to precision

(or stability), in that the relevant issue is the similarity of two
ranked lists generated from biological replicates (or different
high-throughput platforms, different ranking algorithms,

etc . . .). There are many different measures used to assess the
similarity of two or more ranked lists, from Spearman’s rank
correlation (Kuo et al., 2006; MAQC Consortium, 2006) to over-

lap counts for the top k sites (Zhang et al., 2009) to weighted
overlap counts that emphasize correlation between high ranking
sites over that of low ranking sites (Yang et al., 2006). Li et al.

(2011a) improve on these measures with a mixture model con-
sisting of reproducible and irreproducible sites, which assigns
each signal a reproducibility index based on its consistency

across replicates, which approximates its probability of being
reproducible. They define the ‘irreproducible discovery rate’
(IDR), an analog of the false discovery rate for multiple hypoth-

esis testing (Storey, 2002), which determines the ‘expected rate of

irreproducible discoveries’ for sites whose probability of being
irreproducible is below some threshold �. Their methods provide

a principled method for selecting sites for further study and for
evaluating ranking algorithms. Although here we also address

the issue of reproducibility, our focus is different. We are not

concerned with the precision of high-throughput technologies or
ranking algorithms, but rather with the reproducibility of inde-

pendent validation experiments that seek to verify findings of

such high-throughput experiments. The validation experiments
taken individually give us information about the accuracy of the

findings, whereas our model of biological replicates assesses the

reproducibility of the given validation scheme in the face of
biological and sample preparation variation.

Because the model we describe depends on validation of
random samples, here we first review how a single simple

random sample drawn from the top-tier list can be used to esti-
mate the valid fraction of top-tier predictions. Because this

method does not account for biological and sample preparation

variability, it is not sufficient to assess reproducibility, as factors
as seemingly benign as laboratory conditions, reagent lots, cell

generations and individual experimenter techniques have been

shown to affect results of biological experiments (Barrows
et al., 2010; Leek et al., 2010; Van Hijum et al., 2005). So moti-

vated, we describe how our hierarchical model uses data from

multiple replicates to compute a probability distribution of val-
idation results for an as-yet-unseen replicate. Hierarchical

models, described in many statistical textbooks including
Gelman et al. (2003), have many uses in computational genomics

(Ji and Liu, 2010), and are well suited to the task of assessing

reproducibility, as they provide a way to simultaneously model
similarities and differences between groups.

2 METHODS

2.1 Estimating validity

In a genome study with thousands of predictions, validation of select

predictions is an important step toward lending credibility to those

particular findings, but provides little, if any, support for the validity of

the other predictions of the study. Thus, follow-up studies must be carried

out without any confidence in the validity of the findings they are pursu-

ing. If we ignore biological and sample preparation variability, a simple

yet rigorous way to address this is for the original investigators to draw a

random sample of their predictions to validate. The number valid can be

modeled by a binomial distribution, so the investigator can estimate the

fraction valid in the full top-tier list, complete with confidence limits

to assess uncertainty (equations in Supplementary Table S1). These

confidence limits can then be translated into lower confidence bounds,

to give an idea of the worst-case scenario. For example, in a study with a

top-tier list of 1000 predictions, if the lower bound of the 90% confidence

interval is 0.8, we are assured that at least 800 of the predictions are

valid with 95% confidence. Our model builds on this idea by address-

ing the effects of biological and sample preparation variation on

reproducibility.

2.2 Hierarchical model and predictive distribution

We consider a result reproducible if it can be obtained in an independent

analysis, following the exact protocol provided by the original investiga-

tors, under the same experimental conditions. Because the confidence

intervals described above are based on a single replicate and do not

take into account the effects of biological and sample preparation
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variability, they do not provide a basis for assessing the reproducibility of

the validation study. In particular, such intervals will be deceptively

narrow for predicting what will happen in a new replicate. With this in

mind, we must allow the proportions found to be valid in each replicate

to vary from that in the original validation assay.

The hierarchical model provides a balance between treating each rep-

licate independently, leading to noisy estimates of the proportions valid in

each pool, and combining data from all replicates, ignoring inter-pool

variation. As shown in Figure 1, it achieves this balance by modeling the

similarities and differences in the proportions valid in each replicate with

a probabilistic function, f ð pj�, �Þ. Here, the function is a beta distribu-

tion, the natural conjugate distribution to the binomial. The proportions

pi valid in each pool are assumed to be independent samples from this

distribution. Because predictions to be tested in each pool are drawn at

random, pi is the probability that a randomly drawn prediction will be

valid in the ith pool; thus, as in the single replicate case above, we model

the number ki found valid in the ith pool with a binomial distribution,

fðkjp,NÞ in Figure 1. The distribution of parameters � and � at the top of

the hierarchy is unknown, and thus must be inferred from the data

coming from all samples in all pools at the bottom of the hierarchy. If

the proportions in the pools are quite similar, the resulting distribution

will have a tight variance, reflecting the fact that the inter-pool variation

is small. On the other hand, if the proportions in the pools differ sub-

stantially, the variance of this distribution will be large. This model allows

us to make predictions about the results of a new replicate, as indicated

by pnew and knew in Figure 1, and allows for tighter confidence limits in

each replicate, as illustrated in Supplementary Figure S1.

2.2.1 Structure of the model Given NT total predictions from a

genome-wide study, we consider m biological and technical replicate

pools in which Ni55NT randomly selected predictions are tested

(i ¼ 1, . . . ,m). In a given replicate pool i, let ki be the number of the

Ni predictions that successfully validate. The number of predictions ki
that validate in pool i is modeled as a draw from a binomial distribution

with parameters pi and Ni:

Pðkijpi,NiÞ ¼
Ni

ki

� �
pkii ð1� piÞ

Ni�ki ð1Þ

where pi for each replicate is modeled as a draw from a common hier-

archical beta distribution with parameters � and �:

f ð pij�,�Þ ¼
�ð�þ �Þ

�ð�Þ�ð�Þ
p��1i ð1� piÞ

��1
ð2Þ

Since in general we expect that the number of replicates will be too small

to result in reliable point estimates for � and �, we use Bayesian inference

at the top level of the model to compute a probability distribution for

these parameters, fð�, �Þ in Figure 1. We use a hyperprior suggested by

Gelman et al. (2003) on � and �, a uniform distribution on transformed

axes
�

�
�þ� ,

1ffiffiffiffiffiffiffi
�þ�
p

�
. This distribution is ‘uninformative,’ or ‘diffuse’ in the

sense that it does not place any large probability mass in any one place.

Because � and � govern the position and shape of the beta distribution,

we use this uninformative prior to refrain from imposing prior assump-

tions about the amount of variation that actually exists among replicates.

2.2.2 Posterior distribution of hyperparameters There is no closed-

form expression for inference of the posterior distribution of � and �, so

we use the grid-based approach outlined in Gelman et al. (2003). The

un-normalized posterior distribution of � and � given data

ki, i ¼ 1, . . . ,m is given by the following expression:

fð�,�jk1, . . . , kmÞ /

fð�,�Þ
Ym
i¼1

�ð�þ �Þ

�ð�Þ�ð�Þ

�ð�þ kiÞ�ð�þNi � kiÞ

�ð�þ �þNiÞ

ð3Þ

where fð�, �Þ represents the prior distribution. Details on computing and

drawing from this distribution can be found in Supplementary Methods.

2.2.3 The predictive distribution To ask what the results of a valid-

ation study in a new replicate might look like, we draw 1000 samples from

the posterior distribution on � and �, as described in Supplementary

Methods. For each pair ð�j, �jÞ, j ¼ 1, . . . , 1000, we draw pj from a

beta distribution with parameters �j and �j. Given a sample size N, we

can then draw kj from a binomial distribution with parameters pj and N.

From these samples, we can approximate the predictive distribution and

compute informative statistics such as mean, variance and percentiles.

2.3 Optimal study design

The model described above can also be used to design a validation study

in a way that yields the most favorable (tightest) predictive distribution.

There are four necessary input parameters: the total number of predic-

tions to be validated (N), expected mean and standard deviation of the

distribution of validation rates across replicate pools (pE and �E) and the

fraction of validation experiments expected to yield neither a positive nor

a negative result (qE). This last parameter acknowledges the fact that for

many protocols involving techniques such as polymerase chain reaction

(PCR) or other common tools, only a fraction of experiments will work

(e.g. primers may fail to bind). Given these four parameters, we can

determine the most effective way to distribute experiments across repli-

cates, under the assumption that the replicate pools all have approxi-

mately equal sample sizes. This is done via simulation as follows:

(1) Split N into a representative subset of the possible numbers of

replicates (Nrep) with Nexp ¼
N

Nrep
experiments per replicate (see

Supplementary Table S2 for details).

(2) For each Nrep (and corresponding Nexp):

(a) Generate samples from the hierarchical model:

(i) Generate Nrep values of pi from a beta distribution with

mean pE and standard deviation �E
(ii) For i ¼ 1, . . . ,Nrep, simulate experiment failure by drawing

N̂exp, i from independent binomial distributions with param-

eters (Nexp, qE)

p
1

k1

p
2

k2

p
3

k3

p
new

knew

α,β

f(α,β)

f(p|α,β)

f(k|p,N)

Fig. 1. Diagram of the hierarchical model. k1, k2 and k3 represent the

counts of successful validations in three experiments, out of N1, N2 and

N3 total validation experiments, respectively. Each k is a draw from a

binomial distribution with corresponding parameters p and N. Each p, in

turn, is a draw from a beta distribution with parameters � and �. The

available data inform the common distribution of � and �, from which we

can simulate the results of a new experiment
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(iii) For i ¼ 1, . . . ,Nrep, draw the number of positive valid-

ations ki from a binomial distribution with parameters

N̂exp, i and pi

(b) From generated samples ki and N̂exp, i for all i, infer the

posterior distribution of � and �, and use this distribution to

infer the predictive distribution of a new replicate as described

above, taking note of the standard deviation and 10th

percentile.

(c) Repeat from (a) 3000 times, averaging the results for standard

deviation and 10th percentile

(3) Select the value of Nrep with the most favorable characteristics (low

standard deviation, high 10th percentile). Often there is a range of

options that give similar results.

3 RESULTS

3.1 Application to adenosine deaminase acting on

RNA study

3.1.1 Target prediction and validation In a related manuscript
(St. Laurent et al., 2013), we produced a number of top-tier-

predicted adenosine deaminase acting on RNA (ADAR) targets

in Drosophila. ADAR enzymes target double-stranded RNAs

(Nishikura et al., 1991), catalyzing the conversion of adenosine

(A) to inosine (I) through hydrolytic deamination (Bass and

Weintraub, 1988). This post-transcriptional mechanism, also
known as RNA editing, has the capacity to diversify genomes

via amino acid recoding in functionally important protein resi-

dues (Nishikura, 2010). Drosophila has a single ADAR protein

called dADAR, which has been shown to target protein-coding

genes involved in vesicular trafficking, ion homeostasis, signal

transduction, ion channels and the cytoskeleton

(Hoopengardner et al., 2003; Stapleton et al., 2006), and is cru-
cial for normal adult nervous system function (Palladino et al.,

2000). Variability in RNA editing between flies has even been

suggested as a mechanism for individual differences in behavior

and neuronal physiology (Jepson et al., 2012).
In the related study, we used a combination of single-molecule

sequencing, previously validated sites and machine learning

methods to predict 1782 top-tier sites of dADAR-mediated

RNA editing. As RNA editing converts an A to an I in the

RNA sequence, and sequencing machinery reads an I as a

G, validation consisted of Sanger sequencing to identify sites in

RNA that express a G (or a mixture of A and G) where the

genome contains an A. The first validation experiment was car-

ried out in a single pool on 298 predicted sites. For �30% of the

sites, the reads were of too poor quality to assess the absence or

presence of RNA editing, leaving 205 sites, of which 151 (74%)

successfully validated.

To obtain data on inter-pool variation from the combined

effect of biological variation and sample preparation technique,

we conducted independent Sanger validations in four additional

RNA pools created by a skilled investigator well versed in the

protocol, and in a fifth pool created by an investigator with much

less experience, which we discarded after finding it to be of

much lower quality than the others (details in Supplementary

Table S3). All pools in this study were isolated from wild-type

Drosophila (Canton-S) raised at a constant 25oC on standard

molasses food and under 12-h day/night cycles. RNA was

extracted from adult, whole body, 1–2-day-old males (10 per

sample), using TRIzol reagent (Invitrogen). For validation,

cDNAs were amplified via reverse transcriptase-polymerase

chain reaction using gene-specific primers. The data from the

final five replicates are shown in Table 1. The first pool was

larger than the others because the authors of the related manu-

script wanted to investigate sequence subcategories: exons,

introns and intergenic regions.

3.1.2 Predictive distribution and interpretation We used the

Bayesian procedure described in Section 2 to carry out predictive

inference based on the five replicates from the ADAR study. The

contour plot in Supplementary Figure S2 illustrates the variation

in the parameters of the beta distribution, revealing at least mod-

erate uncertainty in our knowledge of their values based on the

data, which supports our decision to avoid using point estimates.

The predictive distribution, illustrated in Figure 2, has a mean of

67%, meaning that in a new validation study following the same

protocol under the same experimental conditions, 67% of sites

would successfully validate on average. The 80% credibility limit

of the distribution has a lower bound of 55%, indicating that

90% of the time, at least 55% of sites will successfully validate.

It is possible that the requirement that further studies follow the

same protocol under the exact experimental conditions may be

Table 1. Data from ADAR replicates and cross-validation confidence/credibility intervals

RNA pool Valid/Total Cross-validation 80% CI Cross-validation 90% CI Cross-validation 95% CI

Predictive distribution Pooled Predictive distribution Pooled Predictive distribution Pooled

1 151/205 (74%) (0.47, 0.77) (0.60, 0.71) (0.36, 0.83) (0.58, 0.72) (0.23, 0.88) (0.57, 0.73)

2 17/32 (53%) (0.60, 0.80) (0.69, 0.76) (0.52, 0.84) (0.68, 0.77) (0.42, 0.89) (0.67, 0.77)

3 21/30 (70%) (0.46, 0.82) (0.67, 0.74) (0.38, 0.87) (0.66, 0.75) (0.29, 0.92) (0.65, 0.76)

4 24/32 (75%) (0.47, 0.82) (0.67, 0.73) (0.39, 0.87) (0.66, 0.74) (0.26, 0.92) (0.65, 0.75)

5 18/29 (62%) (0.50, 0.83) (0.68, 0.75) (0.40, 0.87) (0.67, 0.76) (0.33, 0.91) (0.66, 0.76)

Note: Column 2 shows the results from the five replicate datasets from the ADAR study. Columns 3–8 show the credibility/confidence intervals generated in the cross-

validation studies described in Section 3.3.1, where the interval is generated either from the model predictive distribution, or the standard frequentist normal approximation on

the pooled data, where the left-out pool is the row pool (column 1).
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difficult to satisfy, in which case our limits may be too narrow.

Nevertheless, this is valuable information for an investigator

seeking to build on this study.

3.2 Optimal study design

As was the case in our ADAR study, the time and expense

involved in validation studies often come at the level of the val-

idation experiments themselves, and comparatively little effort is

needed for the creation of multiple replicate pools. In such a

situation, researchers have a good deal of flexibility in deciding

how to divide a fixed number of experiments into a variable

number of replicates. For example, if they are willing at the

outset to do 96 experiments, they could run 48 experiments

each in two replicate pools, two experiments each in 48 replicate

pools or any combination in between. The shape and spread of

the resulting predictive distribution will depend on these choices:

the number of replicates and the associated number of experi-

ments per replicate.
We used the experimental design procedure described in

Section 2 to compute the optimal number of replicates for studies

with a wide range of input parameters (total number of experi-

ments, expected mean and standard deviation and fraction of

experiments expected to fail from the start), for use by investi-

gators planning validation studies. An example of results for one

set of input variables is illustrated in Figure 3, which shows the

average standard deviation and 10th percentile of the predictive

distribution with increasing numbers of replicates. In most cases,

as in this one, uncertainty about reproducibility achieves a min-

imum value after an initial decrease. This change in uncertainty is

reflected in the 10th percentile, which at first increases reaching a

maximum at nine replicates and then decreases. The initial

increase stems from the fact that for small numbers of replicates,

the increase in our knowledge about inter-pool variation out-

weighs the reduction of certainty about the proportion in each

replicate. This holds up to nine replicates in this case, at which

point intra-pool uncertainty stemming from the smaller sample

sizes in each replicate begins to outweigh the gain in certainty

about the inter-pool variation. The complementary trend is

embodied by the standard deviation curve. Because a predictive

distribution with narrow standard deviation and high 10th per-

centile is desirable, our algorithm would recommend around nine

replicates for this validation study.
In Figure 4, we illustrate the qualitative effect of the four par-

ameters in the system on reproducibility by displaying the 10th

percentile of the optimal predictive distribution for given 4-tuples

of parameters. This optimal 10th percentile rises with increasing

number of experiments, expected mean and fraction of successful

experiments, and falls with increasing standard deviation.

A more in-depth illustration of the effect of expected standard

deviation on the predictive distribution is given in Supplementary

Figure S3.

3.3 Cross-validation of ADAR replicates

Because it would require a very large number of replication

experiments to obtain a sufficiently large sample to have

enough data to persuasively validate the confidence limits we

describe, we undertook a cross-validation study based on the

five available replicates. Leaving out each replicate in turn, we

computed the predictive distribution given the remaining four

replicates. For all five cross-validations, the proportion valid in

the left-out replicate fell within the 90% credibility interval of the
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corresponding predictive distribution, and for four of five, the
proportion valid fell within the 80% credibility interval. Thus,

these results are fully consistent with the model’s expectations.

However, because these results are based on a small cross-

validation dataset, the support for our model from this analysis
is quite limited.

We carried out a similar cross-validation with our five pools,
not accounting for biological or sample preparation variability.

Leaving out each replicate in turn, we pooled the other four

replicates and computed standard frequentist confidence limits
based on a normal approximation to the binomial distribution

(equations in Supplementary Table S1). In four of five trials, the

left-out proportion lay outside of both the 80% and 90% confi-
dence intervals, and in three of five, the left-out proportion lay

outside of the 95% confidence interval. Cross-validation inter-

vals for each method can be found in Table 1. These events,
although not statistically significant at the standard 0.05 level,

are in stark contrast with the cross-validation results above,

revealing that the available data are less likely under the assump-

tion of no biological or sample preparation variation than under
our model including variation. This supports our contention that

such variation plays an important role in studies of editing

in Drosophila, and suggests that it may also be important in
other genome-scale studies. We found similar results in a cross-

validation using Bayesian methods to compute credibility limits

for the pooled data (Supplementary Table S4), demonstrating
that our model performs better not because we use Bayesian

methods, but because we account for variation.

4 DISCUSSION

The need for reproducibility in scientific research has always
been central, but has only recently become a major focus of

the greater scientific community. Here, we present a procedure

that addresses these issues in the context of high-throughput
studies like that described in our companion article, where thou-

sands of predictions are made, and only a relatively small frac-

tion can be validated. We studied closely the example of ADAR

editing sites, but the method is generalizable, and could just as
easily apply to any of the high-throughput site prediction experi-
ments described earlier. Studies of this kind have become more

frequent with the advent of high-throughput technologies
like Illumina and large collaborations like ENCODE,
modENCODE and the 1000 Genomes Project. Most studies

already have their own schemes for validation, which they
carry out with varying levels of statistical rigor. The authors
and any investigators hoping to carry out follow-up studies

would all benefit from a carefully designed validation study
using statistically random samples in biological replicates to
assess reproducibility.

As the accuracy of technology inevitably grows, it may be
tempting for investigators to assume a single replicate is sufficient
to address reproducibility, implicitly assuming that technical

variation is the only variation that matters. However, even
with perfect technology, multiple biological replicates are still
necessary to assess the reproducibility of a set of results. It is

worth noting that each of our validation replicates was per-
formed in a pool of 10 flies each. We expect that biological
replicates will be even more crucial in studies where replicates

consist of individual model organisms, such as mice or rats.
In our analysis of ADAR-mediated editing data, we found

that the 95% confidence intervals for individual replicates

showed substantial variation. This was not unexpected, given
the documented variation in ADAR activity in individual flies
(Jepson et al., 2012) and observations on the effects of experi-

mental conditions described earlier, and it underscored the need
for statistical tools that can address the effect of such variation
on the reproducibility of results. Our software predicted that a

new experiment using the same protocol under the same experi-
mental conditions would validate on average 67% of sites, and
that 90% of the time, the percentage validated would be at least

55%. We emphasize the lower bound percentile, e.g. the 10th
percentile, because it represents a worst-case scenario for a
future experiment. Of course, because these results are affected

by our choice of the diffuse prior on � and �, the intervals we
generate may be too conservative in the case where more is
known about these parameters a priori.

There is a technical limitation to our model that arises from
the statistical formulation. The predictive distribution we
describe is well defined everywhere except in the precise circum-

stance in which every replicate pool has a validation rate of either
100 or 0% (Gelman et al., 2003). We consider such extremes to
be very unlikely in most validation studies; however, this limita-

tion occasionally comes to bear in experimental design, where we
simulate thousands of distributions. This affects almost all simu-
lations with means 495% and most simulations with means

�90% and with wide variances. Otherwise, the effect is negli-
gible. Our software will not return results in the few non-
negligibly affected cases.

Our model makes two major assumptions: that the validation
experiments in each replicate follow a binomial distribution, and
that the proportions valid in each replicate follow a beta distri-

bution. Because we require that each replicate test a random
sample drawn from the whole population of predictions, the
results of each replicate follow a hypergeometric distribution,

which is very well approximated by a binomial distribution as
long as the number of predictions n tested in a single replicate is
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much smaller than the total number of predictions N (a typical

rule of thumb is N � 20n). The beta distribution was chosen for

the model primarily because as a conjugate prior to the binomial

distribution, it makes computation feasible. However, another

real advantage is that the beta distribution is extremely flexible,

in that it can approximate most smooth unimodal distributions.

We illustrate this flexibility in the context of our model in

Supplementary Figure S4. Together, this suggests that the

assumptions of our model will be appropriate for most

applications.

There are three places in our model where we rely on numer-

ical approximations: during predictive inference, we compute the

posterior distribution of the hyperparameters over a grid, as

there is no closed-form expression for computing it directly,

then we sample from the grid to approximate the predictive dis-

tribution; and in our optimal study design, we rely on a sampling

approximation to find the average mean, standard deviation and

10th percentile of the population of predictive distributions

resulting from particular input parameters. For predictive infer-

ence, we follow the procedure outlined in Gelman et al., comput-

ing over a dense-enough grid that we believe captures the

important features of the posterior distribution, and sampling

a large number of points (1000) to approximate the predictive

distribution. We found that neither varying the grid density nor

increasing the number of samples noticeably changed the results

(data not shown). For study design, we sample a large number of

distributions (3000 is the default), and if the user downloads our

software, he or she can increase the number of samples if desired,

so as to obtain narrower error bars.

Finally, it should be noted that the results of any reproduci-

bility analysis can only be generalized to the population to which

the replicates belong (just as the results of any study should only

be generalized to the population from which the data are drawn).

We assume that follow-up validation studies follow the original

protocol under the exact experimental conditions as the original

experiments. To the extent that this is not possible, the credibility

intervals that we report may be too narrow to accurately reflect

the population of follow-up validation studies performed by

other investigators in other laboratories. Therefore, care must

be exercised in how claims of reproducibility are made, and

authors should be sure to specify the population to which their

results generalize. In some cases, large collaborations between

laboratories (such as those associated with modENCODE) will

be able to carry out replicates that represent a larger portion of

the possible variability, and will be able to make even stronger

claims about the reproducibility of their findings.
Validation and reproducibility are bedrock principles through-

out science that have until recently received limited attention. We

present this work as an aid in advancing these crucial principles

in the field of genomics.
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