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Abstract

Biological evidence suggests that multiple causal variants in a gene may cluster physically. Variants within the same protein
functional domain or gene regulatory element would locate in close proximity on the DNA sequence. However, spatial
information of variants is usually not used in current rare variant association analyses. We here propose a clustering method
(abbreviated as ‘‘CLUSTER’’), which is extended from the adaptive combination of P-values. Our method combines the
association signals of variants that are more likely to be causal. Furthermore, the statistic incorporates the spatial
information of variants. With extensive simulations, we show that our method outperforms several commonly-used
methods in many scenarios. To demonstrate its use in real data analyses, we also apply this CLUSTER test to the Dallas Heart
Study data. CLUSTER is among the best methods when the effects of causal variants are all in the same direction. As variants
located in close proximity are more likely to have similar impact on disease risk, CLUSTER is recommended for association
testing of clustered rare causal variants in case-control studies.
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Introduction

The development in next-generation sequencing technologies

has allowed a comprehensive investigation of the role of rare

variants (minor allele frequency (MAF) ,1%) on complex diseases

[1]. The low frequency of rare variants decreases the statistical

power of detecting individual causal variants. Many statistical

methods have been proposed to test for the collective association of

multiple variants in a gene or region with diseases [2–13].

However, these methods do not incorporate the information of

physical positions of the variants. Biological evidence suggests that

multiple causal variants in a gene may cluster physically [14].

Variants within the same protein functional domain or gene

regulatory element would locate in close proximity on the DNA

sequence [15–18]. Furthermore, the spatial distribution of rare

variants can be used to depict population structures [19]. These all

constitute the importance of spatial approaches for rare variant

association analyses.

Ionita-Laza et al. [14] has proposed a likelihood ratio scan

statistic, and it successfully identifies clusters of rare deleterious

variants with autism spectrum disorders. This method takes into

account the underlying spatial distribution of variants, and we

refer it to as ‘‘IL-K’’ because it is extended from the popular

Kulldorff scan statistic [20]. It allows variable window sizes and

calculates a likelihood ratio statistic for each window. The sliding

window with the highest likelihood ratio statistic is the most likely

region to harbor a cluster of rare deleterious variants. The

statistical significance is assessed by permutation P-values [14].

Schaid et al. [16] has extended another popular spatial

clustering method, Tango’s statistic [21–23], to genomic sequence

data. They incorporate the distance measures between variants

into a kernel matrix, and therefore this method is referred to as

‘‘Kernel distance clustering’’ method (abbreviated as ‘‘KERNEL’’

hereafter). The statistic is d’Ad, where A is the kernel matrix with

spatial information, and d is the vector of case-control differences

in variant frequencies. The statistical significance is also assessed

by permutation P-values. Schaid et al. [16] have shown that IL-K

outperforms KERNEL over a range of clustering scenarios, but

KERNEL takes approximately half the computational time of IL-K.

We here propose a clustering method that is extended from the

adaptive combination of P-values [24,25]. This method truncates

the variants with larger P-values which are more likely to be

neutral variants. With extensive simulations, we have shown that

our method outperforms KERNEL [16], the weighted-sum

approach (referred to as ‘‘WS’’) [4], and the variable threshold

approach (referred to as ‘‘VT’’) [6], in the majority of scenarios. It

also outperforms IL-K [14] and the sequence kernel association test

(SKAT) [8,9] when all the causal variants are protective. We also

apply this test to the Dallas Heart Study data [26,27], to

demonstrate its use in real data analyses.

Materials and Methods

Suppose that there are K variant sites in a region of interest. We

name the sites with larger variant frequencies in cases than in

controls ‘‘deleterious-inclined variant sites’’, and those with larger

variant frequencies in controls than in cases ‘‘protective-inclined

variant sites’’. For a case-control study, the association of each

variant with the disease status can be tested by the Fisher’s exact

test [13,28] or by the logistic regression (if covariate adjustment is

required). Let the per-site P-values of the K variants be
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p1,p2, � � � pK , respectively. To test for the significance of the region,

we combine the per-site P-values that are smaller than some

truncation threshold. Suppose we consider J candidate truncation

thresholds, h1,h2, � � � ,hJ .

Multiple causal variants may cluster spatially in a functional

region [14]. The proposed method is extended from the adaptive

combination of P-values [24,25]. Furthermore, the spatial

distribution of variants is taken into consideration. Under the jth

truncation threshold (hj ), the significance signal accumulated by

the deleterious-inclined variant sites is dz
j ’Adz

j , where dz
j is a K-

length vector with the ith element of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{ji

:wi log p
I pivhj½ �
i

q
. The

indicator variable ji is 1 if the ith site is deleterious-inclined and 0

otherwise, wi is the weight given to the ith site (detailed in the next

paragraph), and I pivhj

� �
is 1 if the P-value of the ith site is

smaller than the jth truncation threshold (hj ) and 0 otherwise.

Similarly, under the jth truncation threshold, the significance

signal accumulated by the protective-inclined variant sites is

d{
j ’Ad{

j , where d{
j is a K-length vector with the ith element offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

{Qi
:wi log p

I pivhj½ �
i

q
. The indicator variable Qi is 1 if the ith site

is protective-inclined and 0 otherwise.

We follow Madsen and Browning [4] to determine the weights

given to variant sites (wi’s). Let mU
i be the number of mutant

alleles observed for variant i in the unaffected subjects, and let nU
i

be the number of unaffected subjects genotyped for variant i. The

frequency of variant i in the unaffected subjects is qi~
mU

i z1

2nU
i z2

.

The weight given to the ith site is wi~ ni
:qi 1{qið Þ½ �{1=2, where ni

is the total number of subjects genotyped for variant i.

The K|K matrix A incorporates the spatial information of the

variants. The (i, j)th element of A is 1{d ’
ij2

� �3

, where

d ’
ij~

dij
�
maxd

, dij is the physical distance between the ith and

the jth variants, and maxd is a user-specified maximum distance of

variants. Although the distance measure 1{d ’
ij2

� �3

(named ‘‘tri-

weight’’) is used throughout this work, it can be replaced by other

measures (see [16]).

Under the jth truncation threshold, a test statistic regardless of

the directions of effects (deleterious or protective) is

T
Oð Þ

j ~ max dz
j ’Adz

j ,d{
j ’Ad{

j

� �
. With B permutations by ran-

domly shuffling the case/control status, we obtain the permuted

statistics T
1ð Þ

j , � � � ,T Bð Þ
j . The P-value of the observed statistic T

Oð Þ
j

is estimated by

PB
b~1 I T

bð Þ
j §T

Oð Þ
j

� �
z1

Bz1
, and the P-value of the

b0th permuted statistic T
b0ð Þ

j is estimated byP
b=b0 I T

bð Þ
j §T

b0ð Þ
j

� �
z1

B
. Across the J candidate truncation

thresholds, the minimum P-value of the observed sample is

MinP Oð Þ~ min
1ƒjƒJ

PB
b~1 I T

bð Þ
j §T

Oð Þ
j

� �
z1

Bz1
, and the minimum

P-value of the b0th permuted sample is

MinP b0ð Þ~ min
1ƒjƒJ

P
b=b0 I T

bð Þ
j §T

b0ð Þ
j

� �
z1

B
. Because we have B

permutations, we compare MinP Oð Þ with MinP 1ð Þ, � � � ,MinP Bð Þ,
and the ‘‘adjusted P-value’’ is estimated byPB

b~1 I MinP(b)
ƒMinP Oð Þ� 	

z1

Bz1
. This method is referred to as

‘‘CLUSTER’’, as it is proposed for detecting clusters of rare

variants.

If we ignore the spatial information and let A be an identity

matrix (all the diagonal elements are 1 and all the off-diagonal

elements are 0), the statistic T
Oð Þ

j will be reduced to

T
Oð Þ

j ~ max dz
j ’Adz

j ,d{
j ’Ad{

j

� �

~ max {
XK

i~1

ji
:wi log p

I pivhj

� �
i ,{

XK

i~1

wi
:wi log p

I pivhj

� �
i

 !
:

This is equivalent to the statistic of the ‘‘adaptive combination of

P-values for rare variant association testing’’ (abbreviated as

‘‘ADA’’) [24].

Simulation Study
To simulate real human genomic structure, we used the Cosi

program [29] that was based on a coalescent process [30]. We

generated 100 data sets, each containing 10,000 chromosomes of

1 Mb regions. The chromosomes were generated according to the

linkage disequilibrium patterns of the HapMap CEU (Utah

residents with ancestry from northern and western Europe)

samples [31]. For each data set, we randomly selected a ,20 kb

region. We considered two situations: (I) clustered causal variants:

20 rare causal variants were clustered within a ,6 kb region; (II)

non-clustered causal variants: 20 rare causal variants were

approximately equally spaced across the whole ,20 kb. The 20

causal variants were assumed to be (I) all protective; (II) 15

protective and 5 deleterious; (III) 10 protective and 10 deleterious;

(IV) 5 protective and 15 deleterious; (V) all deleterious. The

population attributable risk (PAR) of each causal variant was

assumed to be 0%, 0.2%, 0.4%, 0.6%, 0.8%, and 1%,

respectively.

Given PAR (PARj ) and MAF (MAFj ) of the jth causal variant,

its genotype relative risk (GRR) is:

GRRj~
PARj

1{PARj

� 	
:MAFj

z1

 ! {1ð ÞI wj~1
� 	

,

[4,32–34]. The indicator function I wj~1
� 	

is 1 if the jth causal

variant is protective, and is 0 otherwise. The genotypes of a subject

were formed by two chromosomes randomly drawn from the pool

of 10,000 chromosomes. For a subject with chromosomes

H1,H2f g, his/her disease status was generated by

P affectedj H1,H2f gð Þ~f0|P
2

k~1
P

d

j~1
GRR

I Hk,j~aj

� �
j

[32–34], where f0 was the baseline penetrance (set at 1%), and aj

was the minor allele at the jth site. Chromosome pairs were

randomly drawn from the chromosome pool with replacement

until 500 cases and 500 controls were recruited.

Tests under Comparison
We compared CLUSTER with IL-K [14], KERNEL [16], SKAT

[8,9], WS [4], and VT [6]. Single-nucleotide polymorphisms with

MAF .5% in the combined sample of cases and controls were first

removed from the analyses. The per-site P-values of individual
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variants were obtained by the mid P-values from the Fisher’s exact

test [28]. The user-specified maximum distance maxd was fixed at

20 kb throughout this work. IL-K and KERNEL were implemented

with the R package ‘‘vclust’’ [16]. The maximum window size

considered by IL-K was set at 50% of the total region length,

,10 kb, as suggested by Ionita-Laza et al. [14]. When performing

‘‘KERNEL’’, tri-weight ( 1{d ’
ij

2
� �3

) was used as the distance

measure between any two variants, because this was the default

setting in the R package ‘‘vclust’’ [16]. To have a fair comparison,

CLUSTER was implemented with the same tri-weight distance

measure. The candidate truncation thresholds considered in

CLUSTER were 0.10, 0.11, 0.12, …, 0.20. These are suitable P-

value truncation thresholds for rare variant association testing

[24].

Two burden tests including WS and VT were implemented with

the R script by Price et al. [6] (http://genetics.bwh.harvard.edu/

rare_variants/). As a representative method of non-burden tests,

SKAT was also included into comparisons. SKAT was implemented

with the R package ‘‘SKAT’’ [35]. The weight given to the jth

variant site (with MAF of MAFj ) was set at

wj~Beta MAFj ,1,25
� 	

, because this was the default weight

function in the package ‘‘SKAT’’. Note that the SKAT [9]

compared here is the test that optimally combines the burden tests

and the original SKAT proposed by Wu et al. [8].

The P-values of CLUSTER, IL-K, KERNEL, WS, and VT were

obtained with 10,000 permutations when evaluating type-I error

rates and 1,000 permutations when evaluating power, respectively.

For SKAT, we used the default Davies method [36] in the package

‘‘SKAT’’ to compute P-values.

Results

Type-I Error Rates
The type-I error rates were measured when PAR was set at 0%.

We performed 1,000 replications for each of the 100 simulated

data sets. Therefore, there were totally 100,000 ( = 100|1000)

replications. Table 1 summarizes the type-I error rates given

various nominal significance levels. The type-I error rates of all the

six methods match the corresponding nominal significance levels.

Power Comparisons
To evaluate power, a total of 100 replications were performed

under each scenario for each of the 100 simulated data sets.

Figure 1 presents the power averaged over the 100|100~10,000
replications. When all the 20 causal variants were protective,

CLUSTER was much more powerful than other methods. Under a

mixture of deleterious and protective variants, IL-K, SKAT, and

CLUSTER were powerful methods. However, CLUSTER had

decreased power when the causal variants were non-clustered (see

the bottom row). When all the 20 causal variants were deleterious,

IL-K, SKAT, and CLUSTER were again the more powerful

methods. Note that the effect size (measured by the magnitude

of odds ratio) of a deleterious variant was larger than that of a

protective variant with the same PAR and MAF (as shown by Lin

et al. [24]). Therefore, all the methods performed better under 20

deleterious variants (the right column of Fig. 1) than under 20

protective variants (the left column of Fig. 1).

We also evaluated the power performance of these tests when

the number of causal variants was 10. Figure 2 shows the results of

two situations considered: (I) clustered causal variants: 10 rare

causal variants were clustered within a ,3 kb region; (II) non-

clustered causal variants: 10 rare causal variants were approxi-

mately equally spaced across the whole ,20 kb. The 10 causal

variants were assumed to be (I) all protective; (II) 8 protective and

2 deleterious; (III) 5 protective and 5 deleterious; (IV) 2 protective

and 8 deleterious; (V) all deleterious. The result was similar to that

shown by Fig. 1. CLUSTER was among the best methods when the

effects of causal variants were all in the same direction, but it had

decreased power under a mixture of deleterious and protective

variants (see columns 2–4 of Figs. 1 & 2). This is because the test

statistic T
Oð Þ

j ~ max dz
j ’Adz

j ,d{
j ’Ad{

j

� �
facilitates the detection

of variants with effects in a consistent direction. We will further

discuss this in the Discussion section.

In Figs. 1 and 2, the power from the top panel (clustered

situation) is generally lower than that from the bottom panel (non-

clustered situation). This is because, when the causal variants are

clustered in a small region (,6 kb or ,3 kb, in the simulations),

the variants far from this region will have almost no correlation

(or, no linkage disequilibrium) with the causal variants. Therefore,

they can hardly provide any association signal when testing for the

whole region (,20 kb here). When the causal variants are equally

spaced across the whole region, the variants surrounding each

causal variant can provide some signal because of their correlation

with the causal ones. Although the correlation between rare

variants is usually low [37,38], it can still boost the power to some

extent. This is a general trend for all the methods. What we can

compare is the performance of the methods with spatial

information (CLUSTER, IL-K, and KERNEL) relative to that of

the methods without spatial information (SKAT, WS, and VT), in

clustered situation or in non-clustered situation.

Not surprisingly, the clustered situation favors the methods

considering spatial information (CLUSTER, IL-K, and KERNEL).

They were relatively (relative to SKAT, WS, and VT) more

powerful when the causal variants were clustered (top panels of

Figs. 1 and 2). CLUSTER had good performance and was more

powerful than KERNEL. IL-K also had good power performance,

except when all the causal variants were protective (see the left

columns of Figs. 1 and 2). With a mixture of protective and

deleterious variants, IL-K was generally more powerful than

CLUSTER, especially when the PAR was larger (see columns 2–4

of Figs. 1 and 2).

It was worth noting that CLUSTER outperformed SKAT, even

when the causal variants were non-clustered (see the bottom-left

plots of Figs. 1 and 2). This may be attributed to the ‘‘noise

truncation’’ property of CLUSTER. The effect size (measured by

the magnitude of odds ratio) of a protective variant was smaller

than that of a deleterious variant with the same PAR and MAF (as

shown by Lin et al. [24]). The effects of the protective variants

were rather mild, and most methods were underpowered.

CLUSTER takes the advantage of truncating neutral variants with

larger P-values. CLUSTER is an extension of ADA, and this

Table 1. Type-I error rates.

nominal significance
level 0.001 0.01 0.02 0.03 0.04 0.05

SKAT 0.0011 0.0102 0.0201 0.0303 0.0404 0.0503

CLUSTER 0.0008 0.0101 0.0204 0.0303 0.0401 0.0502

KERNEL 0.0011 0.0103 0.0187 0.0294 0.0404 0.0503

IL-K 0.0011 0.0100 0.0202 0.0298 0.0402 0.0501

WS 0.0008 0.0101 0.0200 0.0302 0.0404 0.0503

VT 0.0009 0.0100 0.0202 0.0304 0.0405 0.0502

doi:10.1371/journal.pone.0094337.t001
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outcome is consistent with that observed in the ADA paper (see the

left column of Fig. 2 of [24]).

Application to Dallas Heart Study Data
These six tests were then applied to the Dallas Heart Study

[26,27,39]. This study was to uncover the role of ANGIOPOIE-

TIN–LIKE 4 (ANGPTL4) in plasma triglyceride levels. The

genotypes of 1,045 European Americans were analyzed. We first

used a linear regression to adjust the log-transformed triglyceride

levels for age, sex, and BMI. Subjects with residuals smaller than

the 30th percentile and larger than the 70th percentile were treated

as controls and cases, respectively. Then, the subjects with missing

genotypes were excluded from the analysis. Finally, 179 cases and

213 controls were left.

The six tests were applied to this data set. The variants with

MAF .5% were removed. To have an exhaustive search for the

most likely region to harbor causal variants, the maximum window

size considered by IL-K was set as the total region length (,10 kb).

As a result, only CLUSTER and SKAT had P-values smaller than

0.05 (see Table 2).

The significant association of ANGPTL4 with triglyceride was

previously reported. Results in over 30,000 subjects from non-

diabetic and population-based studies have confirmed that

variants in ANGPTL4 reduce triglyceride and exert protective

effects against hyperlipidemia [26,40,41]. With the significance

level of 0.05, only CLUSTER and SKAT confirmed this association.

The other two spatial approaches, IL-K and KERNEL, were shown

(by simulations) to have low power when all the causal variants

were protective. No wonder they failed to detect the association

here. This result is consistent with the finding from our simulation

study.

Discussion

Multiple rare variants may cluster in a functional region [14–

18]. Variants within the same protein functional domain may

locate in close proximity and have similar impact on disease risk

[15,17]. Consistent with the finding from Schaid et al. [16],

KERNEL usually has lower power than IL-K. However, when all

the causal variants are protective, IL-K has very low power (see the

left columns of Figs. 1 & 2). This is because IL-K can only identify

deleterious variants [14]. When all the causal variants are

protective, CLUSTER and SKAT are more powerful than other

methods. No wonder only these two methods could detect the

protective effect of the variants in ANGPTL4 against hyperlipide-

mia [26,40,41], in the Dallas Heart Study data analysis.

As mentioned in the Methods section, a test statistic regardless

of the directions of effects (deleterious or protective) is

Figure 1. Simulation-Based Power Comparisons (20 rare causal variants). The figure shows the empirical power at a~0:05. Top panel:
clustered causal variants; bottom panel: non-clustered causal variants. The letters ‘‘p’’ and ‘‘r’’ denote the numbers of protective variants and
deleterious (or, risky) variants, respectively.
doi:10.1371/journal.pone.0094337.g001
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T
Oð Þ

j ~ max dz
j ’Adz

j ,d{
j ’Ad{

j

� �
under the jth truncation thresh-

old. Another reasonable statistic is T
Oð Þ

j ~dz
j ’Adz

j zd{
j ’Ad{

j .

This is more powerful than CLUSTER when ,50% of the causal

variants are deleterious, but is less powerful when the effects of

variants are all in the same direction. Because clustered variants

are more likely to have effects in the same direction, we still suggest

using T
Oð Þ

j ~ max dz
j ’Adz

j ,d{
j ’Ad{

j

� �
, instead of

T
Oð Þ

j ~dz
j ’Adz

j zd{
j ’Ad{

j . Note that even the statistic,

dz
j ’Adz

j zd{
j ’Ad{

j , is started from aggregating the information

of ‘‘deleterious-inclined variants’’ and ‘‘protective-inclined vari-

ants’’, separately. Under the assumption that deleterious variants

and protective variants may have their own clusters, we do not mix

all the variants together in the very beginning (i.e., d’Ad, this will

incorporate the distance between ‘‘deleterious-inclined variants’’

and ‘‘protective-inclined variants’’ into the statistic).

All the methods evaluated here require permutations to obtain

accurate P-values, except SKAT that uses the Davies method [36]

to compute P-values. For simulated data sets each containing 500

cases and 500 controls in ,20 kb regions (including ,330

nonsynonymous variant sites), the computation time lengths were

ordered as CLUSTER (,151.7 sec) . SKAT (,30.2 sec) . IL-K

(,20.4 sec) . KERNEL (,6.7 sec) . VT or WS (,3.4 sec), where

1000 permutations were used for all the methods except SKAT.

This was timed by a Linux workstation with an Intel Xeon E5-

2690 2.9 GHz processor and 6 GB memory. CLUSTER takes a

longer time to compute because it incorporates the spatial kernel

matrix into the search of the optimal P-value truncation threshold.

Schaid et al. [16] showed that IL-K and KERNEL could have

higher power than SKAT, when the variants were correlated.

Without correlation, SKAT tended to have the highest power

among the tests they compared [16]. In fact, the correlation

between rare variants is usually low [37,38]. Our simulated data

sets were generated from the coalescent process [30] and they

reflected realistic DNA sequences. Therefore, in our simulations,

the correlation between rare variants is low and SKAT is better

than KERNEL (and sometimes better than IL-K).

Figure 2. Simulation-Based Power Comparisons (10 rare causal variants). The figure shows the empirical power at a~0:05. Top panel:
clustered causal variants; bottom panel: non-clustered causal variants. The letters ‘‘p’’ and ‘‘r’’ denote the numbers of protective variants and
deleterious (or, risky) variants, respectively.
doi:10.1371/journal.pone.0094337.g002

Table 2. Application to the Dallas Heart Study data.

SKAT CLUSTER KERNEL IL-K WS VT

P-value 0.0245 0.0125a 0.0899a 0.1398a 0.1841a 0.4858a

aP-values were obtained by 10,000 permutations.
doi:10.1371/journal.pone.0094337.t002
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KERNEL and CLUSTER have similar forms in test statistics

(d’Ad), and they are both implemented with the tri-weight distance

measure in our simulations. However, the results showed that

CLUSTER outperformed KERNEL. This is because CLUSTER

combines the association signals (P-values) of variants that are

more likely to be causal, i.e., truncates variants with larger P-

values. CLUSTER is among the best methods when the effects of

causal variants are in one direction. As variants located in close

proximity are more likely to have similar impact on disease risk

[15,17], CLUSTER is recommended for association testing of

clustered rare causal variants in case-control studies.

Acknowledgments

The author would like to thank the anonymous reviewers for their

insightful and constructive comments, and Drs. Jonathan C. Cohen and

Helen H. Hobbs for kindly providing the Dallas Heart Study data.

Author Contributions

Conceived and designed the experiments: WYL. Performed the experi-

ments: WYL. Analyzed the data: WYL. Contributed reagents/materials/

analysis tools: WYL. Wrote the paper: WYL.

References

1. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. (2010) A

map of human genome variation from population-scale sequencing. Nature 467:

1061–1073.
2. Bansal V, Libiger O, Torkamani A, Schork NJ (2010) Statistical analysis

strategies for association studies involving rare variants. Nat Rev Genet 11: 773–
785.

3. Li B, Leal SM (2008) Methods for detecting associations with rare variants for

common diseases: application to analysis of sequence data. Am J Hum Genet 83:
311–321.

4. Madsen BE, Browning SR (2009) A groupwise association test for rare mutations
using a weighted sum statistic. PLoS Genet 5: e1000384.

5. Morris AP, Zeggini E (2010) An evaluation of statistical approaches to rare
variant analysis in genetic association studies. Genet Epidemiol 34: 188–193.

6. Price AL, Kryukov GV, de Bakker PI, Purcell SM, Staples J, et al. (2010) Pooled

association tests for rare variants in exon-resequencing studies. Am J Hum Genet
86: 832–838.

7. Han F, Pan W (2010) A data-adaptive sum test for disease association with
multiple common or rare variants. Hum Hered 70: 42–54.

8. Wu MC, Lee S, Cai T, Li Y, Boehnke M, et al. (2011) Rare-variant association

testing for sequencing data with the sequence kernel association test. Am J Hum
Genet 89: 82–93.

9. Lee S, Wu MC, Lin X (2012) Optimal tests for rare variant effects in sequencing
association studies. Biostatistics 13: 762–775.

10. Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, et al. (2011) Testing for
an unusual distribution of rare variants. PLoS Genet 7: e1001322.

11. Yi N, Liu N, Zhi D, Li J (2011) Hierarchical generalized linear models for

multiple groups of rare and common variants: jointly estimating group and
individual-variant effects. PLoS Genet 7: e1002382.

12. Yi N, Zhi D (2011) Bayesian analysis of rare variants in genetic association
studies. Genet Epidemiol 35: 57–69.

13. Cheung YH, Wang G, Leal SM, Wang S (2012) A fast and noise-resilient

approach to detect rare-variant associations with deep sequencing data for
complex disorders. Genet Epidemiol 36: 675–685.

14. Ionita-Laza I, Makarov V, Buxbaum JD (2012) Scan-statistic approach identifies
clusters of rare disease variants in LRP2, a gene linked and associated with

autism spectrum disorders, in three datasets. Am J Hum Genet 90: 1002–1013.
15. Fier H, Won S, Prokopenko D, AlChawa T, Ludwig KU, et al. (2012) ‘Location,

Location, Location’: a spatial approach for rare variant analysis and an

application to a study on non-syndromic cleft lip with or without cleft palate.
Bioinformatics 28: 3027–3033.

16. Schaid DJ, Sinnwell JP, McDonnell SK, Thibodeau SN (2013) Detecting
genomic clustering of risk variants from sequence data: cases versus controls.

Hum Genet 132: 1301–1309.

17. Krebs JE, Goldstein ES (2011) Lewin’s GENES X. Jones and Bartlett Publishers,
Sudbury.

18. Raab JR, Kamakaka RT (2010) Insulators and promoters: closer than we think.
Nat Rev Genet 11: 439–446.

19. Mathieson I, McVean G (2012) Differential confounding of rare and common
variants in spatially structured populations. Nat Genet 44: 243–246.

20. Kulldorff M (1997) A spatial scan statistic. Communications in Statistics -

Theory and Methods 26: 1481–1496.
21. Tango T (1984) The detection of disease clustering in time. Biometrics 40: 15–

26.

22. Tango T (2000) A test for spatial disease clustering adjusted for multiple testing.

Stat Med 19: 191–204.

23. Tango T (2010) Statistical methods for disease clustering. Springer, New York.
24. Lin WY, Lou XY, Gao G, Liu N (2014) Rare Variant Association Testing by

Adaptive Combination of P-values. PLoS One 9: e85728.
25. Yu K, Li Q, Bergen AW, Pfeiffer RM, Rosenberg PS, et al. (2009) Pathway

analysis by adaptive combination of P-values. Genet Epidemiol 33: 700–709.

26. Romeo S, Pennacchio LA, Fu Y, Boerwinkle E, Tybjaerg-Hansen A, et al.
(2007) Population-based resequencing of ANGPTL4 uncovers variations that

reduce triglycerides and increase HDL. Nat Genet 39: 513–516.
27. Romeo S, Yin W, Kozlitina J, Pennacchio LA, Boerwinkle E, et al. (2009) Rare

loss-of-function mutations in ANGPTL family members contribute to plasma
triglyceride levels in humans. J Clin Invest 119: 70–79.

28. Fisher RA (1922) On the interpretation of x2 from contingency tables, and the

calculation of P. Journal of the Royal Statistical Society 85: 87–94.
29. Schaffner SF, Foo C, Gabriel S, Reich D, Daly MJ, et al. (2005) Calibrating a

coalescent simulation of human genome sequence variation. Genome Res 15:
1576–1583.

30. Hudson RR (2002) Generating samples under a Wright-Fisher neutral model of

genetic variation. Bioinformatics 18: 337–338.
31. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. (2007) A second

generation human haplotype map of over 3.1 million SNPs. Nature 449: 851–
861.

32. Li Y, Byrnes AE, Li M (2010) To identify associations with rare variants, just
WHaIT: Weighted haplotype and imputation-based tests. Am J Hum Genet 87:

728–735.

33. Lin WY, Yi N, Lou XY, Zhi D, Zhang K, et al. (2013) Haplotype kernel
association test as a powerful method to identify chromosomal regions harboring

uncommon causal variants. Genet Epidemiol 37: 560–570.
34. Lin WY, Yi N, Zhi D, Zhang K, Gao G, et al. (2012) Haplotype-based methods

for detecting uncommon causal variants with common SNPs. Genet Epidemiol

36: 572–582.
35. Lee S, Miropolsky L, Wu M (2013) Package ‘SKAT’, http://cran.r-project.org/

web/packages/SKAT/index.html. Accessed Jan 2, 2013.
36. Davies RB (1980) Algorithm AS 155: the distribution of a linear combination of

x2 random variables. Journal of the Royal Statistical Society Series C (Applied
Statistics) 29: 323–333.

37. Pritchard JK (2001) Are rare variants responsible for susceptibility to complex

diseases? Am J Hum Genet 69: 124–137.
38. Pritchard JK, Cox NJ (2002) The allelic architecture of human disease genes:

common disease-common variant.or not? Hum Mol Genet 11: 2417–2423.
39. Victor RG, Haley RW, Willett DL, Peshock RM, Vaeth PC, et al. (2004) The

Dallas Heart Study: a population-based probability sample for the multidisci-

plinary study of ethnic differences in cardiovascular health. Am J Cardiol 93:
1473–1480.

40. Talmud PJ, Smart M, Presswood E, Cooper JA, Nicaud V, et al. (2008)
ANGPTL4 E40K and T266M: effects on plasma triglyceride and HDL levels,

postprandial responses, and CHD risk. Arterioscler Thromb Vasc Biol 28: 2319–
2325.

41. Smart-Halajko MC, Kelley-Hedgepeth A, Montefusco MC, Cooper JA, Kopin

A, et al. (2011) ANGPTL4 variants E40K and T266M are associated with lower
fasting triglyceride levels in Non-Hispanic White Americans from the Look

AHEAD Clinical Trial. BMC Med Genet 12: 89.

Association Testing of Clustered Rare Causal Variants

PLOS ONE | www.plosone.org 6 April 2014 | Volume 9 | Issue 4 | e94337

http://cran.r-project.org/web/packages/SKAT/index.html
http://cran.r-project.org/web/packages/SKAT/index.html

