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a b s t r a c t

To detect single nucleotide polymorphisms (SNPs) that are associated with a common dis-
ease in a case control genome-wide association study (GWAS), powerful yet robust tests
are desirable. Current available robust approaches in this area aremainly based on the opti-
mal trend tests for some specific geneticmodels, such as recessive, additive, multiplicative,
and dominant models. In this paper, we propose a class of robust association tests through
combining p-values obtained by partitioning the 2 by 3 contingency table of the SNP data.
Through simulation study and application to real data, we show that the proposed tests are
powerful and robust. They provide alternative association tests for GWAS.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

For a diallele single nucleotide polymorphism (SNP) in a case control genome-wide association study (GWAS), there are
three possible combinations (genotypes). Suppose the two alleles at a SNP locus are A and a, then the three genotypes are
AA, Aa, and aa. Table 1 is a typical SNP data structure in GWAS.

To detect whether there is an association between the genotype and the disease status (case or control), a statistical test,
such as the Pearson’s chi-square testwith 2 degrees of freedom (df ), can be applied to the 2 by 3 table (rows 2–3 and columns
2–4 of Table 1). It is well known that the chi-square test is robust in the sense that it can detect all departures from the null
hypothesis of no association between the row and column variables. However, for SNP data in GWAS, the chi-square test is
not the best choice since it does not take the possible trend of relative risks into account. For example, if we assume a is the
at-risk allele, then people having genotype Aa are more (less) likely to be affected by the disease than people with genotype
AA (aa). In general, the Cochran–Armitage trend test (CATT) is more powerful than the chi-square test if the underlying
genetic model and therefore the optimal scores are known (Armitage, 1955; Balding, 2006; Cochran, 1954; Joo et al., 2010;
Zheng et al., 2006). Zheng et al. have shown that if the genetic models are recessive, additive/multiplicative (log additive),
and dominant, the CATTs with optimal scores (0, 0, 1), (0, 0.5, 1), and (0, 1, 1), respectively, are more powerful than the
chi-square test (Zheng et al., 2006, 2003).

However, if the underlying genetic model is unknown or misspecified, CATT may lose power dramatically. To overcome
this shortcoming, several robust methods have been proposed (Chen, 2011a; Chen and Ng, 2012; Freidlin et al., 2002;
González et al., 2008; Kwak et al., 2009; Freidlin et al., 1999; Sasieni, 1997; Slager and Schaid, 2001; Song and Elston, 2005;
Wang and Sheffield, 2005; Zang et al., 2010; Zheng and Ng, 2008). Gastwirth (Gastwirth, 1966, 1985) proposed to use the
maxmin efficiency robust test (MERT). Freidlin et al. (Freidlin et al., 2002) found that the maximum (MAX3) of the three
above mentioned CATTs was robust. Zheng and Ng recently proposed a genetic model selection (GMS) method, with the
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Table 1
SNP data structure in case-control GWAS.

Genotype AA Aa aa Total

Case r1 r2 r3 r
Control s1 s2 s3 s
Total n1 n2 n3 n

first step selecting one of the three genetic models from data and then estimating the p-value in the second step by CATT
with the optimal scores (0, x, 1), where x is 0, 0.5, or 1 according to the selectedmodel in the first step (Zheng and Ng, 2008).

In this paper, we take the trend of relative risks into account and propose a class of robust tests by partitioning the 2 by
3 contingency table of Table 1 to get two asymptotic independent test statistics and then combining two sets of p-values
obtained from these two statistics based on two one-sided (left- and right-sided) tests. Through simulation study and real
SNP data application, we show that the proposed tests are powerful and robust.

2. Method

For the 2 by 3 contingency table in Table 1, there are several ways to get a 2 by 2 table out of it. Our proposed tests use the
following 2 by 2 subtables that are derived from the original 2 by 3 table: ST1: from columns 1 and 2; ST2: from columns 1+2
(i.e., collapsing columns 1 and 2), and column 3; ST3: from columns 2 and 3; ST4: from columns 2+3 (i.e., collapsing columns
2 and 3), and column 1.

For the above four 2 by 2 tables, a corresponding statistic for each of them can be constructed as follows:
T1 = r2s1 − r1s2;
T2 = r3(s1 + s2) − (r1 + r2)s3 = r3s − rs3;
T3 = r3s2 − r2s3;
T4 = (r2 + r3)s1 − r1(s2 + s3) = rs1 − r1s.

If a is the at-risk allele, the above four statistics are expected to be non-negative or positive. Suppose both cases and
controls follow multinomial distributions, i.e. (r1, r2, r3) and (s1, s2, s3) are distributed as trinomials (r, p1, p2, p3) and
(s, q1, q2, q3), respectively. Under the null hypothesis of no association between genotype and disease status, (p1, p2, p3) =

(q1, q2, q3). Some direct calculations give us the following results.

Theorem 2.1. (i) Under the null hypothesis, the above randomvector T = [T1, T2, T3, T4]′ hasmean0 and variance–covariance
matrix:

ΣT =

rsp1p2(n + (2 − n)p3) 0 rsp1p2p3(2 − n) nrsp1p2
0 nrsp3(1 − p3) nrsp2p3 nrsp1p3

rsp1p2p3(2 − n) nrsp2p3 rsp2p3(n + (2 − n)p1) 0
nrsp1p2 nrsp1p3 0 nrsp1(1 − p1)

 . (1)

(ii) Let U = [U1,U2,U3,U4]
′, where Ui = Ti/SD(Ti) and SD(Ti) is the standard deviation of Ti(i = 1, 2, 3, 4), then the

variance–covariance matrix of random vector U is

ΣU =



1 0 −


(2 − n)2p1p3

(n + (2 − n)p3)(n + (2 − n)p1)


np2

(n + (2 − n)p3)(1 − p1)

0 1


np2
(n + (2 − n)p1)(1 − p3)


p1p3

(1 − p1)(1 − p3)

−


(2 − n)2p1p3

(n + (2 − n)p3)(n + (2 − n)p1)


np2

(n + (2 − n)p1)(1 − p3)
1 0

np2
(n + (2 − n)p3)(1 − p1)


p1p3

(1 − p1)(1 − p3)
0 1


.

(2)
(iii) Asymptotically, i.e., when n goes to infinity, the above variance–covariance matrix converges to:

1 0 −


p1p3

(1 − p3)(1 − p1)


p2

(1 − p3)(1 − p1)

0 1


p2
(1 − p1)(1 − p3)


p1p3

(1 − p1)(1 − p3)

−


p1p3

(1 − p3)(1 − p1)


p2

(1 − p3)(1 − p1)
1 0

p2
(1 − p3)(1 − p1)


p1p3

(1 − p1)(1 − p3)
0 1


. (3)
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Since p′

is are unknown, Ui is then modified by replacing pi with its maximum likelihood estimator under H0, ni/n, and
denote it by Zi(i = 1, 2, 3, 4) as follows:

Z1 =
r2s1 − r1s2

rsn1n2(n + (2 − n)n3/n)/n2
(4)

Z2 =
r3s − rs3

√
rsn3(n − n3)/n

(5)

Z3 =
r3s2 − r2s3

rsn2n3(n + (2 − n)n1/n)/n2
(6)

Z4 =
rs1 − r1s

√
rsn1(n − n1)/n

. (7)

Then, according to Theorem 2.1 and Slutsky’s theorem, for these statistics, we have the following.

Theorem 2.2. Under the null hypothesis, asymptotically, the above random vector Z = (Z1, Z2, Z3, Z4)′ is distributed as a multi-
variate normal distribution,MVN(0, ΣZ ), where

ΣZ =



1 0 −


p1p3

(1 − p3)(1 − p1)


p2

(1 − p3)(1 − p1)

0 1


p2
(1 − p1)(1 − p3)


p1p3

(1 − p1)(1 − p3)

−


p1p3

(1 − p3)(1 − p1)


p2

(1 − p3)(1 − p1)
1 0

p2
(1 − p3)(1 − p1)


p1p3

(1 − p1)(1 − p3)
0 1


.

Our proposed tests are based on pairs of the above Z ′

i s. For a pair of Zi and Zj(i, j = 1, 2, 3, 4, and i < j), we define

Z ij
=


Z ij
1

Z ij
2


= Σ

−1/2
ij


Zi
Zj


, (8)

where Σij =


1 ρij
ρij 1


, and ρij is the (i, j)th element of ΣZ with pi being replaced by its MLE, ni/n.

Then under the null hypothesis, the two statistics, Z ij
1 and Z ij

2 are asymptotically identically independently distributed as a
standard normal N(0, 1). If the at-risk allele in Table 1 is a, then Z ij

1 and Z ij
2 are expected to be nonnegative and at least one is

positive. The two one-sided (right-sided) p-values from the two statistics are pijk,r = 1 − Φ(z ijk ) = Φ(−z ijk ), k = 1, 2, where
Φ is the cumulative distribution function (CDF) of the standard normal distribution,N(0, 1). Under the null hypothesis of no
association, the two p-values are asymptotically independent and uniformly distributed between 0 and 1. Then according
to Fisher (Fisher, 1932), the null distribution ofW ij

r = −2 ln(pij1,rp
ij
2,r) is a chi-square with 4 df . Therefore the overall p-value

from the two tests Z ij
1 and Z ij

2 can be calculated by:

pijr = 1 − Fχ2
4
(wij

r ) = 1 − Fχ2
4
(−2 ln(pij1,rp

ij
2,r)), (9)

where Fχ2
4
is the CDF of χ2

4 .

On the other hand, if the true at-risk allele is A rather than a, then the two one-sided (left-sided) p-values from Z ij
1 and

Z ij
2 are calculated by pijk,l = Φ(z ijk ), k = 1, 2 and W ij

l = −2 ln(pij1,lp
ij
2,l) is distributed as chi-square with 4 df under the null

hypothesis. The overall p-value is then calculated by:

pijl = 1 − F−1
χ2
4
(w

ij
l ) = 1 − F−1

χ2
4
(−2 ln(pij1,lp

ij
2,l)). (10)

With the uncertainty about the at-risk allele, we use the maximum ofW ij
r and W ij

l :

W ij
= max{W ij

r ,W ij
l }. (11)

Based on the concept of association of random variables (Esary et al., 1967), for statistic W ij, we have the following result
(Chen, 2011a; Chen et al., 2012a,b; Chen and Ng, 2012; Owen, 2009; Chen et al., 2013).
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Theorem 2.3. Under the null hypothesis of no association, the p-value of W ij is bounded by

2β − β2
≤ Pr[W ij > w] ≤ 2β, (12)

where β = 1 − Fχ2
4
(w).

When the observed value wij of W ij is large, β = 1 − Fχ2
4
(wij) is small and β2 is negligible. Therefore the p-value of W ij

can be approximated by the upper bound, 2(1 − Fχ2
4
(wij)). This approximation is very accurate when the true p-value is

small.
For these four Z ′

i s defined above, there are six different pairs and thereforewe have six possible tests, i.e.,W 12,W 13,W 14,
W 23, W 24 and W 34. However, as we will show in the next theorem, W 14,W 23 are not robust and W 13 and W 24 are
asymptotically equivalent. Therefore we propose three robust tests,W 12,W 34, andW 13(W 24) in this paper. For those tests,
we have the following properties.

Theorem 2.4. (i) W 13 and W 24 are asymptotically equivalent;
(ii) For W 14 and W 23, Z14

1 = −Z23
2 , and Z14

2 = Z23
1 .

Note Theorem 2.4(ii) says that tests W 14 and W 23 cannot be powerful simultaneously and therefore are not robust, although
it is possible that one of them may have high power under some situations. This fact is also confirmed by the simulation study
conducted in the next section. The proof of this theorem is given in the Appendix.

3. Simulation study

To assess the performances of the proposed tests, we conduct a simulation study to estimate their powers under different
situations and compare them with other methods. For given relative risks λ1, λ2, defined as the relative risks of Aa and aa
to AA, respectively, and genotypic frequencies q = (q1, q2, q3) for controls, the genotypic frequencies p = (p1, p2, p3) for
cases can be calculated by the following formula (Chen, 2011a; Chen et al., 2012a; Chen and Ng, 2012; Chen et al., 2013):

p1 =
q1

q1 + λ1q2 + λ2q3

p2 =
λ1q2

q1 + λ1q2 + λ2q3

p3 =
λ2q3

q1 + λ1q2 + λ2q3
.

(13)

In the simulation study, we consider both situations where Hardy–Weinberg equilibrium (HWE) holds and does not hold
for controls. Under HWE, we choose two different values for minor allele frequency (maf): 0.3 and 0.5. When HWE does
not hold, we use genotypic frequencies (0.2, 0.45, 0.35) and (0.35, 0.45, 0.2) for controls. In power comparison, we keep
λ2 = 1.4 and let λ1 vary from 1 to 1.4 (i.e., 1, 1.1, 1.18, 1.2, 1.3, and 1.4). When λ1 = 1, 1.18, 1.2 and 1.4, the corresponding
genetic models are recessive, multiplicative, additive, and dominant, respectively. Under the null hypothesis, λ1 = λ2 = 1,
which is used to estimate the type-I error rates in our simulation study.

We compare the new tests with existing methods, such as MERT, GMS, MAX3, Pearson’s chi-square test and the default
CATT with scores x = 0.5. To estimate the p-values fromMERT, GMS, MAX3, the R package ‘‘Rassoc’’ with option ‘‘asy’’ was
used (Zang et al., 2010). In our simulations, we assume there are 1000 cases and 1000 controls. The significance level is set
to be 0.05 and 100,000 replicates are used to estimate the type I error rate and power. All the simulations are carried out by
using the publicly available software R (http://www.r-project.org/).

Tables 2–5 list the estimated type I error rates (when λ1 = λ2 = 1) and powers (when λ2 = 1.4) obtained from
each method under four different settings with various relative risks. The simulation results show that all methods control
type I error rate very well. Test W 23 usually has the highest powers when the genetic models are recessive, but it loses
power when the two relative risks are close to each other, especially under the dominant models. In contrast, W 14 are
more powerful than other methods for dominant models, but it is less powerful for recessive models. Neither W 23 or W 14

is robust, which is consistent with Theorem 2.4. Like the default CATT, W 23 and W 14 are not robust, and therefore are not
recommended in practice if the underlying genetic model is unknown. The simulation results also confirm that W 13 and
W 24 are asymptotically identical as they obtain almost identical powers for any situation considered. Furthermore,W 13 and
W 24 are robust in the sense that they have reasonable powers for all situations.

The simulation study also shows that the default CATT is not robust although it is usuallymost powerfulwhen the genetic
models are multiplicative or additive. On the other hand, Pearson’s chi-square test is robust but it usually has lower powers
compared with other methods. Among those robust methods (chi-square test, MERT, GMS, MAX3, W 12,W 34,W 13 (W 24)),
W 12 is usually the most powerful test for dominant or close to dominant models; while W 34 is more powerful than others
for recessive or close to recessive models. The performance of W 13 (W 24) is usually between those of W 12 and W 34; and
overall it is better than those of MERT, GMS, MAX3, and chi-square test.

Figs. 1–4 plot the estimated powers from all methods, except for W 14,W 23, and W 24, for the four situations considered
in our simulations. They clearly show the robustness of our proposed methods.

http://www.r-project.org/
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Table 2
Estimated type I error rates and powers with significance level 0.05 and 100,000 replicates when HWE with maf = 0.5 holds for controls.

λ1 1.00 1.00 1.10 1.18 1.20 1.30 1.40
λ2 1.00 1.40 1.40 1.40 1.40 1.40 1.40

W 12 0.050 0.846 0.760 0.720 0.716 0.755 0.836
W 34 0.050 0.894 0.791 0.722 0.716 0.718 0.781
W 14 0.053 0.662 0.596 0.615 0.633 0.742 0.860
W 23 0.050 0.907 0.761 0.634 0.609 0.540 0.579
W 13 0.049 0.875 0.780 0.724 0.719 0.742 0.814
W 24 0.049 0.876 0.781 0.724 0.719 0.742 0.814
chi-sq 0.051 0.865 0.730 0.650 0.643 0.696 0.803
MAX3 0.051 0.879 0.766 0.701 0.696 0.732 0.822
GMS 0.051 0.866 0.758 0.700 0.693 0.719 0.808
CATT 0.051 0.808 0.781 0.751 0.751 0.721 0.702
MERT 0.052 0.797 0.775 0.751 0.752 0.729 0.714

Table 3
Estimated type I error rates and powers with significance level 0.05 and 100,000 replicates when HWE with maf=0.3 holds for controls.

λ1 1.00 1.00 1.10 1.18 1.20 1.30 1.40
λ2 1.00 1.40 1.40 1.40 1.40 1.40 1.40

W 12 0.048 0.914 0.764 0.633 0.595 0.482 0.453
W 34 0.047 0.944 0.805 0.657 0.609 0.463 0.396
W 14 0.047 0.767 0.570 0.479 0.456 0.435 0.484
W 23 0.050 0.952 0.801 0.600 0.548 0.327 0.239
W 13 0.049 0.933 0.787 0.650 0.606 0.476 0.428
W 24 0.049 0.933 0.787 0.650 0.606 0.476 0.428
chi-sq 0.048 0.928 0.753 0.579 0.536 0.407 0.417
MAX3 0.047 0.941 0.789 0.625 0.582 0.446 0.429
GMS 0.046 0.929 0.776 0.620 0.575 0.436 0.413
CATT 0.050 0.928 0.813 0.679 0.634 0.437 0.259
MERT 0.051 0.862 0.757 0.662 0.627 0.492 0.368

Table 4
Estimated type I error rates and powers with significance level 0.05 and 100,000 replicates when the genotypic frequencies are 0.20, 0.45, 0.35 for controls.

λ1 1.00 1.00 1.10 1.18 1.20 1.30 1.40
λ2 1.00 1.40 1.40 1.40 1.40 1.40 1.40

W 12 0.050 0.906 0.807 0.736 0.734 0.721 0.768
W 34 0.053 0.940 0.838 0.745 0.736 0.682 0.694
W 14 0.048 0.751 0.641 0.621 0.636 0.693 0.791
W 23 0.050 0.943 0.816 0.673 0.650 0.513 0.498
W 13 0.051 0.927 0.827 0.746 0.738 0.705 0.739
W 24 0.051 0.927 0.827 0.746 0.739 0.705 0.739
chi-sq 0.050 0.917 0.781 0.678 0.669 0.644 0.730
MAX3 0.050 0.931 0.818 0.725 0.718 0.692 0.746
GMS 0.050 0.914 0.807 0.722 0.715 0.681 0.738
CATT 0.052 0.898 0.833 0.773 0.766 0.679 0.600
MERT 0.052 0.868 0.817 0.768 0.767 0.706 0.646

Table 5
Estimated type I error rates and powers with significance level 0.05 and 100,000 replicates when the genotypic frequencies are 0.35, 0.45, 0.20 for controls.

λ1 1.00 1.00 1.10 1.18 1.20 1.30 1.40
λ2 1.00 1.40 1.40 1.40 1.40 1.40 1.40

W 12 0.052 0.792 0.738 0.756 0.763 0.8391 0.913
W 34 0.053 0.854 0.769 0.754 0.750 0.805 0.872
W 14 0.056 0.592 0.588 0.674 0.690 0.826 0.925
W 23 0.054 0.864 0.731 0.656 0.634 0.628 0.704
W 13 0.053 0.831 0.760 0.760 0.761 0.827 0.898
W 24 0.053 0.831 0.761 0.760 0.761 0.827 0.898
chi-sq 0.054 0.815 0.702 0.693 0.693 0.785 0.891
MAX3 0.054 0.837 0.746 0.741 0.742 0.819 0.905
GMS 0.050 0.824 0.734 0.736 0.735 0.806 0.892
CATT 0.050 0.727 0.756 0.787 0.787 0.821 0.840
MERT 0.051 0.750 0.766 0.784 0.785 0.807 0.817
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Fig. 1. Estimated powers from each method when HWE holds for controls with maf = 0.5.

Fig. 2. Estimated powers from each method when HWE holds for controls with maf = 0.3.

4. Application to real data

We then applied the proposed methods to a SNP dataset from a real GWAS conducted by WTCCC (The Wellcome Trust
Case Control Consortium and The Australo–Anglo–American Spondylitis Consortium (WTCCC), 2007) (Burton et al., 2007).
About 14000 SNPswere genotyped for about 1000 independent patients from each of the four commondiseases: ankylosing
spondylitis (AS), autoimmune thyroid disease (ATD), multiple sclerosis (MS) and breast cancer (BC), and a common control
group of 1500 randomly selected healthy British individuals. About 12000 SNPs which passed the quality controls were
used in the final analyses.
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Fig. 3. Estimated powers from each method when HWE does not hold and the genotypic frequencies for controls are 0.20, 0.45, 0.35.

Fig. 4. Estimated powers from each method when HWE does not hold and the genotypic frequencies for controls are 0.35, 0.45, 0.20.

Table 6 lists the p-values obtained by our proposed robust methods, as well as Pearson’s chi-square test, MAX3 and the
default CATT, which was the test used by the original study, for SNPs with p-values less than 10−4 from at least one method.
Except for rs27044, which was not genotyped in the follow-up study, all of the SNPs listed in Table 6 from disease AS were
confirmed as associated with this disease by a follow-up study conducted by the same authors. The p-values from both
studies and the overall p-values from the pooled data were listed in their Table 4 (Burton et al., 2007). From Table 6, we
can see, in general, CATT generated larger p-values than MAX3 and our proposed tests did. For three SNPs, rs10050860,
rs2287987, and rs17482078, the three proposed test (W 12,W 34,W 13) all obtained smaller p-values than those by other
methods. It is also noticeable that the default CATTmay lose power for some situations due to its unrobustness. For example,
the p-value for SNP rs3733876 was 0.023 from CATT; while those from other methods were all less than 10−4.
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Table 6
p-values from various methods for SNPs of the WTCCC data with p-values less than 10−4 from at least one test.

Disease SNP W 12 W 34 W 13 chi-sq MAX3 CATT

AS rs27044 7.88E−7 3.20E−7 3.96E−7 6.19E−7 2.47E−7 1.02E−6
rs30187 1.23E−6 4.83E−7 6.39E−7 9.53E−7 3.90E−7 2.99E−6
rs2303138 3.28E−5 2.50E−5 2.57E−5 5.27E−5 2.45E−5 1.05E−5
rs10050860 1.91E−6 3.77E−6 3.56E−6 6.11E−6 6.41E−6 1.15E−4
rs2287987 2.18E−6 4.32E−6 4.08E−6 6.86E−6 6.62E−6 1.55E−4
rs17482078 7.93E−6 1.42E−5 1.36E−5 2.43E−5 2.94E−5 2.32E−4

ATD rs6427384 2.77E−5 1.20E−5 1.29E−5 1.64E−5 7.32E−6 1.33E−5
rs3733876 1.23E−5 2.48E−5 2.23E−5 1.48E−5 6.60E−6 2.28E−2
rs2012199 4.06E−4 1.45E−4 1.55E−4 1.27E−4 9.87E−5 2.83E−4

MS rs1800437 1.31E−4 6.76E−5 7.13E−5 1.00E−4 4.54E−5 5.97E−5
rs1132200 2.96E−4 2.07E−4 2.11E−4 4.16E−4 2.37E−4 9.59E−5

BC rs2285374 6.36E−5 1.18E−4 9.16E−5 1.39E−4 7.55E−5 4.65E−4

5. Discussion

In GWAS, the underlying genetic models of associated SNPs vary and are usually unknown prior to the data analysis;
therefore choosing a powerful yet robust statistical test to find the associated SNPs is desirable. Many of the current robust
association tests are based on the optimal CATTs for the three special genetic models (recessive, additive, and dominant).
They have been shown to be more powerful than Pearson’s chi-square test and more robust than the default CATT. In this
paper, we propose a class of association tests,W 12,W 34,W 13 (W 24), which utilize the possible trend of relative risks of SNP
data in GWAS. The new tests also incorporate the techniques for combining p-values obtained from independent tests.

There aremanyways to combine independent p-values, for example, except for Fisher test used in this paper, we can use
Z-test (Chen, 2011b). However, our simulation results (results using Z-test in combining p-values are not shown) indicate
that in general Fisher test performs better than Z test. It is possible that under some situations other methods can be more
powerful than Fisher test to combine two independent p-values obtained from SNP data in GWAS. This remains an open
research topic in this area.

If the underlying genetic models are unknown, we recommend using W 13 (W 24). When the information of the genetic
model for a specific SNP is fully or partially known, we may choose other tests. For example, if the genetic models are
exactly recessive, additive, multiplicative, or dominant, the CATTs with optimal scores can be used. However, when the
genetic model is none of them, but close to dominant, for instance,W 12 would be a better choice.

Another important issue for GWAS is to adjust for multiple comparisons. Given the large number of correlated SNPs to
be tested, the traditional methods, such as Bonferroni correction, are not appropriate, although they are frequently used in
GWAS. Many multiple comparison correction approaches based on different assumptions have been proposed for GWAS
(Chen and Liu, 2011; Cheverud, 2001; Gao et al., 2009; Li and Ji, 2005), however, it is not clear in general which one is
the best. Perhaps the optimal choice depends on the choice of the association test (Chen and Liu, 2011). Since all of those
multiple comparison correctionmethods require subject-level data (i.e., genotypes of all SNPs for each subject), which were
not available for the real data we used, we could not apply them to the real data application.
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Appendix. Proof of Theorem 2.4

In this Appendix, we provide the proof for Theorem 2.4. We only give the proof for (i) as the proof for (ii) is very similar.
Here we assume n is a large number and random vector Z are defined in (4)–(7). We only need to show Z13

1 = Z24
2 , and

Z13
2 = Z24

1 .

Recall Z13
=


Z131
Z132


= Σ

−1/2
13


Z1
Z3


=


1 ρ13

ρ13 1

−1/2 
Z1
Z3


, where ρ13 = −


p1p3

(1−p1)(1−p3)
. Since ρ13 = −ρ24, Z24

=
Z241
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
= Σ

−1/2
24
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Z2
Z4
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=


1 ρ24

ρ24 1

−1/2 
Z2
Z4


=


1 −ρ13

−ρ13 1

−1/2 
Z2
Z4


. Let Z3 = c31Z1 + c32Z2, Z4 = c41Z1 + c42Z2, then

Cov(Z1, Z3) = c31 = ρ13, Cov(Z2, Z3) = c32 = ρ23, Cov(Z1, Z4) = c41 = ρ14, Cov(Z2, Z4) = c42 = ρ24. Therefore,

Z3
Z4


=−


p1p3

(1 − p1)(1 − p3)


p2

(1 − p1)(1 − p3)
p2

(1 − p1)(1 − p3)


p1p3

(1 − p1)(1 − p3)

 
Z1
Z2


. It can be shown that: Σ

−1/2
13 =


a b
b a


, where a = ( 1

√
1+ρ13

+
1

√
1−ρ13

)/2, b =
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( 1
√
1+ρ13

−
1

√
1−ρ13

)/2. Similarly, Σ−1/2
24 =


a −b

−b a


. Therefore, Z13

1 − Z24
2 = (a + bρ13 − aρ23)Z1 + (b + bρ23 + aρ13)Z2.

To show Z13
1 = Z24

2 , we only need to show a + bρ13 − aρ23 = 0 and b + bρ23 + aρ13 = 0, or (a + bρ13 − aρ23)
2

= 0 and
(b+bρ23 +aρ13)

2
= 0. But (a+bρ13 −aρ23)

2
= a2 +b2 + (a2 −b2)ρ23 +2abρ13 −2abρ13ρ23 −2a2ρ23. Since ρ2

13 +ρ2
23 = 1,

we have a2 = ( 1
ρ23

+
1

ρ2
23

)/2, 2ab = −
ρ13
ρ2
23
, and b2 = ( 1

ρ2
23

−
1

ρ23
)/2. Simple calculation gives us (a + bρ13 − aρ23)

2
= 0,

therefore, a + bρ13 − aρ23 = 0. Similarly, we can show b + bρ23 + aρ13 = 0. Putting them together gives us Z13
1 = Z24

2 .
Z13
2 = Z24

1 can be proved in the same way. This proves (i).
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