
Estimation and Accuracy After Model Selection
Bradley EFRON

Classical statistical theory ignores model selection in assessing estimation accuracy. Here we consider bootstrap methods for computing
standard errors and confidence intervals that take model selection into account. The methodology involves bagging, also known as bootstrap
smoothing, to tame the erratic discontinuities of selection-based estimators. A useful new formula for the accuracy of bagging then provides
standard errors for the smoothed estimators. Two examples, nonparametric and parametric, are carried through in detail: a regression model
where the choice of degree (linear, quadratic, cubic, . . .) is determined by the Cp criterion and a Lasso-based estimation problem.
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1. INTRODUCTION

Accuracy assessments of statistical estimators customarily
are made ignoring model selection. A preliminary look at the
data might, for example, suggest a cubic regression model, after
which the fitted curve’s accuracy is computed as if “cubic”
were pre-chosen. Here we will discuss bootstrap standard errors
and approximate confidence intervals that take into account the
model-selection procedure.

Figure 1 concerns the Cholesterol data, an example investi-
gated in more detail in Section 2: n = 164 men took cholestyra-
mine, a proposed cholesterol-lowering drug, for an average of
seven years each; the response variable was the decrease in
blood-level cholesterol measured from the beginning to the end
of the trial,

d = cholesterol decrease; (1.1)

also measured (by pill counts) was compliance, the proportion
of the intended dose taken,

c = compliance, (1.2)

ranging from zero to full compliance for the 164 men. A trans-
formation of the observed proportions has been made here so
that the 164 c values approximate a standard normal distribution,

c ∼̇N (0, 1). (1.3)

The solid curve is a regression estimate of decrease d as a
cubic function of compliance c, fit by ordinary least squares
(OLS) to the 164 points. “Cubic” was selected by the Cp crite-
rion (Mallows 1973), as described in Section 2. The question of
interest for us is how accurate is the fitted curve, taking account
of the Cp model-selection procedure as well as OLS estimation?

More specifically, let µj be the expectation of cholesterol
decrease for subject j given his compliance cj ,

µj = E{dj |cj }. (1.4)

We wish to assign standard errors to estimates of µj read from
the regression curve in Figure 1. A nonparametric bootstrap
estimate s̃dj of standard deviation, taking account of model
selection, is developed in Sections 2 and 3. Figure 2 shows that
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this is usually, but not always, greater than the naive estimate
sdj obtained from standard OLS calculations, assuming that
the cubic model was preselected. The ratio s̃dj /sdj has median
value 1.52; so at least in this case, ignoring model selection can
be deceptively optimistic.

Data-based model selection can produce “jumpy” estimates
that change values discontinuously at the boundaries between
model regimes. Bagging (Breiman 1996), or bootstrap smooth-
ing, is a model-averaging device that both reduces variability
and eliminates discontinuities. This is described in Section 2,
and illustrated on the Cholesterol data.

Our key result is a new formula for the delta-method standard
deviation of a bagged estimator. The result, which applies to
general bagging situations and not just regression problems, is
described in Section 3. Stated in projection terms (see Figure 4),
it provides the statistician a direct assessment of the cost in
reduced accuracy due to model selection.

A parametric bootstrap version of the smoothing theory is de-
scribed in Sections 4 and 5. Parametric modeling allows more
refined results, permitting second order-accurate confidence cal-
culations of the BCa or ABC type, as in DiCiccio and Efron
(1992), Section 6. Section 7 concludes with notes, details, and
deferred proofs.

Bagging (Breiman 1996) has become a major technology in
the prediction literature, an excellent recent reference being Buja
and Stuetzle (2006). The point of view here agrees with that in
Bühlmann and Yu (2002), though their emphasis is more theo-
retical and less data-analytic. They employ bagging to “change
hard thresholding estimators to soft thresholding,” in the same
spirit as our Section 2.

Berk et al. (2012) developed conservative normal-theory con-
fidence intervals that are guaranteed to cover the true parameter
value regardless of the preceding model-selection procedure.
Very often it may be difficult to say just what selection pro-
cedure was used, in which case the conservative intervals are
appropriate. The methods of this article assume that the model-
selection procedure is known, yielding smaller standard error
estimates and shorter confidence intervals.

Hjort and Claeskens (2003) constructed an ambitious
large-sample theory of frequentist model-selection estima-
tion and model averaging, while making comparisons with
Bayesian methods. In theory, the Bayesian approach offers an
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Figure 1. Cholesterol data Cholesterol decrease plotted versus adjusted compliance for 164 men in Treatment arm of the cholostyramine
study (Efron and Feldman 1991). Solid curve is OLS cubic regression, as selected by the Cp criterion. How accurate is the curve, taking account
of model selection as well as least squares fitting? (Solid arrowed point is Subject 1, featured in subsequent calculations. Bottom numbers indicate
compliance for the 11 subjects in the simulation trial of 5.)

ideal solution to model-selection problems, but, as Hjort and
Claeskens pointed out, it requires an intimidating amount of
prior knowledge from the statistician. The present article is
frequentist in its methodology.

Hurvich and Tsai (1990) provided a nice discussion of
what “frequentist” might mean in a model-selection frame-
work. (Here I am following their “overall” interpretation.) The
nonparametric bootstrap approach in Buckland, Burnham, and
Augustin (1997) has a similar flavor to the computations in Sec-
tion 2. A particularly apt reference is Sexton and Laake (2009),
who also provide modified bootstrap estimates of accuracy for
estimators involving model selection.

Classical estimation theory ignored model selection out of
necessity. Armed with modern computational equipment, statis-
ticians can now deal with model-selection problems more real-
istically. The limited, but useful, goal of this article is to provide
a general tool for the assessment of standard errors in such situa-
tions. Simple parameters like (1.4) are featured in our examples,
but the methods apply just as well to more complicated func-
tionals, for instance the maximum value of a regression surface,
or a tree-based estimate.

2. NONPARAMETRIC BOOTSTRAP SMOOTHING

For the sake of simple notation, let y represent all the observed
data, and µ̂ = t( y) an estimate of a parameter of interest µ. The

Cholesterol data have

y = {(cj , dj ), j = 1, 2, . . . , n = 164}. (2.1)

If µ = µj (1.4) we might take µ̂j to be the height of the Cp-OLS
regression curve measured at compliance c = cj .

In a nonparametric setting, we have data

y = (y1, y2, . . . , yn), (2.2)

where the yj are independent and identically distributed
(iid) observations from an unknown distribution F, a two-
dimensional distribution in situation (2.1). The parameter is
some functional µ = T (F ), but the plug-in estimator µ̂ = T (F̂ ),
where F̂ is the empirical distribution of the yj values, is
usually what we hope to improve upon in model-selection
situations.

A nonparametric bootstrap sample

y∗ = (y∗
1 , y∗

2 , . . . , y∗
n) (2.3)

consists of n draws with replacement from the set {y1,

y2, . . . , yn}, yielding bootstrap replication µ̂∗ = t( y∗). The
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Figure 2. Solid points: ratio of standard deviations, taking account of model selection or not, for the 164 values µ̂j from the regression curve
in Figure 1. Median ratio equals 1.52. Standard deviations including model selection are the smoothed bootstrap estimates s̃dB of Section 3.
Dashed line: ratio of s̃dB to ŝdB , the unsmoothed bootstrap sd estimates as in (2.4), median 0.91.

empirical standard deviation of B such draws,

ŝdB =
[

B∑

i=1

(µ̂∗
i − µ̂∗

· )2
/

(B − 1)

]1/2

,

(
µ̂∗

· =
∑

µ̂∗
i /B

)
, (2.4)

is the familiar nonparametric bootstrap estimate of standard
error for µ̂ (Efron 1979); ŝdB is a dependable accuracy esti-
mator in most standard situations but, as we will see, it is less
dependable for setting approximate confidence limits in model-
selection contexts.

The cubic regression curve in Figure 1 was selected using the
Cp criterion. Suppose that under “Model m” we have

y = Xmβm + ϵ [ϵ ∼ (0, σ 2I )], (2.5)

where Xm is a given n by m structure matrix of rank m, and ϵ
has mean 0 and covariance σ 2 times the Identity (σ assumed
known in what follows). The Cp measure of fit for Model m is

Cp(m) = ∥ y − Xmβ̂m∥2 + 2σ 2m (2.6)

with β̂m the OLS estimate of βm; given a collection of possible
choices for the structure matrix, the Cp criterion selects the one
minimizing Cp.

Table 1 shows Cp results for the Cholesterol data. Six poly-
nomial regression models were compared, ranging from lin-
ear (m = 2) to sixth degree (m = 7); the value σ = 22.0 was
used, corresponding to the standard estimate σ̂ obtained from
the sixth degree model. The cubic model (m = 4) minimized
Cp(m), leading to its selection in Figure 1.

B = 4000 nonparametric bootstrap replications of the Cp-
OLS regression curve—several times more than necessary, see
Section 3—were generated: starting with a bootstrap sample

Table 1. Cp model selection for the Cholesterol data; measure of fit
Cp(m) (2.6) for polynomial regression models of increasing degree.
The cubic model minimizes Cp(m). (Value σ = 22.0 was used here

and in all bootstrap replications.) Last column shows percentage each
model was selected as the Cp minimizer, among B = 4000 bootstrap

replications

Regression model m Cp(m) − 80,000 (Bootstrap %)

Linear 2 1132 (19%)
Quadratic 3 1412 (12%)
Cubic 4 667 (34%)
Quartic 5 1591 (8%)
Quintic 6 1811 (21%)
Sextic 7 2758 (6%)
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Figure 3. B = 4000 bootstrap replications µ̂∗
1 of the Cp-OLS regression estimate for Subject 1. The original estimate t( y) = µ̂1 is 2.71,

exceeding 76% of the replications. Bootstrap standard deviation (2.4) equals 8.02. Triangles indicate 2.5th and 97.5th percentiles of the histogram.

y∗ (2.3), the equivalent of Table 1 was calculated (still using
σ = 22.0) and the Cp minimizing degree m∗ selected, yielding
the bootstrap regression curve

µ̂∗ = Xm∗ β̂∗
m∗ , (2.7)

where β̂∗
m∗ was the OLS coefficient vector for the selected model.

The last column of Table 1 shows the various bootstrap model-
selection percentages: cubic was selected most often, but still
only about one-third of the time.

Suppose we focus attention on Subject 1, the arrowed point
in Figure 1, so that the parameter of interest µ1 can be esti-
mated by the Cp-OLS value t( y) = µ̂1, evaluated to be 2.71.
Figure 3 shows the histogram of the 4000 bootstrap replications
t( y∗) = µ̂∗

1. The point estimate µ̂1 = 2.71 is located to the right,
exceeding a surprising 76% of the µ̂∗

1 values.
Table 2 shows why. The cases where “Cubic” was selected

yielded the largest bootstrap estimates µ̂∗
1. The actual dataset y

fell into the cubic region, giving a correspondingly large esti-
mate µ̂1. Things might very well have turned out otherwise, as

Table 2. Mean and standard deviation of µ̂∗
1 as a function of the

selected model, 4000 nonparametric bootstrap replications; Cubic,
Model 3, gave the largest estimates

Model 1 2 3 4 5 6

Mean −13.69 −3.69 4.71 −1.25 −3.80 −3.56
St. dev. 3.64 3.48 5.43 5.28 4.46 4.95

the bootstrap replications suggest: model selection can make an
estimate “jumpy” and erratic.

We can smooth µ̂ = t( y) by averaging over the bootstrap
replications, defining

µ̃ = s( y) = 1
B

B∑

i=1

t( y∗). (2.8)

Bootstrap smoothing (Efron and Tibshirani 1996), a form of
model averaging, is better known as “bagging” in the prediction
literature; see Breiman (1996) and Buja and Stuetzle (2006).
There its variance reduction properties are emphasized. Our
example will also show variance reductions, but the main interest
here lies in smoothing; s( y), unlike t( y), does not jump as y
crosses region boundaries, making it a more dependable vehicle
for setting standard errors and confidence intervals. Suppose,
for definiteness, that we are interested in setting approximate
95% bootstrap confidence limits for parameter µ. The usual
“standard interval”

µ̂ ± 1.96 ŝdB (2.9)

(= 2.71 ± 1.96 · 8.02 in Figure 3) inherits the dangerous jumpi-
ness of µ̂ = t( y). The percentile interval, section 13.3 of Efron
and Tibshirani (1993),

[
µ̂∗(0.025), µ̂∗(0.975)] , (2.10)

the 2.5th and 97.5th percentiles of the B bootstrap replications,
yields more stable results. (Notice that it does not require a
central point estimate such as µ̂ in (2.9).)
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Table 3. Three approximate 95% bootstrap confidence intervals for
µ1, the response value for Subject 1, Cholesterol data

Interval Length Center point

Standard interval (2.9) (−13.0, 18.4) 31.4 2.71
Percentile interval (2.10) (−17.8, 13.5) 31.3 −2.15
Smoothed standard (2.11) (−13.3, 8.0) 21.3 −2.65

A third choice, of particular interest, here, is the smoothed
interval

µ̃ ± 1.96 s̃dB, (2.11)

where µ̃ = s( y) is the bootstrap smoothed estimate (2.8), while
s̃dB is given by the projection formula discussed in Section 3.
Interval (2.11) combines stability with reduced length.

Table 3 compares the three approximate 95% intervals for µ1.
The reduction in length is dramatic here, though less so for the
other 163 subjects; see Section 3.

The BCa-ABC system goes beyond (2.9)–(2.11) to produce
bootstrap confidence intervals having second-order accuracy, as
in DiCiccio and Efron (1992). Section 6 carries out the ABC
calculations in a parametric bootstrap context.

3. ACCURACY OF THE SMOOTHED BOOTSTRAP
ESTIMATES

The smoothed standard interval µ̃ ± 1.96 s̃dB requires a stan-
dard deviation assessment s̃dB for the smoothed bootstrap es-
timate (2.8). A brute force approach employs a second level
of bootstrapping: resampling from y∗

i (2.3) yields a collection
of B second-level replications y∗∗

ij , from which we calculate
s∗
i =

∑
t( y∗∗

ij )/B; repeating this whole process for many repli-
cations of y∗

i provides bootstrap values s∗
i from which we cal-

culate its bootstrap standard deviation.
The trouble with brute force is that it requires an enormous

number of recomputations of the original statistic t(·). This
section describes an estimate s̃dB that uses only the original B
bootstrap replications {t( y∗

i ), i = 1, 2, . . . , B}.
The theorem that follows will be stated in terms of the

“ideal bootstrap,” where B equals all nn possible choices of
y∗ = (y∗

1 , y∗
2 , . . . , y∗

n) from {y1, y2, . . . , yn}, each having prob-
ability 1/B. It will be straightforward then to adapt our results
to the nonideal bootstrap, with B = 4000 for instance.

Define

t∗i = t( y∗
i ) [ y∗

i = (y∗
i1, y

∗
i2, . . . , y

∗
ik, . . . , y

∗
in)], (3.1)

the ith bootstrap replication of the statistic of interest, and let

Y ∗
ij = #{y∗

ik = yj }, (3.2)

the number of elements of y∗
i equaling the original data point

yj . The vector Y ∗
i = (Y ∗

i1, Y
∗
i2, . . . , Y

∗
in) follows a multinomial

distribution with n draws on n categories each of probability
1/n, and has mean vector and covariance matrix

Y ∗
i ∼ (1n, I − 1n1′

n/n), (3.3)

1n the vector of n 1’s and I the n × n identity matrix.

Theorem 1. The nonparametric delta-method estimate of
standard deviation for the ideal smoothed bootstrap statistic

s( y) =
∑B

i=1 t( y∗
i )/B is

s̃d =

⎡

⎣
n∑

j=1

cov2
j

⎤

⎦
1/2

, (3.4)

where

covj = cov∗(Y ∗
ij , t

∗
i ), (3.5)

the bootstrap covariance between Y ∗
ij and t∗i .

(The proof appears later in this section.)
The estimate of standard deviation for s( y) in the nonideal

case is the analogue of (3.4),

s̃dB =

⎡

⎣
n∑

j=1

ĉov2
j

⎤

⎦
1/2

, (3.6)

where

ĉovj =
n∑

i=1

(Y ∗
ij − Y ∗

·j )(t∗i − t∗· )/B (3.7)

with Y ∗
·j =

∑B
i=1 Y ∗

ij /B and t∗· =
∑B

i=1 t∗i /B = s( y). Remark J
concerns a bias correction for (3.6) that can be important in the
non-ideal case (it wasn’t in the Cholesterol example). All of
these results apply generally to bagging estimators, and are not
restricted to regression situations.

Figure 2 shows that s̃dB is less than ŝdB , the bootstrap estimate
of standard deviation for the unsmoothed statistic,

ŝdB =
[∑

(t∗i − t∗· )2/B
]1/2

, (3.8)

for all 164 estimators t( y) = µ̂j . This is no accident. Return-
ing to the ideal bootstrap situation, let L(Y ∗) be the (n − 1)-
dimensional subspace ofRB spanned by the columns of the B ×
n matrix having elements Y ∗

ij − 1. [Notice that
∑B

i=1 Y ∗
ij /B = 1

according to (3.3).] Also define s0 =
∑B

i=1 t∗i /B, the ideal boot-
strap smoothed estimate, so

U∗ ≡ t∗ − s01 (3.9)

is the B-vector of mean-centered replications t∗i − s0. Note: For-
mula (3.6) is a close cousin of the “jackknife-after-bootstrap”
method of Efron (1992), the difference being the use of jackknife
rather than our infinitesimal jackknife calculations.

Corollary 1. The ratio s̃dB/ŝdB is given by

s̃dB

ŝdB

= ∥Û
∗∥

∥U∗∥
(3.10)

where Û
∗

is the projection of U∗ into L(Y ∗).

(See Remark A in Section 7 for the proof. Remark B concerns
the relation of Theorem 1 to the Hájek projection.)

The illustration in Figure 4 shows s̃dB/ŝdB as the cosine of
the angle between t∗ − s01 and L(Y ∗). The ratio is a measure
of the nonlinearity of t∗i as a function of the bootstrap counts
Y ∗

ij . Model selection induces discontinuities in t(·), increasing
the nonlinearity and decreasing s̃dB/ŝdB . The 164 ratios shown
as the dashed line in Figure 2 had median 0.91, mean 0.89.
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Figure 4. Illustration of Corollary 1. The ratio s̃dB/ŝdB is the cosine
of the angle between t∗ − s01 (3.9) and the linear space L(Y ∗) spanned
by the centered bootstrap counts (3.2). Model-selection estimators tend
to be more nonlinear, yielding smaller ratios, that is, greater gains from
smoothing.

How many bootstrap replications B are necessary to ensure the
accuracy of s̃dB? The jackknife provides a quick answer: divide
the B replications into J groups of size B/J each, and let s̃dBj be
the estimate (3.6) computed with the jth group removed. Then

c̃vB =

⎡

⎣ J

J − 1

J∑

j=1

(
s̃dBj − s̃dB·

)2

⎤

⎦
1/2 /

s̃dB, (3.11)

s̃dB· =
∑

s̃dBj/J , is the jackknife estimated coefficient of
variation for s̃dB . Applying (3.11) with J = 20 to the first
B = 1000 replications (of the 4000 used in Figure 2) yielded
c̃vB values of about 0.05 for each of the 164 subjects. Going
on to B = 4000 reduced the c̃vB’s to about 0.02. Stopping at
B = 1000 would have been quite sufficient. Note: c̃vB applies to
the bootstrap accuracy of s̃dB as an estimate of the ideal value s̃d
(3.4), not to sampling variability due to randomness in the orig-
inal data y, while s̃dB itself does refer to sampling variability.

Proof of Theorem 1. The “nonparametric delta method” is
the same as the influence function and infinitesimal jackknife
methods described in Chapter 6 of Efron (1982). It is appropri-
ate here because s( y), unlike t( y), is a smooth function of y.
With the original data vector y (2.2) fixed, we can write boot-
strap replication t∗i = t( y∗

i ) as a function T (Y ∗
i ) of the count

vector (3.2). The ideal smoothed bootstrap estimate s0 is the
multinomial expectation of T (Y ∗),

s0 = E{T (Y ∗)}, Y ∗ ∼ Multn(n, p0), (3.12)

p0 = (1/n, 1/n, . . . , 1/n), the notation indicating a multino-
mial distribution with n draws on n equally likely categories.

Now let S( p) denote the multinomial expectation of
T (Y ∗) if the probability vector is changed from p0 to p =
(p1, p2, . . . , pn),

S( p) = E{T (Y ∗)}, Y ∗ ∼ Multn(n, p), (3.13)

so S( p0) = s0. Define the directional derivative

Ṡj = lim
ϵ→0

S( p0 + ϵ(δj − p0)) − S( p0)
ϵ

, (3.14)

δj the jth coordinate vector (0, 0, . . . , 0, 1, 0, . . . , 0), with 1 in
the jth place. Formula (6.18) of Efron (1982) gives

⎛

⎝
n∑

j=1

Ṡ2
j

⎞

⎠
1/2 /

n (3.15)

as the delta method estimate of standard deviation for s0. It
remains to show that (3.15) equals (3.4).

Define wi( p) to be the ratio of the probabilities of Y ∗
i under

(3.13) compared to (3.12),

wi( p) =
n∏

k=1

(npk)Y
∗
ik , (3.16)

so that

S( p) =
B∑

i=1

wi( p)t∗i /B (3.17)

(the factor 1/B reflecting that under p0, all the Y ∗
i ’s have prob-

ability 1/B = 1/nn).
For p(ϵ) = p0 + ϵ(δj − p0) as in (3.14), we calculate

wi( p) = (1 + (n − 1)ϵ)Y
∗
ij (1 − ϵ)

∑
k ̸=j Y ∗

ik . (3.18)

Letting ϵ → 0 yields

wi( p) .= 1 + nϵ(Y ∗
ij − 1) (3.19)

where we have used
∑

k Y ∗
ik/n = 1. Substitution into (3.17)

gives

S ( p(ϵ)) .=
B∑

i=1

[
1 + nϵ(Y ∗

ij − 1)
]
t∗i /B

= s0 + nϵ covj (3.20)

as in (3.5). Finally, definition (3.14) yields

Ṡj = n covj (3.21)

and (3.15) verifies Theorem 1 (3.4). !
The validity of an approximate 95% interval θ̂ ± 1.96σ̂ is

compromised if the standard error σ is itself changing rapidly
as a function of θ . Acceleration â (Efron 1987) is a measure of
such change. Roughly speaking,

â = dσ

dθ

∣∣∣∣
θ̂

. (3.22)

If â = 0.10 for instance, then at the upper endpoint θ̂up = θ̂ +
1.96 σ̂ the standard error will have increased to about 1.196σ̂ ,
leaving θ̂up only 1.64, not 1.96, σ -units above θ̂ . (The 1987
article divides definition (3.22) by 3, as being appropriate after
a normalizing transformation.)

Acceleration has a simple expression in terms of the covari-
ances ĉovj used to calculate s̃dB in (3.6),

â = 1
6

⎡

⎣
n∑

j=1

ĉov3
j

/ (∑
ĉov2

j

)3/2

⎤

⎦ , (3.23)
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Equation (7.3) of Efron (1987). The â’s were small for the 164
s̃dB estimates for the Cholesterol data, most of them falling
between −0.02 and 0.02, strengthening belief in the smoothed
standard intervals µ̃i ± 1.96 s̃dBi (2.11).

Bias is more difficult to estimate than variance, particularly
in a nonparametric context. Remark C of Section 7 verifies the
following promising-looking result: the nonparametric estimate
of bias for the smoothed estimate µ̃ = s( y) (2.8) is

b̃ias = 1
2

cov∗(Q∗
i , t

∗
i ) where Q∗

i =
n∑

k=1

(Y ∗
nk − 1)2,

(3.24)

with cov∗ indicating bootstrap covariance as in (3.5). Unfor-
tunately, b̃ias proved to be too noisy to use in the Cholesterol
example. Section 6 describes a more practical approach to bias
estimation in a parametric bootstrap context.

4. PARAMETRIC BOOTSTRAP SMOOTHING

We switch now from nonparametric to parametric estimation
problems, but ones still involving data-based model selection.
More specifically, we assume that a p-parameter exponential
family of densities applies,

fα(β̂) = eα
′β̂−ψ(α)f0(β̂), (4.1)

where α is the p-dimensional natural or canonical parameter
vector, β̂ the p-dimensional sufficient statistic vector (playing
the role of y in (2.2)), ψ(α) the cumulant generating function,
and f0(β̂) the “carrying density” defined with respect to some
carrying measure (which may include discrete atoms as with the
Poisson family). Form (4.1) covers a wide variety of familiar
applications, including generalized linear models; β̂ is usually
obtained by sufficiency from the original data, as seen in the
next section.

The expectation parameter vector β = Eα{β̂} is a one-to-one
function of α, say β = λ(α), having p × p derivative matrix

dβ

dα
= V (α), (4.2)

where V = V (α) is the covariance matrix covα(β̂). The value
of α corresponding to the sufficient statistic β̂, α̂ = λ−1(β̂), is
the maximum likelihood estimate (MLE) of α.

A parametric bootstrap sample is obtained by drawing iid
realizations β̂∗ from the MLE density fα̂(·),

fα̂(·) iid−→ β̂∗
1 , β̂∗

2 , . . . , β̂∗
B. (4.3)

If µ̂ = t(β̂) is an estimate of a parameter of interest µ, the boot-
strap samples (4.3) provide B parametric bootstrap replications
of µ̂,

µ̂∗
i = t(β̂∗

i ), i = 1, 2, . . . , B. (4.4)

As in the nonparametric situation, these can be averaged to
provide a smoothed estimate,

µ̃ = s(β̂) =
B∑

i=1

t(β̂∗
i )/B. (4.5)

When t(·) involves model selection, µ̂ is liable to an erratic
jumpiness, smoothed out by the averaging process.

The bootstrap replications β̂∗ ∼ fα̂(·) have mean vector and
covariance matrix

β̂∗ ∼ (β̂, V̂ ) [V̂ = V (α̂)]. (4.6)

Let B be the B × p matrix with ith row β̂∗
i − β̂. As before,

we will assume an ideal bootstrap resampling situation where
B → ∞, making the empirical mean and variance of the β̂∗

values exactly match (4.6):

B′1B/B = O and B′ B/B = V̂ , (4.7)

1B the vector of B 1’s.
Parametric versions of Theorem 1 and Corollary 1 depend on

the p-dimensional bootstrap covariance vector between β̂∗ and
t∗ = t( y∗),

cov∗ = B′(t∗ − s01B)/B, (4.8)

where t∗ is the B-vector of bootstrap replications t∗i = t( y∗),
and s0 the ideal smoothed estimate (4.5).

Theorem 2. The parametric delta-method estimate of stan-
dard deviation for the ideal smoothed estimate (4.5) is

s̃d = [cov′
∗ V̂ −1 cov∗]1/2. (4.9)

(Proof given at the end of this section.)

Corollary 2. s̃d is always less than or equal to ŝd, the bootstrap
estimate of standard deviation for the unsmoothed estimate,

ŝd = [∥t∗ − s01B∥2/B]1/2, (4.10)

the ratio being

s̃d/ŝd = B1/2[(t∗ − s01B)′ B(B′ B)−1 B′(t∗ − s01B)]1/2/ŝd.

(4.11)

In the ideal bootstrap case, (4.7) and (4.9) show that s̃d equals
B−1/2 times the numerator on the right-hand side of (4.11). This
is recognizable as the length of projection of t∗ − s01B into the
p-dimensional linear subspace of RB spanned by the columns
of B. Figure 4 still applies, with L(B) replacing L(Y ∗).

If t( y) = µ̂ is multivariate, say of dimension K, then cov∗ as
defined in (4.8) is a p × K matrix. In this case

cov′
∗ V̂ −1 cov∗ (4.12)

(or ĉov′V̄ −1ĉov in what follows) is the delta-method assess-
ment of covariance for the smoothed vector estimate s( y) =∑

t( y∗
i )/B, also called t∗· below.

Only minor changes are necessary for realistic bootstrap com-
putations, that is, for B < ∞. Now we define B as the B × p

matrix having ith row β̂∗
i − β̂∗

· , with β̂∗
· =

∑
β̂∗

i /B, and com-
pute the empirical covariance vector

ĉov = B′(t∗ − t∗· 1B)/B (4.13)

and the empirical bootstrap variance matrix

V̄ = B′ B/B. (4.14)

Then the estimate of standard deviation for the smoothed esti-
mate µ̃ = s(β̂) (4.5) is

s̃dB = [ĉov′V̄ −1ĉov]1/2. (4.15)
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998 Journal of the American Statistical Association, September 2014

Figure 5. Simulation test of Theorem 2, parametric model (4.16)–(4.18), Cholesterol data; 100 simulations, 1000 parametric bootstraps each,
for the 11 subjects indicated at the bottom of Figure 1. Heavy line connects observed empirical standard deviations (4.22); dashes show the 100
estimates s̃d from Theorem 2 (4.15). Light dashed line connects averages of the s̃d values, as discussed in Remark K.

As B → ∞, ĉov → cov∗, and V̄ → V̂ , so s̃dB → s̃d (4.9).
Corollary 2, with s0 replaced by µ̃ (4.5), remains valid.

Figure 5 reports on a simulation test of Theorem 2. This was
based on a parametric model for the Cholesterol data of Figure 1,

y ∼ N164(µ, σ 2), (4.16)

where σ 2 was diagonal, with diagonal elements a cubic function
of compliance c (obtained from a regression precentile fit),

σi = 23.7 + 5.49c − 2.25c2 − 1.03c3, (4.17)

making σi about twice as large to the right as to the left. The
expectation vector µ was taken to be

µ = Xβ̂(6) = µ̂(6), (4.18)

the sixth degree OLS fit for cholesterol decrease as a function of
compliance in (4.16), with X the corresponding 164 × 7 struc-
ture matrix.

Model (4.16)–(4.18) is a 7-parameter exponential family
(4.1), with sufficient statistic

β̂ = G−1X′(σ 2)−1 y [G = X′(σ 2)−1X] (4.19)

and covariance matrix (4.2)

V = G−1, (4.20)

which is all that is necessary to apply Theorem 2.

The simulation began with 100 draws y∗
i , i = 1, 2, . . . , 100,

from (4.16), each of which gave OLS estimate µ̂∗
i = Xβ̂∗

i (6).
Then B = 1000 parametric bootstrap draws were generated
from β̂∗

i ,

y∗∗
ij ∼ N

(
µ̂∗

i , σ
2) , j = 1, 2, . . . , 1000, (4.21)

from which smoothed estimate µ̃i (4.5) and estimated standard
deviation s̃di were calculated according to (4.15). All of this
was done for 11 of the 164 subjects, as indicated in Figure 1.

The dashes in Figure 5 indicate the 100 s̃di values for each of
the 11 subjects. This is compared with the observed empirical
standard deviations of the smoothed estimates,

S̃d =
[

100∑

1

(µ̃i − µ̃·)2 /99

]1/2 [

µ̃· =
100∑

1

µ̃i/100

]

, (4.22)

connected by the heavy solid curve. The s̃d values from Theorem
2 are seen to provide reasonable estimates of S̃d, though with
some bias and variability.

There is more to the story. The empirical standard devia-
tions S̃d are themselves affected by model-selection problems.
Averaging the 100 s̃di values (connected by the dashed line
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Efron: Estimation and Accuracy After Model Selection 999

in Figure 5) gives more dependable results, as discussed in
Remark K.

Proof of Theorem 2. Suppose that instead of fα̂(·) in (4.3)
we wished to consider parametric bootstrap samples drawn from
some other member of family (4.1), fα(·) (α not necessarily the
“true value”). The ratio wi = fα(β̂∗

i )/fα̂(β̂∗
i ) equals

wi = cα,α̂e
Qi where Qi = (α − α̂)′

(
β̂∗

i − β̂
)
, (4.23)

with the factor cα,α̂ not depending on β̂∗
i . Importance sampling

can now be employed to estimate Eα{t(β̂)}, the expectation un-
der fα of statistic t(β̂), using only the original bootstrap repli-
cations (β̂∗

i , t∗i ) from (4.3),

Êα =
B∑

i=1

wit
∗
i

/ B∑

i=1

wi =
B∑

i=1

eQi t∗i

/ B∑

i=1

eQ∗ . (4.24)

Notice that Êα is the value of the smoothed estimate (4.5) at
parameterα, say sα . The delta-method standard deviation for our
estimate sα̂ depends on the derivative vector dsα/dα evaluated
at α = α̂. Letting α → α̂ in (4.23)–(4.24) gives,

sα
.=
∑

(1 + Qi)t∗i /B∑
(1 + Qi)/B

= sα̂ + (α − α̂)′ cov∗, (4.25)

where the denominator term
∑

Qi/B equals 0 for the ideal boot-
strap according to (4.7). (For the nonideal bootstrap,

∑
Qi/B

approaches 0 at rate Op(1/
√

B).)
We see that

dsα

dα

∣∣∣∣
α̂

= cov∗, (4.26)

so from (4.2),

dsα

dβ

∣∣∣∣
α̂

= V̂ −1 cov∗ . (4.27)

Since V̂ is the covariance matrix of β̂∗, that is, of β̂ under
distribution fα=α̂ , (4.6) and (4.27) verify s̃d in (4.9) as the usual
delta-method estimate of standard deviation for s(β̂). !

Theorem 1 and Corollary 1 can be thought of as special cases
of the exponential family theory in this section. The multino-
mial distribution of Y ∗ (3.12) plays the role of fα̂(β̂∗); V̂ in (4.9)
becomes I − 1n1′

n/n (3.3), so that (4.9) becomes (3.4). A tech-
nical difference is that the Multn(n, p) family (3.13) is singular
(that is, concentrated on a n − 1-dimensional subspace of Rn),
making the influence-function argument a little more involved
than the parametric delta-function calculations. More seriously,
the dimension of the nonparametric multinomial distribution in-
creases with n, while for example, the parametric “Supernova”
example of the next section has dimension 10 no matter how
many supernovas might be observed. The more elaborate para-
metric confidence interval calculations of Section 6 failed when
adapted for the nonparametric Cholesterol analysis, perhaps be-
cause of the comparatively high dimension, 164 versus 10.

5. THE SUPERNOVA DATA

Figure 6 concerns a second example we will use to illustrate
the parametric bootstrap theory of the previous section, the Su-
pernova data: the absolute magnitude yi has been determined

for n = 39 Type Ia supernovas, yielding the data

y = (y1, y2, . . . , yn)′. (5.1)

Each supernova has also had observed a vector of spectral ener-
gies xi measured at p = 10 frequencies,

xi = (xi1, xi2, . . . , xi10) (5.2)

for supernova i. The 39 × 10 covariate matrix X, having xi as
its ith row, will be regarded as fixed.

We assume a standard normal linear regression model

y = Xα + ϵ, ϵ ∼ N39(O, I ), (5.3)

referred to as the full model in what follows. [For convenient
discussion, the yi have been rescaled to make (5.3) appropri-
ate.] It has exponential family form (4.1), p = 10, with natural
parameter α, β̂ = X′ y, and ψ = α′X′Xα/2.

Then (X′X)−1β̂ = α̂, the MLE of α, which also equals α̂OLS,
the ordinary least squares estimate of α in (5.3), yielding the
full-model vector of supernova brightness estimates

µ̂OLS = Xα̂OLS. (5.4)

Figure 6 plots yi versus its estimate µ̂OLS,i . The fit looks good,
having an unadjusted R2 of 0.82. Adjusting for the fact that we
have used m = 10 parameters to fit n = 39 data points yields
the more realistic value

R2
adj = R2 − 2 · (1 − R2)

m

n − m
= 0.69; (5.5)

see Remark D.
Type Ia supernovas were used as “standard candles” in the

discovery of dark energy and the cosmological expansion of
the universe (Riess et al. 1998; Perlmutter et al. 1999). Their
standardness assumes a constant absolute magnitude. This is not
exactly true, and in practice regression adjustments are made.
Our 39 supernovas were close enough to Earth to have their
absolute magnitudes ascertained independently. The spectral
measurements x, however, can be made for distant Type Ia
supernovas, where independent methods fail, the scientific goal
being a more accurate estimation function µ̂(x) for their absolute
magnitudes, and improved calibration of cosmic expansion.

We will use the Lasso (Tibshirani 1996) to select µ̂(x). For
a given choice of the nonnegative “tuning parameter” λ, we
estimate α by the Lasso criterion

α̂λ = arg min
α

{

∥ y − Xα∥2 + λ

p∑

k=1

|αk|
}

; (5.6)

α̂λ shrinks the components of α̂OLS toward zero, some of them
all the way. As λ decreases from infinity to 0, the number m of
nonzero components of α̂λ increases from 0 to p. Conveniently
enough, it turns out that m also nearly equals the effective de-
grees of freedom for the selection of α̂λ (Efron et al. 2004). In
what follows we will write α̂m rather than α̂λ.

Table 4 shows a portion of the Lasso calculations for the
Supernova data. Its last column gives R2

adj (5.5) with R2 having
the usual form

R2 = 1 − ∥ y − µ̂m∥2

∥ y − ȳ1∥2

(
˙̂µm = Xα̂m, ȳ =

∑
yi/n

)
. (5.7)
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Figure 6. The Supernova data Absolute magnitudes of n = 39 Type Ia supernovas plotted versus their OLS estimates from the full linear
model (5.3); adjusted R2 (5.5) equals 0.69.

The choice m̂ = 7 maximizes R2
adj,

m̂ = arg max
m

{R2
adj}, (5.8)

yielding our selected coefficient vector α̂m̂ and the correspond-
ing vector of supernova estimates

µ̂ = Xα̂m̂; (5.9)

note that α̂m̂ is not an OLS estimate.
B = 4000 bootstrap replications µ̂∗ were computed (again

many more than were actually needed): bootstrap samples y∗

Table 4. Lasso model selection for the Supernova data. As the
regularization parameter λ in (5.6) decreases from infinity to zero, the
number m of nonzero coordinates of α̂m increases from 0 to 10. The
choice m = 7 maximizes the adjusted R2 value (5.7), making it the

selected model

λ m R2 R2
adj

∞ 0 0 0
63 1 0.17 0.12
19.3 3 0.74 0.70
8.2 5 0.79 0.73
0.496 7 0.82 0.735 (Selected)
0.039 9 0.82 0.71
0 10 0.82 0.69 (OLS)

were drawn using the full OLS model,

y∗ ∼ N39(µ̂OLS, I); (5.10)

see Remark E. The equivalent of Table 4, now based on data y∗,
was calculated, the R2

adj maximizer m̂∗ and α̂∗
m̂∗ selected, giving

µ̂∗ = Xα̂∗
m̂∗ . (5.11)

Averaging the 4000 µ̂∗ vectors yielded the smoothed vector
estimates

µ̃ =
B∑

i=1

µ̂∗
i /B. (5.12)

Standard deviations s̃dBj for supernova j’s smoothed estimate
µ̃j were then calculated according to (4.15), j = 1, 2, . . . , 39.
The ratio of standard deviations s̃dB/ŝdB for the 39 supernovas
ranged from 0.87 to 0.98, with an average of 0.93. Jackknife cal-
culations (3.11) showed that B = 800 would have been enough
for good accuracy.

At this point it pays to remember that s̃dB is a delta-method
shortcut version of a full bootstrap standard deviation for the
smoothed estimator s( y). We would prefer the latter if not for
the computational burden of a second level of bootstrapping.
As a check, a full second-level simulation was run, beginning
with simulated data vectors y∗ ∼ N39(µ̂OLS, I ) (5.10), and for
each y∗ carrying through calculations of s∗ and s̃d

∗
B based on

B = 1000 second-level bootstraps. This was done 500 times,
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Efron: Estimation and Accuracy After Model Selection 1001

Table 5. Percentage of the 4000 bootstrap replications selecting m
nonzero coefficients for α̂∗ in (5.11), m = 1, 2, . . . , 10. The original

choice m = 7 is not quite modal

m 1 2 3 4 5 6 7 8 9 10

% 0 1 8 13 16 18 18 14 9 2

yielding 500 values s∗
k for each of the 39 supernovas, which

provided direct bootstrap estimates say S̃dk for sk . The S̃dk

values averaged about 7.5% larger than the delta-method ap-
proximations s̃dBk . Taking this into account, the reductions in
standard deviation due to smoothing were actually quite small,
the ratios averaging about 98%; see the end of Remark H.

Returning to the original calculations, model selection was
highly variable among the 4000 bootstrap replications. Table 5
shows the percentage of the 4000 replications that selected m
nonzero coefficients for α̂∗ in (5.11), m = 1, 2, . . . , 10, with
the original choice m = 7 not quite being modal. Several of the
supernovas showed effects like that in Figure 3.

Model averaging, that is bootstrap smoothing, still has impor-
tant confidence interval effects even though here it does not sub-
stantially reduce standard deviations. This is shown in Figure 7
of the next section, which displays approximate 95% confidence
intervals for the 39 supernova magnitudes.

Other approaches to bootstrapping Lasso estimates are pos-
sible. Chatterjee and Lahiri (2011), referring back to work by
Knight and Fu (2000), resample regression residuals rather than
using the full parametric bootstrap (5.10). The “m out of n”
bootstrap is featured in Hall, Lee, and Park (2009). Asymptotic
performance, mostly absent here, is a central concern of these
papers; also, they focus on estimation of the regression coeffi-
cients, α in (5.3), a more difficult task than estimating µ = Xα.

6. BETTER BOOTSTRAP CONFIDENCE INTERVALS

The central tactic of this article is the use of bootstrap smooth-
ing to convert an erratically behaved model selection-based
estimator t(·) into a smoothly varying version s(·). Smoothing
makes the good asymptotic properties of the bootstrap, as
extensively developed in Hall (1992), more credible for actual
applications. This section carries the smoothing theme further,
showing how s(·) can be used to form second-order accurate
intervals.

The improved confidence intervals depend on the properties
of bootstrap samples from exponential families (4.1). We define
an “empirical exponential family” f̂α(·) that puts probability

f̂α(β̂∗
i ) = e(α−α̂)′β̂∗

i −ψ̂(α) 1
B

(6.1)

Figure 7. Approximate 95% confidence limits for the 39 supernova magnitudes µk (after subtraction of smoothed estimates µ̃k (5.12));
ABC intervals (solid) compared with smoothed standard intervals µ̃k ± 1.96s̃dk (dashed). Crosses indicate differences between unsmoothed and
smoothed estimates, (5.9) minus (5.12).
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on bootstrap replication β̂∗
i (4.3) for i = 1, 2, . . . , B, where

ψ̂(α) = log

(
B∑

i=1

e(α−α̂)′β̂∗
i

/
B

)

. (6.2)

Here α̂ is fixed as the MLE of α in the original family (4.1),
α̂ = λ−1(β̂) in the notation following (4.2).

The choice of α = α̂ makes f̂α̂(β̂∗
i ) = 1/B for i =

1, 2, . . . , B; in other words, it yields the empirical probability
distribution of the bootstrap sample (4.3) in Rp. Other choices
of α “tilt” the empirical distribution in direction α − α̂; (6.1) is
a direct analogue of the original exponential family (4.1), which
can be re-expressed as

fα(β̂∗) = e(α−α̂)′β̂∗−(ψ(α)−ψ(α̂))fα̂(β̂∗), (6.3)

now with α̂ fixed and β̂∗ the random variable. Notice that
ψ̂(α̂) = 0 in (6.2). Taking this into account, the only difference
between the original family (6.3) and the empirical family (6.1)
is the change in support, from fα̂(·) to the empirical probabil-
ity distribution. Under mild regularity conditions, family f̂α(·)
approaches fα(·) as the bootstrap sample size B goes to infinity.

As in (4.23)–(4.24), let sα be the value of the smoothed statis-
tic we would get if bootstrap samples were obtained from fα
rather than fα̂ . We can estimate sα from the original bootstrap
samples (4.3) by importance sampling in family (4.1),

sα =
B∑

i=1

e(α−α̂)′β̂∗
i t∗i

/ B∑

i=1

e(α−α̂)′β̂∗
i

=
B∑

i=1

f̂α(β̂∗
i )t∗i

(6.4)

without requiring any further evaluations of t(·). (Note that
f̂α(β̂∗

i ) is proportional to wi in (4.24).) The main point here
is that the smoothed estimate sα is the expectation of the values
t∗i , i = 1, 2, . . . , B, taken with respect to the empirical expo-
nential family (6.1).

A system of approximate confidence intervals enjoys second-
order accuracy if its coverage probabilities approach the target
value with errors 1/n in the sample size n, rather than at the
slower rate 1/

√
n of the standard intervals. The ABC system

(“approximate bootstrap confidence” intervals, DiCiccio and
Efron 1992, not to be confused with “approximate Bayesian
computation” as in Fearnhead and Prangle 2012) employs nu-
merical derivatives to produce second-order accurate intervals
in exponential families. Its original purpose was to eliminate
the need for bootstrap resampling. Here, though, we will apply
it to the smoothed statistic s(β̂) =

∑
t(β̂∗

i )/B (4.5) to avoid a
second level of bootstrapping. This is a legitimate use of ABC
because we are working in an exponential family, albeit the
empirical family (6.1).

Three corrections are needed to improve the smoothed stan-
dard interval (2.11) from first- to second-order accuracy: a non-
normality correction obtained from the bootstrap distribution,
an acceleration correction of the type mentioned at (3.22), and
a bias-correction. ABC carries these out via p + 2 numerical
second derivatives of ŝα in (6.4), taken at α = α̂, as detailed
in Section 2 of DiCiccio and Efron (1992). The computational

burden is effectively nil compared with the original bootstrap
calculations (4.3).

Figure 7 compares the ABC 95% limits for the supernova
brightnesses µk, k = 1, 2, . . . , 39, solid lines, with parametric
smoothed standard intervals (2.11), dashed lines. [The smoothed
estimates µ̃k (5.12) have been subtracted from the endpoints
to put all the intervals on the same display.] There are a few
noticeable discrepancies, for supernovas 2, 6, 25, and 27 in
particular, but overall the smoothed standard intervals hold up
reasonably well.

Smoothing has a moderate effect on the Supernova estimates,
as indicated by the values of µ̂k − µ̃k , (5.11) minus (5.12),
the crosses in Figure 7. A few of the intervals would be much
different if based on the unsmoothed estimates µ̂k , for example,
supernovas 1, 12, 17, and 28. Remark I says more about the
ABC calculations.

As a check on the ABC intervals, the “full simulation” near the
end of Section 4, with B = 1000 bootstrap replications for each
of 500 trials, was repeated. For each trial, the 1000 bootstraps
provided new ABC calculations, from which the “achieved sig-
nificance level” asl∗k of the original smoothed estimate µ̃k (5.12)
was computed: that is,

asl∗k = bootstrap ABC confidence level for (−∞, µ̃k). (6.5)

If the ABC construction were working perfectly, asl∗k would
have a uniform distribution,

asl∗k ∼ U (0, 1) (6.6)

for k = 1, 2, . . . , 39.
Table 6 displays quantiles of asl∗k in the 500 trials, for seven

of the 39 supernovas, k = 5, 10, 15, 20, 25, 30, and 35. The re-
sults are not perfectly uniform, showing for instance a moderate
deficiency of small asl∗k values for k = 5, but overall the results
are encouraging. A U (0, 1) random variable has mean 0.500 and
standard deviation 0.289, while all 3500 asl∗k values in Table 6
had mean 0.504 and standard deviation 0.284.

The ABC computations are local, in the sense that the im-
portance sampling estimates sα in (6.4) need only be evaluated
for α very near α̂. This avoids the familiar peril of importance
sampling, that the sampling weights in (6.4) or (4.1) may vary
uncontrollably in magnitude.

Table 6. Simulation check for ABC intervals; 500 trials, each with
B = 1000 bootstrap replications. Columns show quantiles of

achieved significance levels asl∗k (6.5) for supernovas
k = 5, 10, . . . , 35; last column for all seven supernovas combined. It

is a reasonable match to the ideal uniform distribution (6.6)

Quantile SN5 SN10 SN15 SN20 SN25 SN30 SN35 ALL

0.025 0.04 0.02 0.04 0.00 0.04 0.03 0.02 0.025
0.05 0.08 0.04 0.06 0.04 0.08 0.06 0.06 0.055
0.1 0.13 0.08 0.11 0.10 0.12 0.10 0.12 0.105
0.16 0.20 0.17 0.18 0.16 0.18 0.18 0.18 0.175
0.5 0.55 0.50 0.54 0.48 0.50 0.48 0.50 0.505
0.84 0.84 0.82 0.82 0.84 0.84 0.84 0.84 0.835
0.9 0.90 0.88 0.90 0.88 0.90 0.90 0.90 0.895
0.95 0.96 0.94 0.96 0.94 0.94 0.94 0.94 0.945
0.975 0.98 0.97 0.98 0.98 0.96 0.98 0.97 0.975
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Efron: Estimation and Accuracy After Model Selection 1003

If one is willing to ignore the peril, full bootstrap standard
errors for the smoothed estimates µ̃ (4.5), rather than the delta-
method estimates of Theorem 2, become feasible: in addition to
the original parametric bootstrap samples (4.3), we draw J more
times, say

fα̂(·) −→ β̃∗
1 , β̃∗

2 , . . . , β̃∗
J , (6.7)

and compute the corresponding natural parameter estimates
α̃∗

j = λ−1(β̃∗
j ), as following (4.2). Each α̃∗

j gives a bootstrap
version of the smoothed statistic sα̃∗

j
, using (6.4), from which

we calculate the usual bootstrap standard error estimate,

s̃dboot =

⎡

⎣
J∑

j=1

(sα̃∗
j
− s·)2/(J − 1)

⎤

⎦
1/2

, (6.8)

where s· =
∑

sα̃∗
j
/J . Once again, no further evaluations of t(·)

beyond the original ones in (4.5) are required.
Carrying this out for the Supernova data gave standard errors

s̃dboot a little smaller than those from Theorem 2, as opposed to
the somewhat larger ones found by the full simulation near the
end of Section 5. Occasional very large importance sampling
weights in (6.4) did seem to be a problem here.

Compromises between the delta method and full bootstrap-
ping are possible. For the normal model (5.3) we have β̃∗

j ∼
N (β̂, X′X) in (6.7). Instead we might take

β̂∗
j ∼ N

(
β̂, cX′X

)
(6.9)

with c less than 1, placing α̃∗
j nearer α̂. Then (6.8) must be

multiplied by 1/
√

c. Doing this with c = 1/9 gave standard
error estimates almost the same as those from Theorem 2.

7. REMARKS, DETAILS, AND PROOFS

This section expands on points raised in the previous discus-
sion.

A. Proof of Corollary 1 With Y ∗ = (Y ∗
ij ) as in (3.2), let

X = Y ∗ − 1B1′
n = (Y ∗

ij − 1). For the ideal bootstrap, B = nn,

X ′ X/B = I − 1′
n1n, (7.1)

the multinomial covariance matrix in (3.3). This has (n − 1)
nonzero eigenvalues all equaling 1, implying that the singular
value decomposition of X is

X =
√

BL R′, (7.2)

L and R orthonormal matrices of dimensions B × (n − 1) and
n × (n − 1). Then the B-vector U∗ = (t∗i − s0) has projected
squared length into L(X)

U∗′LL′U∗ = BU∗′ L
√

B R′ R
√

BL′

B2
U∗

= B(U∗′ X/B)(X ′U∗/B) = B s̃d
2
, (7.3)

verifying (3.10).

B. Hájek projection and ANOVA decomposition For the ideal
nonparametric bootstrap of Section 3, define the conditional
bootstrap expectations

ej = E∗{t( y∗
i )|y∗

ik = yj }, (7.4)

j = 1, 2, . . . , n (not depending on k). The bootstrap ANOVA
decomposition of Efron (1983, sec. 7) can be used to derive an
orthogonal decomposition of t( y∗),

t( y∗
i ) = s0 + L∗

i + R∗
i , (7.5)

where s0 = E∗{t( y∗)} is the ideal smoothed bootstrap estimate,
and

L∗
i =

n∑

j=1

Y ∗
ij (ej − s0), (7.6)

while R∗
i involves higher-order ANOVA terms such as ejl −

ej − el + s0 with

ejl = E∗{t( y∗
i )|y∗

ik = yj and y∗
im = yk}. (7.7)

The terms in (7.5) satisfy E∗{L∗} = E∗{R∗} = 0 and are or-
thogonal, E∗{L∗R∗} = 0. The bootstrap Hájek projection of
t( y∗) (Hájek 1968) is then the first two terms of (7.5), say

H ∗
i = s0 + L∗

i . (7.8)

Moreover, it can be shown that

L∗
i =

n∑

j=1

Y ∗
ij covj (7.9)

from (3.5) and the ratio of smoothed-to-unsmoothed standard
deviation (3.10) equals

s̃dB/ŝdB = [var∗{L∗
i }/(var∗{L∗

i } + var∗{R∗
i })]1/2. (7.10)

C. Nonparametric bias estimate There is a nonparametric
bias estimate b̃iasB for the smoothed statistic s( y) (2.8) corre-
sponding to the variability estimate s̃dB . In terms of T (Y ∗) and
S( p) (3.13)–(3.14), the nonparametric delta method gives

b̃iasB = 1
2

n∑

j=1

S̈j

n2
, (7.11)

where S̈j is the second-order influence value

S̈j = lim
ϵ→0

× S( p0 + ϵ(δj − p0)) − 2S( p0) + S( p0 − ϵ(δj − p0))
ϵ2

.

(7.12)

See section 6.6 of Efron (1982).
Without going into details, the Taylor series calculation

(3.18)–(3.19) can be carried out one step further, leading to
the following result:

b̃iasB = cov∗(D∗
i , t

∗
i ), (7.13)

where D∗
i =

∑n
1(Y ∗

ij − 1)2.
This looks like a promising extension of Theorem 1

(3.4)–(3.5). Unfortunately, (7.13) proved unstable when applied
to the Cholesterol data, as revealed by jackknife calculations
like (3.11). Things are better in parametric settings; see Remark
I. There is also some question of what “bias” means with model
selection-based estimators; see Remark G.

D. Adjusted R2 Formula (5.5) for R2
adj, not the usual def-

inition, is motivated by OLS estimation and prediction in a
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homoscedastic model. We observe

y ∼ (µ, σ 2 I) (7.14)

and estimate µ by µ̂ = M y, where the n × n symmetric matrix
M is idempotent, M2 = M. Then σ̂ 2 = ∥ y − µ̂∥2/(n − m), m
the rank of M, is the usual unbiased estimate of σ 2. Letting y◦

indicate an independent new copy of y, the expected prediction
error of µ̂ is

E{∥ y◦ − µ̂∥2} = E{∥ y − µ̂∥2 + 2mσ̂ 2} (7.15)

as in (2.6). Finally, the usual definition of R2,

R2 = 1 − ∥ y − µ̂∥2 / ∥ y − ȳ1∥2 (7.16)

is adjusted by adding the amount suggested in (7.15),

R2
adj = 1 − {∥ y − µ̂∥2 + 2mσ̂ 2}/ ∥ y − ȳ1∥2 , (7.17)

and this reduces to (5.5).

E. Full-model bootstrapping The bootstrap replications
(5.10) are drawn from the full model, y∗ ∼ N39(µ̂OLS, I), rather
than say the smoothed Lasso choice (5.12), y∗ ∼ N39(µ̃, I).
This follows the general development in Section 4 (4.3) and,
less obviously, the theory of Sections 2 and 3, where the “full
model” is the usual nonparametric one (2.3).

An elementary example, based on section 10.6 of Hjort and
Claeskens (2003), illustrates the dangers of bootstrapping from
other than the full model. We observe y ∼ N (µ, 1), with MLE
µ̂ = t(y) = y, and consider estimating µ with the shrunken
estimator µ̃ = s(y) = cy, where c is a fixed constant 0 < c < 1,
so

µ̃ ∼ N (cµ, c2). (7.18)

Full-model bootstrapping corresponds to y∗ ∼ N (µ̂, 1), and
yields µ̃∗ = cy∗ ∼ N (cµ̂, c2) as the bootstrap distribution.

However the “model-selected bootstrap” y∗ ∼ N (µ̃, 1) yields

µ̃∗ ∼ N (c2µ̂, c2), (7.19)

squaring the amount of shrinkage in (7.18).
Returning to the Supernova example, the Lasso is itself a

shrinkage technique. Bootstrapping from the Lasso choice µ̃
would shrink twice, perhaps setting many more of the coordinate
estimates to zero.

F. Bias of the smoothed estimate In situations without model
selection there is a simple asymptotic expression for the bias of
the bootstrap smoothed estimator in exponential families, fol-
lowing DiCiccio and Efron (1992). The schematic diagram of
Figure 8 shows the main elements: the observed vector y, expec-
tation µ, generates the bootstrap distribution of y∗, indicated by
the dashed ellipses. A parameter of interest θ = t(µ) has MLE
θ̂ = t( y). Isoplaths of constant value for t(·) are indicated by
the solid curves in Figure 8.

The asymptotic mean and variance of the MLE θ̂ = t( y) as
sample size n grows large are of the form

θ̂ ∼
(
θ + b(µ)

n
,
c2(µ)

n

)
+ Op(n−3/2). (7.20)

Here the bias b(µ)/n is determined by the curvature of the
level surfaces near µ. Then it is not difficult to show that the
ideal smoothed bootstrap estimate θ̃ =

∑
t( y∗

i )/B, B → ∞,
has mean and variance

θ̃ ∼
(
θ + 2

b(µ)
n

,
c2(µ)

n

)
+ Op(n−3/2). (7.21)

So smoothing doubles the bias without changing variance. This
just says that smoothing cannot improve on the MLE θ̂ in the
already smooth asymptotic estimation context of Figure 8.

G. Two types of bias The term b(µ)/n in (7.20) repre-
sents “statistical bias,” the difference between the expected
value of t(µ̂) and t(µ). Model-selection estimators also involve

Figure 8. Schematic diagram of large-sample bootstrap estimation in situations without model selection. Observed vector y has expectation
µ. Ellipses indicate bootstrap distribution of y∗ given µ̂ = y. Parameter of interest θ = t(µ) is estimated by θ̂ = t( y). Solid curves indicate
surfaces of constant value of t(·).
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Efron: Estimation and Accuracy After Model Selection 1005

Figure 9. Estimation after model selection. The regions indicate different model choices. Now the curves of constant estimation jump
discontinuously as y crosses regional boundaries.

“definitional bias”: we wish to estimate θ = T (µ), but for rea-
sons of robustness or efficiency we employ a different func-
tional θ̂ = t( y), a homely example being the use of a trimmed
mean to estimate an expectation. The ABC bias correction men-
tioned in Section 6 is correcting the smoothed standard interval
µ̃ ± 1.96s̃eB for statistical bias. Definitional bias can be esti-
mated by t( y) − T ( y), but this is usually too noisy to be of help.
Section 2 of Berk et al. (2012) makes this point nicely (see their
discussion of “target estimation”) and I have followed their lead
in not trying to account for definitional bias. See also Bühlmann
and Yu (2002), Definition 1.2, for an asymptotic statement of
what is being estimated by a model-selection procedure.

H. Selection-based estimation The introduction of model se-
lection into the estimation process disrupts the smooth properties
seen in Figure 8. The wedge-shaped regions of Figure 9 indicate
different model choices, for example, linear, quadratic, cubic,
etc., regressions for the Cholesterol data. Now the surfaces of
constant estimation jump discontinuously as y crosses regional
boundaries. Asymptotic properties, such as (7.20)–(7.21), are
less convincing when the local geometry near the observed y
can change abruptly a short distance away.

The bootstrap ellipses in Figure 9 are at least qualitatively
correct for the Cholesterol and Supernova examples, since in
both cases a wide bootstrap variety of regions were selected. In
this article, the main purpose of bootstrap smoothing is to put
us back into Figure 8, where for example the standard intervals
(2.11) are more believable. (Note: Lasso estimates are continu-
ous, though nondifferentiable, across region boundaries, giving
a picture somewhere between Figures 8 and 9. This might help

explain the smooth estimators’ relatively modest reductions in
standard error for the Supernova analysis.)

Bagging amounts to replacing the discontinuous isoplaths of
θ = t(µ) with smooth ones, say for θbag = s(µ). The standard
deviations and approximate confidence intervals of this article
apply to θbag, ignoring the possible definitional bias.

I. The ABC intervals The approximate bootstrap confidence
limits in Figure 7 were obtained using the ABCq algorithm, as
explained in detail in section 2 of DiCiccio and Efron (1992).
In addition to the acceleration a and bias-correction constant z0,
ABCq also calculates cq : in a one-parameter exponential family
(4.1), cq measures the nonlinearity of the parameter of interest
θ = t(β) as a function of β, with a similar definition applying in
p dimensions. The algorithm involves the calculation of p + 2
numerical second derivatives of sα (6.4) carried out at α = α̂.
Besides a, z0, and cq , ABCq provides an estimate of statistical
bias for sα .

If (α, z0, cq) = (0, 0, 0), then the ABCq intervals match
the smoothed standard intervals (2.11). Otherwise, correc-
tions are made to achieve second-order accuracy. For instance
(a, z0, cq) = (0,−0.1, 0) shifts the standard intervals leftwards
by 0.1 − σ̂ . For all three constants, values outside of ±0.1 can
produce noticeable changes to the intervals.

Table 7 presents summary statistics of a, z0, cq , and bias
for the 39 smoothed Supernova estimates µ̃k . The differences
between the ABCq and smoothed standard intervals seen in
Figure 7 were primarily due to z0.

J. Bias correction for s̃dB The nonparametric standard de-
viation estimate s̃dB (3.7) is biased upward for the ideal value
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Table 7. Summary statistics of the ABCq constants for the 39
smoothed Supernova estimates µ̃k (5.12)

a z0 cq Bias

Mean 0.00 0.00 0.00 0.00
St. dev. 0.01 0.13 0.04 0.06
Lowest −0.01 −0.21 −0.07 −0.14
Highest 0.01 0.27 0.09 0.12

s̃d (3.4), but it is easy to make a correction. Using notation
(3.3)–(3.9), define

Z∗
ij = (Y ∗

ij − 1)(t∗i − s0). (7.22)

Then Z∗
ij has bootstrap mean covj (3.5) and bootstrap variance

say (2
j . A sample of B bootstrap replications yields bootstrap

moments

ĉovj = 1
B

B∑

i=1

Z∗
ij ∼∗

(
covj ,(

2
j /B

)
, (7.23)

so

E∗s̃d
2
B = s̃d

2 + 1
B

n∑

j=1

(2
j . (7.24)

Therefore, the bias-corrected version of s̃d
2
B is

s̃d
2
B − 1

B2

n∑

j=1

B∑

i=1

(Z∗
ij − ĉovj )2. (7.25)

K. Improved estimates of the bagged standard errors The
simulation experiment of Figure 5 can also be regarded as a
two-level parametric bootstrap procedure, with the goal of better
estimating sd(µ̃k), the bagged standard deviations for subjects
k = 1, 2, . . . , 11 in the Cholesterol study. Two possible esti-
mates are shown: (1) the empirical standard deviation S̃d (4.22),
solid curve, and (2) the average s̃d· of the 100 second-level s̃di

values (4.15), dashed curve. There are two reasons to prefer the
latter.

The first has to do with the sampling error of the standard
deviation estimates themselves. This was about 10 times larger
for S̃d than s̃d·, for example, 5.45 ± 0.35 compared to 5.84 ±
0.03 for subject 1. (Note: The two curves in Figure 5 do not
differ significantly at any point.)

The second and more important reason has to do with the
volitility of model-selection estimates and their standard errors.
Let σ (β) denote the standard deviation of a bagged estimator µ̃

in a parametric model such as (4.16)–(4.17). The unknown true
parameter β0 has yielded the observed value β̂, and then boot-
strap values β̂∗

i , i = 1, 2, . . . , 100, and second-level bootstraps
β̂∗

ij , j = 1, 2, . . . , 1000. The estimate s̃d100 obtained from the
β̂∗

i ’s (4.15) is a good approximation to σ (β̂). The trouble is that
the functional σ (β) is itself volatile, so that σ (β̂) may differ
considerably from the “truth” σ (β0).

This can be seen at the second level in Figure 5, where the
dashes indicating s̃di values, i = 1, 2, . . . , 100, vary consider-
ably. (This is not due to the limitations of using B = 1000 repli-
cations; the bootstrap “internal variance” component accounts
for only about 30% of the spread.) Broadly speaking, β̂∗

i values

that fall close to a regime boundary, say separating the choice
of “Cubic” from “Quartic,” had larger values of σ (β̂∗

i ) .= s̃di .
The preferred estimate s̃d· effectively averages σ (β̂∗

i ) over the
parametric choice of β̂∗

i and β̂. Another way to say this is that
s̃d· is a flat-prior Bayesian estimate of σ (β0), given the data β̂.
See Efron (2012).

Of course s̃d· requires much more computation than s̃dB

(4.15). Our 100 × 1000 analysis could be reduced to 50 × 500
without bad effect, but that is still 25,000 resamples. In fact,
s̃d· was not much different from s̃dB in this example. The dif-
ference was larger in the nonparametric version of Figure 5,
which showed substantially greater bias and variability, making
the second level of bootstrapping more worthwhile.

[Received August 2012. Revised April 2013.]
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Comment
Lan WANG, Ben SHERWOOD, and Runze LI

We congratulate Efron for his stimulating and timely work
that addresses an important issue on estimation after model se-
lection. In practice, it is typical to ignore the variability of the
variable selection step, which could result in inaccurate post-
selection inference. Although the flaw of this practice is widely
recognized, finding a general solution is extremely challenging.
The model selection step is often a complex decision process
and can involve collecting expert opinions, preprocessing, ap-
plying a variable selection rule, data-driven choice of one or
more tuning parameters, among others. Except in simple cases,
explicitly characterizing the form of the post-selection estimator
is itself difficult. The key result of this article is a closed-form
formula for obtaining the standard deviation of a “bootstrap
smoothed” (or “bagged”) estimator. This elegant formula is not
only simple to implement but also versatile. It indeed provides a
general approach for obtaining a confidence interval for a class
of parameters of interest while incorporating the variability of
variable selection.

Our discussions will focus on two aspects: (1) the generality
of the method, and (2) further insight into the performance of
the proposed method in a simple but, we hope, informative
example.

1. GENERALITY OF THE METHOD

In principle, the standard deviation formula in Efron’s The-
orem 1 can be applied to general “bootstrap smoothed” (or
“bagged”) estimators. As the central example of the article is
traditional linear regression, we empirically investigate the per-
formance of the proposed estimator in a variety of regression
settings where the proposed method is expected to be useful

Lan Wang (E-mail: wangx346@umn.edu) is Associate Professor and Ben
Sherwood (E-mail: sher0422@umn.edu) is graduate student, School of Statis-
tics, University of Minnesota, Minneapolis, MN 55455. Runze Li is Dis-
tinguished Professor, Department of Statistics and the Methodology Center,
the Pennsylvania State University, University Park, PA 16802-2111 (E-mail:
rzli@psu.edu). Wang and Sherwood’s research is supported by an NSF grant
DMS1308960. Li’s research is supported by NIDA, NIH grants P50 DA10075
and P50 DA036107. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the NIDA or the NIH.

through Monte Carlo simulations. In particular, we will con-
sider: (1) LASSO (least absolute shrinkage and selection op-
erator; Tibshirani 1996) and SCAD (smoothly clipped absolute
deviation; Fan and Li 2001) for linear regression, (2) Poisson re-
gression as a representative example of generalized linear mod-
els, (3) quantile regression for predicting a conditional quantile,
and (4) nonparametric regression where we apply a data-driven
method to select the number of spline basis functions (this last
example was motivated by a discussion with Professor Xuming
He).

For each of the four cases, we construct confidence intervals
for the conditional mean (or quantile) using the new method
proposed in Efron’s article (denoted by “new”). We compare
the new method with the standard bootstrap confidence interval
(denoted by “standard”) and the percentile interval (denoted by
“percentile”), as described in Efron’s article.

1.1 Several Numerical Examples

Example 1. (Regularized estimators for linear regression).
The response variable is generated from the model Y = 1 +
X1 − X3 + X6 + ϵi , where the candidate covariates X1, . . . , X6

are independent standard normal random variables. The random
error ϵ is normally distributed with mean zero and standard
deviation 2, and is independent of the covariates. The sample
size is n = 200. The main goal is to study the proposed method
when regularized methods such as LASSO and SCAD are used
to obtain the selected model. We implement LASSO using the
R package glmnet and implement SCAD using the coordinate
descent algorithm in the R package ncvreg. For LASSO, we
use five-fold cross-validation to select the tuning parameter;
while for SCAD we apply BIC (Bayesian information criterion;
Wang, Li, and Tsai 2007) for selecting the tuning parameter. For
completeness, we also include best subset selection procedures
based on Cp, Akaike information criterion (AIC), and BIC.

© 2014 American Statistical Association
Journal of the American Statistical Association

September 2014, Vol. 109, No. 507, Theory and Methods
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Table 1. Linear regression

Method Interval type Center Length Coverage

Cp New −1.58 3.25 0.98
Percentile −1.58 3.46 0.98
Standard −1.54 3.46 1.00

AIC New −1.58 3.26 0.97
Percentile −1.58 3.46 0.98
Standard −1.54 3.46 1.00

BIC New −1.56 2.93 0.98
Percentile −1.56 3.23 0.98
Standard −1.52 3.22 0.99

LASSO New −1.47 3.33 0.96
Percentile −1.49 3.39 0.97
Standard −1.40 3.38 0.95

SCAD New −1.55 2.97 0.98
Percentile −1.55 3.25 0.98
Standard −1.51 3.24 0.99

We consider the 95% confidence interval for esti-
mating the conditional mean at X = (−2.5,−2.5,−2.5,

−2.5,−2.5,−2.5)′. The results are summarized in Table 1
based on 4000 bootstrap samples. We assess the performance by
the length of the confidence interval and its coverage probability
(reported in the last two columns of the table). The third column
reports the center of the confidence interval.

Example 2. (Poisson regression). The response variable is
generated from the model Y | X ∼ Poisson(e1+X−X2

), where X
has a standard normal distribution. The sample size is n = 400.
We use AIC and BIC for model selection. For candidate models,
we consider different polynomial degrees of X, from linear to
sextic. The results for the confidence interval for estimating
E[Y | X = −2] are reported in Table 2 based on 6000 bootstrap
runs.

Example 3. (Quantile regression). The response variable
is generated from the heteroscedastic regression model
Y = 1 + 3X1 − 1.5X3 + 2X6 + (1 + X2)ϵ, where the Xi’s, i =
1, . . . , 6, are independent and uniformly distributed on (0, 1).
The random error ϵ has a standard normal distribution and is
independent of the Xi’s. The sample size is n = 200.

We considered AIC and BIC for model selection, which
are based on the quantile loss function and programmed in
the quantreg package in R. Penalized quantile regression with
LASSO or SCAD penalty is also considered. The results for the
confidence interval for estimating the 0.7 conditional quantile
at X = (0.9, . . . , 0.9)′ are reported in Table 3 based on 4000
bootstrap runs.

Table 2. Poisson regression

Method Interval type Center Length Coverage

AIC New 20.13 3.09 0.97
Percentile 20.14 3.75 0.99
Standard 20.18 3.71 0.99

BIC New 20.12 2.07 0.97
Percentile 20.13 2.56 0.97
Standard 20.11 2.54 0.98

Table 3. Quantile regression

Method Interval type Center Length Coverage

AIC New 5.10 1.85 0.95
Percentile 5.11 2.12 0.98
Standard 5.08 2.12 1.00

BIC New 5.07 1.77 0.94
Percentile 5.09 2.12 0.97
Standard 5.05 2.13 0.97

LASSO New 5.00 1.73 0.94
Percentile 5.02 2.00 0.95
Standard 5.03 2.02 0.96

SCAD New 5.06 1.77 0.94
Percentile 5.08 2.11 0.98
Standard 5.05 2.12 0.97

Example 4. (Nonparametric regression). The response vari-
able is generated from the regression model Y = 1 +
X2exp(X) + ϵ, where X is uniformly distributed on (0, 1). The
random error ϵ is normally distributed with mean zero and stan-
dard deviation 2, and is independent of X. The sample size is
n = 100.

We estimate the nonparametric regression function via B-
spline regression. We select the number of knots (ranging from
1 to 5) by a BIC criterion. More specifically, let ν represent
the number of degrees of freedom of a candidate model and let
σ̂ 2
ν be the estimate of σ 2 for the corresponding model. We se-

lect the model that minimizes BIC(ν) = n log(σ̂ 2
ν ) + ν log(n),

see, for example, He and Shi (1996). The results for the confi-
dence interval for estimating the conditional mean at X = 0.9
are reported in Table 4 based on 4000 bootstrap runs.

1.2 Observations From the Numerical Examples

In the above examples, we observe that the new confidence
interval proposed in Efron’s article provides a more accurate
confidence interval for all cases and keeps better coverage rates
for most cases than the standard interval and the percentile
interval when the estimator is obtained after variable selection.

From our limited simulation experience, we note that the
choice of the number of bootstrap samples is important to the
performance of the new method. A suitable choice of B can vary
depending on the underlying model and the amount of noise in
the data. We find that B = 4000 works reasonably well for most
of the situations we have considered.

An interesting observation from our simulations is that the
new method can also be useful for regularized procedures, in
particular SCAD, when the tuning parameter is chosen in a
data-driven fashion. It is known that the “bootstrap smoothed”
(or “bagged”) estimators are most valuable when hard decision
rules (such as best subset selection, decision trees) are involved,
which result in instability in prediction. In practice, when a

Table 4. Nonparametric regression

Interval type Center Length Coverage

New 2.99 1.83 0.93
Percentile 2.99 2.18 0.97
Standard 2.99 2.16 0.97
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regularization procedure such as LASSO or SCAD is applied,
the tuning parameter is often selected by cross-validation or a
modified BIC, which introduces extra variability in the final es-
timator. Although the improvement over LASSO is sometimes
marginal as Efron has pointed out, it may still be worthwhile (in
the quantile regression example, we observe a 15% reduction of
interval length for LASSO). For SCAD, with the tuning param-
eter being selected by BIC, the improvement is more significant.
Our simulation experience, including that not reported here due
to space limitation, indicates that the gain of the new method is
more pronounced when the sample size is smaller and the data
are noisier.

2. FURTHER INSIGHT FROM A SIMPLE EXAMPLE

Next, we will consider Efron’s main example in the orthogo-
nal regression case, which sheds some light on its performance.
Let Y be the n × 1 vector of responses and X = (X1, . . . , Xp)T

be the design matrix. It is assumed that XT X = nIn, where In

is the n × n identity matrix. The least-square estimator for βj is
β̂j = n−1XT

j Y.

For a given model M, where M denotes an index set for the
covariates in the model, Mallow’s Cp is defined as Cp(M) =
(Y − XM β̂M )T (Y − XM β̂M ) + 2σ 2|M|, where XM denotes the

submatrix of X corresponding to M, and βM denotes the least-
square estimator for model M. In the orthogonal regression case,
it is easy to see

Cp(M) = Y T Y +
∑

j∈M

(
− nβ̂2

j + 2σ 2).

As a result, Cp selects all Xj such that −nβ̂2
j + 2σ 2 < 0. Hence,

given a vector of covariates x = (x(1), . . . , x(p)), the estimator
of E(Y |X = x) obtained after applying Mallow’s Cp criterion
can be written as

p∑

j=1

x(j )β̂j I (|β̂j | > σ
√

2/n).

Since the effect of each covariate is additive, we consider the
univariate case in the following discussion. The post-selection
estimator of the conditional mean at x is

tn(Y |x) = xβ̂I (|β̂| > σ
√

2/n).

The bootstrap smoothed estimator given by Efron is

sn(Y |x) = B−1
B∑

i=1

tn(Y ∗|x),

where Y ∗ is the bootstrap sample.
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Figure 1. Comparing Efron’s estimator with the theoretical value.
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The asymptotic distribution of sn(Y |x) is known under a lo-
cal asymptotic framework. Assume that Yi = βXi + ϵi , where
β = βn(b) = bσn−1/2 for some constant b, X1, . . . , Xn are iid
random variables with E(X2

i ) = 1, ϵ1, . . . , ϵn are iid and inde-
pendent from the Xi’s, E(ϵi) = 0, var(ϵi) = σ 2 < ∞. It follows
Proposition 2.2 of Bühlmann and Yu (2002) that,

n1/2σ−1sn(Y |x) → gB(Zb|x)

in distribution, where Zb = b + Z, Z ∼ N (0, 1), and gB(z|x) =
(z − {z$(

√
2 − z) − φ(

√
2 − z) − z$(−

√
2 − z) + φ(−

√
2

− z)})x, with $ and φ denoting the distribution function
and density function of the standard normal distribution,
respectively. The theory thus suggests that the bootstrap
smoothed estimator has approximate standard deviation
n−1/2σ × sd(gB(z|x)), where sd(gB(z|x)) denotes the standard
deviation of the distribution given by gB(z|x).

In Figure 1, we compare the estimated standard deviation of
sn(Y |x) using Efron’s formula with that obtained from the above
asymptotic distribution (based on simulating the distribution of
gB(z|x)) for different values of b at x = −1 and 3, for sample
sizes n = 500 and 1000. The two curves are quite close to each
other, suggesting that Efron’s estimator performs well in this
setting. It is noted that AIC and BIC can be analyzed similarly
in the orthogonal design case.

3. CONCLUSIONS

Two intriguing questions about Efron’s new procedure are:
(1) Is it possible to derive the asymptotic property, such as
consistency? (2) Can the nonparametric delta method used for

deriving the standard deviation formula be extended to the case
the number of covariates pn grows with n? Positive answers to
these questions will greatly extend the scope of the application
of the new method.

As the bootstrap-smoothed estimator combines estimators
from different candidate models, it may be applicable to sit-
uations where we would like to seek inference for a particular
parameter of one selected model, unless such a parameter is
common to all models. However, we demonstrated that Efron’s
estimator is useful in a variety of settings when prediction is the
goal. Even for a “soft” procedure such as LASSO or SCAD,
it can sometimes have notable improvement over existing
procedures, when the tuning parameter of such a procedure
is selected by a data-driven method.

We greatly appreciate the opportunity of discussing this stim-
ulating work and congratulate the author for his important con-
tributions to this challenging problem.
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Comment
Dimitris N. POLITIS

1. WHICH BOOTSTRAP?

Professor Brad Efron, a pioneer in the recasting of modern
statistics in its current computer-intensive framework, has given
us another important and thought-provoking piece of work. To
discuss it, consider the standard additive regression model

Yj = µp(xj ) + εj for j = 1, . . . , n, (1)

where Y1, . . . , Yn are the data, εj are the errors assumed iid
(0, σ 2), and xj is a length p vector of explanatory (predictor)
variables associated with the observation Yj . The function µp(·)
is unknown but assumed to belong to a certain class of functions,
which is either finite-dimensional or not. For simplicity, let us
focus on the simple case where µp(·) is affine in its arguments,
that is, µp(xj ) = β0 + x ′

jβp
with β

p
= (β1, . . . ,βp)′. Also for

simplicity assume that the p coordinates of xj are ranked in

Dimitris N. Politis is Professor of Mathematics and Adjunct Professor of
Economics, Department of Mathematics, University of California, San Diego,
La Jolla, CA 92093-0112 (E-mail: dpolitis@ucsd.edu).

terms of their importance so that model selection is tantamount
to choosing the order p; this is the case with the polynomial
regression example of the cholesterol data.

In the above, the regressor xj is most often thought of as
deterministic, and µp(xj ) has the interpretation of expected
value of the response Yj associated with regressor xj . But if the
regressors are random, then Efron’s setup where the pairs

(Yj , xj ) for j = 1, . . . , n are iid (2)

is appropriate. In that case, Equation (1) still applies by defin-
ing µp(xj ) to be the (theoretical) orthogonal projection of Yj

onto the linear span of the elements of xj (plus a constant), and
letting Equation (1) serve as the definition of εj , which would
then be uncorrelated with xj . Of course, under joint normality
of (Yj , xj ), the projection µp(xj ) would equal the conditional

© 2014 American Statistical Association
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expectation E(Yj |xj ) since the latter would be affine as a func-
tion of xj ; in this case the εj would be normal as well, and
independent of xj .

In the cholesterol example, it is obvious that even though the
(transformed) compliance variable may be normally distributed,
when raised to the power of two or higher it will not be. However,
the assumption of normality is innocuous if it is just used as a
trick to derive the orthogonal projection via the simple formula
for Gaussian conditional expectations. Note that it is possible to
avoid the assumption of normality but still retain the linearity
of E(Yj |xj ). A simple way of doing that is to assume that
Equation (1) is true with µp(xj ) = β0 + x ′

jβp
and εj being iid

(0, σ 2) as before, coupled with the “exogeneity” assumption
that x1, . . . , xn are iid and independent of {ε1, . . . , εn}.

The two aforementioned viewpoints on the same scatter-
plot motivate the two most popular bootstrap methods for ho-
moscedastic regression, namely, the residual bootstrap and the
pairs bootstrap. The latter is a straightforward implication of
Equation (2). By contrast, the residual bootstrap keeps the xj

fixed, and creates pseudo-data using Equation (1), that is, letting

Y ∗
j = β̂0 + x ′

j β̂p
+ ε∗

j for j = 1, . . . , n, (3)

where β̂0, β̂p
are the least-square (LS) estimators of β0,βp

, and
ε∗
j is a random draw from the set of fitted residuals {e1, . . . , en}

with ej = Yj − β̂0 − x ′
j β̂p

. Bose and Chatterjee (2002) re-
viewed and compared several different resampling methods for
linear regression including the pairs and residual bootstraps.

Efron uses the pairs bootstrap in the article, and I do not think
this is simply a matter of taste. Doing the residual bootstrap
presupposes a choice of the order p, that is, model selection.
Suppose p̂ is a data-based selector of the order p, then the resid-
ual bootstrap would generate data from a model with dimension
p̂, and model selection procedures when applied in the bootstrap
world would disproportionally often select the same p̂ again. To
elaborate, suppose that with this type of data your favorite model
selection procedure, say Mallows Cp, would select p̂ = k with
sampling probability pk , that is, 100pk% of such scatterplots
would result into p̂ = k. The sampling probability pk would not
be well captured/replicated when pseudo-scatterplots are gen-
erated by residual bootstrap that always uses the order p̂ (say
p̂ = 3) that was chosen based on the original data.

The question arises: can we still employ a residual bootstrap
in such a case where model selection is also involved? The an-
swer appears to be yes but it may be quite more cumbersome.
To start with, one can use the pairs bootstrap (or other consid-
erations) to estimate the aforementioned sampling probability
pk . The important thing here is not to underestimate model or-
der; so one can probably afford to be slightly less parsimonious
at the stage of estimating pk . Then, use a two-step residual
bootstrap: first generate the order, say p∗, using the discrete dis-
tribution that puts mass pk on the number k, and then generate
a pseudo-scatterplot via a residual bootstrap based on order p∗.
The collection of many bootstrap scatterplots generated this way
should reflect well the variability associated with model selec-
tion. If the regressors are not ranked, that is, the models are not
nested, then one may associate sampling probability pk with

candidate model k, and modify the above two-step procedure
accordingly.

2. ESTIMATION AND PREDICTION

Efron focuses on the linear combination µp(x) = β0 + x ′β
p

as the parameter of interest. As previously mentioned, µp(x)
has the interpretation of the mean response when the regressor
vector takes the value x. As such, it is a quantity that has precise
meaning for all models considered; indeed, all models should be
able to capture such a quantity regardless of whether individual
β-parameters are zeroed out or not. Interestingly, µp(x) has an
additional interpretation: it is the L2-optimal (linear) predictor
of the future response Yn+1 that is associated with a regression
vector xn+1 that is equal to x.

Estimation and prediction often go hand-by-hand. It is not
a coincidence that popular model selection methods, such as
Mallows Cp or cross-validation, rank models in terms of their
predictive ability. On the other hand, prediction is typically con-
ducted using an estimated model, which implies a preliminary
step of model fitting. Since fitting a model gives the practitioner
the ability to predict future responses one can ask if the con-
verse is also true. The answer is yes: if one is able to predict
the future response that is associated with any regressor value
x, then an implied model fitting is taking place as the curve
explaining/predicting Y on the basis of x is being constructed.

But how can one predict without a model? The model-free
(MF) prediction principle of Politis (2013) substitutes the no-
tion of transformation in place of a model, and places the em-
phasis on observable quantities, that is, current and future data,
as opposed to unobservable model parameters and estimates
thereof. To briefly state it, consider the vector of responses
Ym = (Y1, . . . , Ym)′, where Yj is associated with regressor xj ;
the latter can be assumed deterministic for the time being. Thus,
Yn contains the already observed responses while Yn+1 contains
Yn plus the future (yet unobserved) response Yn+1 associated
with regressor value xn+1.

If the Yi’s were iid, then prediction would be trivial: the
L2-optimal predictor of Yn+1 would simply be given by the
common mean of the Yi’s, totally disregarding the regressor
value xn+1. Since the Yi’s are not iid, the MF prediction principle
amounts to using the structure of the problem—that also uses
the regressors—to find an invertible transformation Hm that can
map the non-iid vector Ym to a vector ϵm = (ϵ1, . . . , ϵm)′ that
has iid components; here m could be taken equal to either n or
n + 1 as needed. Letting H−1

m denote the inverse transformation,
we would then have ϵm = Hm(Ym) and Ym = H−1

m (ϵm), that is,

Ym

Hm$−→ ϵm and ϵm

H−1
m$−→ Ym. (4)

If the practitioner is successful in implementing the MF pro-
cedure, that is, in identifying the transformation Hm to be used,
then the prediction problem is reduced to the trivial one of
predicting iid variables. To see why, note that Equation (4)
with m = n + 1 yields Yn+1 = H−1

n+1(ϵn+1) = H−1
n+1(ϵn, ϵn+1).

But ϵn can be treated as known given the data Yn; just use
Equation (4) with m = n. Since the unobserved Yn+1 is just the
(n + 1)th coordinate of vector Yn+1, the former can also be ex-
pressed as a function of the unobserved ϵn+1. Finally, note that
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predicting a function, say g(·), of an iid sequence ϵ1, . . . ,

ϵn, ϵn+1 is straightforward because g(ϵ1), . . . , g(ϵn), g(ϵn+1) is
simply another sequence of iid random variables.

Under regularity conditions, such a transformation Hm always
exists although it is not unique. The challenge to the skills and
expertise of the statistician is to be able to devise and estimate a
workable such transformation for the problem at hand; see Poli-
tis (2013) for a complete treatment of the regression paradigm.
Note, however, that having mapped our data onto the iid vari-
ables ϵ1, . . . , ϵn, an MF bootstrap scheme readily presents it-
self, namely: (a) generate bootstrap variables ϵ∗

1 , . . . , ϵ∗
n by ran-

dom drawing (without replacement) from the set {ϵ1, . . . , ϵn},
and (b) generate a pseudo-response vector Y ∗

n = Ĥ−1
n (ϵ∗

n),
where ϵ∗

n = (ϵ∗
1 , . . . , ϵ∗

n)′ and Ĥ−1
n is the estimated (inverse)

transformation.
The MF bootstrap can be viewed as an extension of the resid-

ual bootstrap to settings where a model is not available. To see
why, note that if the additive model (1) is actually available,
then the transformation Hn can be readily estimated by first
estimating µp(·). For example, constructing the fitted residuals
ej = Yj − β̂0 − x ′

j β̂p
can be viewed as a transformation of the

Yn data toward (approximate) iid-ness; recall that the residuals
are approximately iid being proxies for the true errors.

However, this is not the only possible transformation; for in-
stance, one can define ϵj = Yj − β̂

(j )
0 − x ′

j β̂
(j )

p
, where β̂(j )

0 , β̂
(j )

p

are the LS estimates obtained from the delete-one dataset
{(Yt , xt ) for t = 1, . . . , n but with t ̸= j}. In the above, the ϵj
are nothing more than the predictive residuals that are typically
used in cross-validation; see, for example, Geisser (1993) and
the references therein. Politis (2013) gave an argument based on
the MF prediction principle that favors using the predictive (as
opposed to the fitted) residuals for resampling; doing so appears
to partially correct the under-coverage of bootstrap prediction
intervals noticed early on by Efron (1983) and Stine (1985).

In any case, when model selection is also involved, that is,
when the number p of regressors to be used in the transfor-
mation Hn is up for debate, the analogy between the residual
bootstrap and the MF bootstrap suggests that a similar trick
as the one suggested at the end of last section may be help-
ful. To elaborate, one can use a two-step resampling procedure:
(a) generate the model order, say p∗, using some estimated dis-
tribution (say pk), and then generate a pseudo-scatterplot via
the MF bootstrap based on an estimated transformation Ĥn that
uses p∗ regressors.

Nevertheless, there is nothing to stop the MF practitioner
from using the pairs bootstrap in this setting; this could be
done just to obtain an estimate of the sampling distribution pk

needed above, or to carry out the complete task of capturing the
variability of an estimator that includes the model selection step.
But using the pairs bootstrap is associated with an assumption
that the regressors xj are random, and furthermore that the pairs
(Y1, x1), (Y2, x2), . . . are iid as in Equation (2). In the case of
random regressors, the MF prediction principle can be simply
restated by conditioning on the regressor values. In other words,
the transformation Hm of Equation (4) would be constructed
conditionally on the values {x1, . . . , xm}, and the goal of the MF
practitioner is to render the transformed variables ϵ1, . . . , ϵm as
close to iid as possible conditionally on {x1, . . . , xm}.

3. MODELS VERSUS TRANSFORMATIONS: A
RECONCILIATION

The MF approach can form the basis for a complete statistical
inference that includes point estimators and predictors in addi-
tion to confidence and prediction intervals without assuming an
additive model such as (1); see Politis (2013, 2014) for details.
Interestingly, however, when an additive model is known to hold
true, there is no discrepancy if one adheres to the MF approach,
that is, tries to find a transformation toward “iid-ness.”

To see why, let us assume Equation (1) with µp(xj ) =
β0 + x ′

jβp
. The essence of this model—as far as MF prediction

is concerned—is that the variables ϵj ≡ Yj − x ′
jβp

are iid albeit
with (possibly) nonzero mean β0. Thus, a candidate transforma-
tion to “iid-ness” may be constructed by letting rj = Yj − x ′

j β̂p
,

where β̂
p

is a candidate vector. The MF principle now man-

dates choosing β̂
p

with the objective of having the rj ’s become
as close to iid as possible. However, under the stated regres-
sion model, the rj ’s would be iid if only their first moment was
properly adjusted.

To elaborate, a homoscedastic regression model such as (1)
implies that all central moments of order two or higher are con-
stant; the only non-iid feature is in the first moment. So, in this
case, the MF principle suggests choosing β̂

p
in such a way as to

make r1, . . . , rn have (approximately) the same first moment.
Noting that the first moment—if it is common—would be natu-
rally approximated by the empirical value r̂ = n−1 ∑n

i=1 ri , we
can use a subsampling construction to make this happen.

To fix ideas, assume for simplicity that p = 1, and that the
univariate design points x1, . . . , xn are sorted in ascending order.
Then compute the overlapping block means

r̄k,b = b−1
k+b−1∑

j=k

rj for k = 1, . . . , q, (5)

where b is the block size, and q = n − b + 1 is the number of
available blocks.

Note that r̄k,b is an estimate of the first moment of the ri’s
found in the kth block. To achieve the target requirement that
all r1, . . . , rn have first moment that is the same (and thus ap-
proximately equal to r̂), the MF practitioner may choose β̂1 that
minimizes

LS(b) =
q∑

k=1

(r̄k,b − r̂)2 or L1(b) =
q∑

k=1

|r̄k,b − r̂| (6)

according to whether an L2 or L1 loss criterion is preferred.
Instead of r̂ , we could equally use the mean of means, that

is, ¯̄r = q−1 ∑q
k=1 r̄k,b as the centering value in Equation (6). If

b = 1, then r̂ = ¯̄r; if b > 1, then r̂ = ¯̄r + OP (b/n) so the differ-
ence is negligible provided b is small as compared to n. Recall
that in the typical application of subsampling for variance or
distribution estimation, it is suggested to take the block size b
to be large (but still of smaller order than n); this is for the pur-
pose of making the subsample statistics r̄k,b have asymptotically
the same distribution as the statistic r̂ computed from the full
sample, see, for example, Politis, Romano and Wolf (1999).
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Nevertheless, it is not crucial in our current setting that each
of the r̄k,b has asymptotically the same distribution as r̂ . What
is important is that all the r̄k,b (for k = 1, . . . , q) have approxi-
mately the same distribution whatever that may be. Therefore, it
is not necessary in Equation (6) to use a large value for b. Even
the value b = 1 is acceptable, in which case we have

d

dβ̂1
LS(1) = 0 ⇒ β̂1 =

∑n
i=1(Yi − Ȳ )(xi − x̄)∑n

i=1(xi − x̄)2
,

where

Ȳ = 1
n

n∑

i=1

Yi and x̄ = 1
n

n∑

i=1

xi.

In other words, the MF fitting procedure (6) with L2 loss and
b = 1 is reassuringly identical to the usual LS estimator! Note
that the ri’s serve as proxies for the unobservable εi’s, which
have expected value β0 under model (1). Hence, β0 is naturally
estimated by the sample mean of the ri’s, that is,

β̂0 = 1
n

n∑

i=1

(Yi − β̂1xi) = Ȳ − β̂1x̄,

which is again the LS estimator.
Minimizing LS(b) with b > 1 gives a more robust way of do-

ing LS in which the effect of potential outliers is diminished by
the local averaging of b neighboring values; details are omitted
due to lack of space. Similarly to the above, minimizing L1(1)
is equivalent to L1 regression, whereas minimizing L1(b) with
b > 1 gives additional robustness.

Finally, let us revisit the general case of model (1) with
µp(xj ) = β0 + x ′

jβp
. When p > 1, the regressors xj cannot

be sorted in ascending order. One could instead use a local-
averaging or nearest-neighbor technique to compute the sub-

sample means. But no such trick is needed in the most inter-
esting case of b = 1 since the quantities LS(1) and L1(1) are
unequivocally defined as

LS(1) =
n∑

k=1

(rk − r̂)2 and L1(1) =
n∑

k=1

|rk − r̂|. (7)

It is now easy to see that the MF practitioner that chooses
the β’s to minimize LS(1) or L1(1) is effectively doing LS
or L1 regression, respectively. Hence, when an additive model
is available, there is no discrepancy between the MF approach
and traditional model fitting. Nevertheless, the MF approach
can still lend some insights such as the aforementioned use of
predictive residuals in connection with the model-based residual
bootstrap.
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Comment
Shuva GUPTA and S. N. LAHIRI

1. INTRODUCTION

This is an interesting and stimulating article by Professor
Bradley Efron on the important topic of accuracy of bootstrap
estimation after model selection. While the bootstrap is routinely
used in many problems where model selection forms a part of
the exploratory data analysis, the effect of model selection on
subsequent inference is often conveniently ignored. The current
article clearly points out the perils of this naive approach with
both parametric and nonparametric bootstrap. The naive (or
standard) bootstrap confidence intervals (CIs) are unstable as
the centers may fluctuate erratically based on the ordinary least-
square (OLS) estimators under the selected models. Stability

Shuva Gupta (E-mail: sgupta22@ncsu.edu) is Post-Doctoral Fellow, and
S. N. Lahiri (E-mail: snlahiri@ncsu.edu) is Professor, Department of Statistics,
North Carolina State University, Raleigh, NC 27695-8203. Research partially
supported by grants NSF DMS 1310068 and NSA H98230-11-1-0130.

can be ensured by bootstrap model averaging (or the bagging)
as suggested in the article, as was also noted by Bühlmann and
Yu (2002). One of the major contributions of the article is an
elegant derivation of the delta-method estimate of the standard
error of the bagging estimator, which will be useful in other
applications as well.

Although the main article considers both the parametric and
the nonparametric bootstrap methods, our discussion here will
be restricted to the nonparametric bootstrap only. Specifically,
we shall suppose that {yi, ci)} are independent and identically
distributed (iid) random vectors satisfying

yi = β0 + β1ci + · · · + βpc
p
i + ϵi , i = 1, . . . , n, (1)
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where βi ∈ R with βp0 ̸= 0 for some 1 ≤ p0 ≤ p and βi = 0
for all i = p0 + 1, . . . , p, and where ϵi are zero mean ran-
dom variables with Eϵ2

1 = σ 2 ∈ (0,∞). The resampling is
done with replacement from the observed pairs of variables
{(yi, ci) : i = 1, . . . , n} to generate the nonparametric bootstrap
resamples. As highlighted in the main article, a naive application
of the bootstrap with the model selection step repeated on each
resample often does not produce a desirable result, particularly
when the model selection criterion itself is not very accurate.
In this case, the model selection step selects different models,
which in turn add to the bias and variability of the resulting boot-
strap estimates of the target parameter. In particular, this naive
approach fails to reproduce the sampling distribution under the
true model. In the following, we describe two alternative meth-
ods of constructing CIs for the parameters when true model is
not prespecified and the user must determine the true model as
well as carry out inference on functions of the true parameters
using the data {(yi, ci) : i = 1, . . . , n}.

The first approach is based on the adaptive Lasso (ALASSO)
method of Zou (2006) that is known to enjoy the oracle prop-
erty (see Fan and Li 2001). Here, the ALASSO method performs
variable selection and parameter estimation simultaneously and
therefore, also identifies the true model with high probability. As
a result, the standard bootstrap method can be applied with the
ALASSO to produce CIs for parameters like µi = E(yi |ci), a
linear function of (β0,β1, . . . ,βp0 ). Here, the bootstrap does not
suffer from the erratic discontinuities of selection-based estima-
tors. The variable selection consistency essentially guarantees
the stability over different resamples. See Section 2.1 for more
details.

The second, which we will call the maximum frequency boot-
strap (MFB) approach, is qualitatively different and it is de-
signed to deal with the variability associated with the model
selection criterion itself. The key idea here is that although
the model selection criterion may not identify the true model
with high probability, it may still be able to provide important
clues to the correct model when applied to the resamples. Thus,
applying the model selection step to the resamples, first we at-
tempt to identify the true model and then only use the subset
of the resamples corresponding to the selected model. This way
the sampling variability of the model selection procedure and
the erratic discontinuity of the selection-based estimators are
significantly reduced. We describe the details of the construc-
tion of MFB CIs in Section 2.2. Results from the simulation
study show that the performance of the MFB method is very
good.

The rest of the discussion is organized as follows. In Sec-
tion 2, we describe in details the two approaches to construct-

ing CIs for parameters of interest when model selection is in-
volved. In Section 3, we present the results from a small simu-
lation study illustrating finite sample performance of the MFB
method.

2. TWO ALTERNATIVE CIs

2.1 CIs Based on the ALASSO

The ALASSO method of Zou (2006) estimates the regression
parameters β = (β0, . . . ,βp) in model (1) using a preliminary
estimator β̃n, such as the OLS estimator of β, and a weighted
ℓ1-penalty. Specifically, the ALASSO estimator of β is defined
as the minimizer of the penalized least-square criterion function,

β̂n = argminu∈Rp

n∑

i=1

(yi − x ′
iu)2 + λn

p∑

j=1

|uj |
|β̃j,n|γ

,

where λn > 0 is a regularization parameter, γ > 0, xi =
(1, ci, . . . , c

p
i )′ and where β̃j,n and uj , respectively, denote the

jth component of β̃n and u, respectively. Zou (2006) showed that
under mild regularity conditions, the ALASSO selects the exact
set of relevant variables (corresponding to βj ̸= 0 in (1)) with
probability tending to one. The residuals from the ALASSO fit
can then be used for bootstrap resampling and the common boot-
strap CIs can be constructed from these resamples. Chatterjee
and Lahiri (2013) showed that under some suitable regularity
conditions, the bootstrap-t CIs for linear combinations of the
regression parameter β are second-order accurate. They also
present numerical results illustrating good finite sample proper-
ties of different bootstrap CIs. As a result, the bootstrap based
on the ALASSO (as well as other penalize regression methods
having the oracle property) are viable methods for constructing
reasonably accurate CIs in regression models where the true
model is not prespecified.

2.2 Maximum Frequency Bootstrap-t CIs

We now describe a different approach to bootstrapping
in post-model selection inference that may be applied with
many standard model selection methods. Given the data Dn ≡
{(yi, ci) : i = 1, . . . , n}, generate B bootstrap replicates D∗b

n ,
b = 1, . . . , B. For each of the bootstrap resamples, apply the
given model selection criterion to select one of the p models.
For j = 1, . . . , p, let f̂j denote the proportion of replicates (out
of B) where model j was selected. Next, let

j0 = argmaxj f̂j

be the model that has the maximum frequency of getting se-
lected among the B replicates. Also, let B0 denote the collection

Table 1. Selection frequencies and standard deviations of the 10 models based on the CP, the AIC, and the BIC based on 500 simulation runs
and 1000 bootstrap replicates

Mod 1 Mod 2 Mod 3 Mod 4 Mod 5 Mod 6 Mod 7 Mod 8 Mod 9 Mod 10

AIC (freq) 0.000 0.004 0.329 0.103 0.092 0.086 0.080 0.082 0.102 0.125
Cp (freq) 0.000 0.000 0.373 0.111 0.095 0.085 0.077 0.077 0.087 0.097
BIC (freq) 0.000 0.000 0.849 0.077 0.034 0.020 0.009 0.005 0.004 0.002
AIC (sd) 0.000 0.000 0.164 0.083 0.083 0.077 0.059 0.058 0.089 0.085
Cp (sd) 0.000 0.000 0.180 0.088 0.085 0.081 0.061 0.060 0.081 0.0740
BIC (sd) 0.000 0.000 0.140 0.085 0.055 0.047 0.014 0.008 0.011 0.003
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Table 2. Coverage accuracy and average lengths of MFB CIs for µ1

for the CP, the AIC, and the BIC methods based on 500 simulation
runs and 1000 bootstrap replicates. The nominal confidence level is 95

Length of CIs Coverage probability

AIC 3.140 0.927
Cp 3.161 0.960
BIC 3.182 0.980

of bootstrap replicates (among B many) that resulted in selec-
tion of the model j0. Then, the MFB method makes use of the
subcollection

{D∗b
n : b ∈ B0}

of resamples to carry out bootstrap-based inference. For exam-
ple, bootstrap CIs for linear combinations of the regression pa-
rameter vector can be obtained by using the bootstrap-t method
applied only to the resamples {D∗b

n : b ∈ B0}. Since all repli-
cates in this collection correspond to a single model, the extra
variability that results from the model selection step in different
resamples is eliminated. In fact, this MFB approach was used
for constructing percentile-t CIs for the parameter µ1 in Sec-
tion 3. Although the respective model selection methods have
considerable variability in selecting the true model among B re-
samples, the empirical coverage accuracy of the MFB approach
reported therein appears reasonable for each of the three model
selection methods. Theoretical properties of the MFB method
is currently under investigation.

3. NUMERICAL RESULTS

Here, we report results from a small simulation study on the
MFB method. We consider model (1) with p = 10 and p0 = 3
(a cubic model), where β0 = 1, β1 = 0.5, β2 = 0.4, β3 = 5.0,

and βi = 0 for all i = 4, . . . , 10. We generated the variables
(ci, ϵi) as iid bivariate normal vectors with zero mean vector
and identity covariance matrix. The sample size considered was
n = 200. The MFB method was used to construct bootstrap
CIs for the parameter µ1 = E(y1|c1) where the model selection
was performed with the CP, the Akaike information criterion
(AIC), and the Bayesian information criterion (BIC) methods.
The results from the model selection step applied to the bootstrap
resamples are summarized in Table 1. The first three rows of the
table give the frequencies of the different models, which were
selected by each of the three methods over 600 simulation runs.
The last three rows give the associated standard deviations. It is
evident from the table that except for the BIC, which is known
to be consistent for model selection, the other two methods
selected the true model with low empirical probability. As a
result, the use of either of these model methods in the naive
approach would produce very distorted results. However, by
using the MFB approach, even in such situations, we are able
to identify the true model. The empirical coverage accuracy and
the average lengths of a nominal 95% CI for µ1 are reported
in Table 2. The coverage is evidently very good irrespective of
the model selection performance of the three model selection
methods.
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Comment
Andrew GELMAN and Aki VEHTARI

1. ACCOUNTING FOR MODEL SELECTION IN
STATISTICAL INFERENCE

How can one proceed with predictive inference and assess-
ment of model accuracy if we have selected a single model from
some collection of models? Selecting a single model instead
of model averaging can be useful as it makes the model easier
to explain, and in some cases that single model gives similar
predictions as the model averaging.

The selection process, however, causes overfitting and biased
estimates of prediction error; thus much work has gone into es-
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New York, NY 10027 (E-mail: gelman@stat.columbia.edu). Aki Vehtari is
Adjunct Professor, Department of Biomedical Engineering and Computational
Science, Aalto University, Espoo, Finland (E-mail: aki.vehtari@aalto.fi).

timating predictive accuracy given available data (e.g., Gelman,
Hwang, and Vehtari 2013). In Efron’s article, bagging is used to
average over different models, and the main contribution is pro-
viding a useful new formula estimating the accuracy of bagging
in this situation.

It makes sense that bagging should work for the smooth unsta-
ble (“jumpy”) estimates in the examples shown. Full Bayesian
inference should also be able to handle these problems, but it
can be useful to have different approaches based on different
principles.
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One of the appeals of the bootstrap is its generality (as, in a
completely different way, with Bayes; see Gelman 2011). Any
estimate can be bootstrapped; all that is needed are an estimate
and a sampling distribution. The very generality of the boostrap
creates both opportunity and peril, allowing researchers to solve
otherwise intractable problems but also sometimes leading to
an answer with an inappropriately high level of certainty.

We demonstrate with two examples from our own research:
one problem where bootstrap smoothing was effective and led
us to an improved method, and another case where bootstrap
smoothing would not solve the underlying problem. Our point
in these examples is not to disparage bootstrapping but rather
to gain insight into where it will be more or less effective as a
smoothing tool.

2. AN EXAMPLE WHERE BOOTSTRAP SMOOTHING
WORKS WELL

Bayesian posterior distributions are commonly summarized
using Monte Carlo simulations, and inferences for scalar param-
eters or quantities of interest can be summarized using 50% or
95% intervals. A 1 − α interval for a continuous quantity is typ-
ically constructed either as a central probability interval (with
probability α/2 in each direction) or a highest posterior density
interval (which, if the marginal distribution is unimodal, is the
shortest interval containing 1 − α probability). These intervals
can in turn be computed using posterior simulations, either us-
ing order statistics (e.g., the lower and upper bounds of a 95%
central interval can be set to the 25th and 976th order statistics
from 1000 simulations) or the empirical shortest interval (e.g.,
the shortest interval containing 950 of the 1000 posterior draws).

For large models or large datasets, posterior simulation can be
costly, the number of effective simulation draws can be small,
and the empirical central or shortest posterior intervals can have
a high Monte Carlo error, especially for wide intervals such as
95% that go into the tails and thus sparse regions of the simula-
tions. We have had success using the bootstrap, in combination
with analytical methods, to smooth the procedure and produce
posterior intervals that have much lower mean squared error
compared with the direct empirical approaches (Liu, Gelman,
and Zheng 2013).

3. AN EXAMPLE WHERE BOOTSTRAP SMOOTHING
IS UNHELPFUL

When there is separation in logistic regression, the maximum
likelihood estimate of the coefficients diverges to infinity. Gel-
man et al. (2008) illustrated with an example of a poll from
the 1964 U.S. presidential election campaign, in which none
of the black respondents in the sample supported the Republi-

can candidate, Barry Goldwater. As a result, when presidential
preference was modeled using a logistic regression including
several demographic predictors, the maximum likelihood for
the coefficient of “black” was −∞. The posterior distribution
for this coefficient, assuming the usual default uniform prior
density, had all its mass at −∞ as well. In our article, we rec-
ommended a posterior mode (equivalently, penalized likelihood)
solution based on a weakly informative Cauchy (0, 2.5) prior
distribution that pulls the coefficient toward zero. Other, simi-
lar, approaches to regularization have appeared over the years.
We justified our particular solution based on an argument about
the reasonableness of the prior distribution and through a cross-
validation experiment. In other settings, regularized estimates
have been given frequentist justifications based on coverage of
posterior intervals (see, e.g., the arguments given by Agresti
and Coull 1998, in support of the binomial interval based on the
estimate p̂ = y+2

n+4 ).
Bootstrap smoothing does not solve problems of separa-

tion. If zero black respondents in the sample supported Barry
Goldwater, then zero black respondents in any bootstrap sam-
ple will support Goldwater as well. Indeed, bootstrapping can
exacerbate separation by turning near-separation into complete
separation for some samples. For example, consider a survey
in which only one or two of the black respondents support the
Republican candidate. The resulting logistic regression estimate
will be noisy but it will be finite. But, in bootstrapping, some
of the resampled data will happen to contain zero black Re-
publicans, hence complete separation, hence infinite parameter
estimates. If the bootstrapped estimates are regularized, how-
ever, there is no problem.

The message from this example is that, perhaps paradoxically,
bootstrap smoothing can be more effective when applied to
estimates that have already been smoothed or regularized.
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Comment
Nils Lid HJORT

Reaching accurate inference statements after model selection
continues to be challenging, from both practical and theoretical
perspectives. That the issue needs the attention of statisticians is
clear, in a world with papers titled “I just ran two million regres-
sions” and similar (Sala-i-Martin 1997). Also, the widespread
use of selecting one model out of a great many candidates and
then somehow ignoring the initial model selection step, when re-
porting one’s findings, is troublesome; see what Breiman (1992)
called “the quiet scandal of statistics.” Efron’s article is a wel-
come and significant contribution to this area, and I appreciate
being given the opportunity to comment. There are many aspects
and details I would wish to comment on and pursue further,
but due to considerations of space I shall focus on (1) distri-
bution theory for postselection and model average estimators,
(2) relevant applications of this theory, related to both confidence
limits and to specially designed model selection schemes, and
(3) similar distribution theory for bagging, leading to clear per-
formance comparisons for bootstrap smoothing and classes of
similar methods.

1. DISTRIBUTION THEORY FOR POSTSELECTION
AND MODEL AVERAGE ESTIMATORS

Suppose µ is a parameter one wishes to estimate, via a
list of candidate models for the data at hand, say models
M1, . . . ,Mq . Thus there is an estimate µ̂j based on model
Mj , say reached via maximum likelihood, and the final esti-
mate is µ̂ =

∑q
j=1 µ̂j I {Mj wins}. Importantly, the parameter

µ ought to have clear statistical interpretation across all candi-
date models, perhaps with a separate formula for each model, in
terms of that model’s parameters. I shall first briefly summarize
some precise large-sample theory regarding the behavior of µ̂.
It will be convenient to do so inside the regression framework
of Efron’s Section 2, though results presented below generalize
to almost arbitrary parametric models.

Suppose, then, that yi = m(xi) + εi , where different nested
models are under consideration for the mean function m(x),
from a “narrow model” with m(xi) = x t

iβ to a “wide model”
with m(xi) = x t

iβ + zt
iγ , where xi and zi are covariate vectors

of dimensions say p and q. Though one would often choose to
work with all 2q subsets formed by inclusion and exclusion of
γj parameters, I restrict attention here to the nested situation
with q + 1 candidate models M0,M1, . . . ,Mq , corresponding
to including, respectively, none, the first, the two first, etc.,
of γ1, . . . , γq . This fits Efron’s setup of sec. 2, where xi =
(1, ci)t is of dimension 2 and zi = ((ci − c̄)2, . . . , (ci − c̄)6)t is
of dimension 5. Also, the εi above are modelled as iid N(0, σ 2).
Incidentally, the σ is not merely a Greek letter but a parameter

Nils Lid Hjort, Department of Mathematics University of Oslo, Oslo, Norway
(E-mail: nils@math.uio.no.). The author gratefully acknowledges support from
the Norwegian Research Council in connection with the project “FocuStat:
Focus Driven Statistical Inference With Complex Data.”

with a slightly different interpretation for the different models,
becoming smaller with inclusion of more terms in the regression
function, so it is slightly misleading to use the same σ across
models. From a pedantic viewpoint we might thus operate with
and estimate σj for candidate model Mj , though this is seen to
change the analysis in only a minor fashion for the cholesterol
dataset.

If now µ = µ(β, σ, γ ) is a focus parameter to be estimated,
there are q + 1 separate estimates µ̂0, µ̂1, . . . , µ̂q , where µ̂j

stems from using maximum likelihood with model Mj , which
has γ1, . . . , γj on board but sets the remaining γk to zero. Efron’s
illustration is of this form, with µ = x t

0β + zt
0γ , for some given

c0 in x0 = (1, c0)t and z0 = ((c0 − c̄)2, . . . , (c0 − c̄)6)t. The final
estimate is

µ̂ =
q∑

j=0

µ̂j I {Mj is selected} (1)

using Mallows’s Cp to determine the winner. Efron does not
directly touch on the distribution of this final estimator, but
a theorem may be put up, as follows. The framework is of
the local large-sample type, where γj = δj /

√
n, and involves

Dn =
√

nγ̂ , with γ̂ the maximum likelihood estimator in the
wide model. The point of this framework is that it makes squared
biases and variances exchangeable currencies, both of order
O(1/n), leading, as we shall see, to clear large-sample theorems
for a wide class of postselection estimators and also model
averaging estimators, bootstrap smoothed estimators, etc.

Let Jn = −n−1∂2ℓn (̂α)/∂α∂αt be the normalized Hessian
matrix computed at the maximum likelihood position α̂, with
α = (β, σ, γ ) the full parameter in the wide model. We need the
blocks of Jn and its inverse,

Jn =
(

Jn,00 Jn,01

Jn,10 Jn,11

)

and J−1
n =

(
J n,00 J n,01

J n,10 J n,11

)

,

and have special use for Qn = J n,11, of size q × q. Under mild
conditions, Jn converges in probability to a well-defined pos-
itive definite matrix J, hence, also with Qn converging to the
consequent Q = J 11, as sample size n increases. To complete
the description of the limit distributions of estimators of type
(1) we shall also need certain matrices G0,G1, . . . , Gq , each of
size q × q, defined as follows. First, let πj be the j × q pro-
jection matrix of zeros and ones that maps v = (v1, . . . , vq)t to
πj v = (v1, . . . , vj )t, and let

Gj = π t
jQjπjQ

−1, where Qj = (πjQ
−1π t

j )−1, (2)

© 2014 American Statistical Association
Journal of the American Statistical Association

September 2014, Vol. 109, No. 507, Theory and Methods
DOI: 10.1080/01621459.2014.923315
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with G0 = 0. Finally define

τ̂ 2
0 = ∂µ

∂θ
(̂α)tJ−1

n,00
∂µ

∂θ
(̂α) and ω̂ = Jn,10J

−1
n,00

∂µ

∂θ
(̂α) − ∂µ

∂γ
(γ̂ ),

(3)
with partial derivatives at the maximum likelihood position, and
with θ = (β, σ ) the “protected parameters” that are included
in all candidate models. Under standard conditions, τ̂0 →pr τ0

and ω̂ →pr ω, say, depending on the focus parameter µ under
attention.

First, with µtrue the value of µ computed under (β, δ/
√

n, σ ),
√

n(µ̂j − µtrue) →d *0 + ωt(δ − GjD), (4)

in which *0 ∼ N(0, τ 2
0 ) and D ∼ Nq(δ,Q), with these two be-

ing independent. This describes the limit distributions for each
separate µ̂j in a joint framework. Second, for the wide class of
model averaging estimators of the form

µ̂ =
q∑

j=0

w(j | Dn)µ̂j , (5)

where w(j | d) are weight functions summing to one, we have
√

n(µ̂ − µtrue) →d *0 + ωt{δ − δ̂(D)}, (6)

in which δ̂(D) =
∑q

j=0 w(j | D)GjD. For a proof and wider
discussion, see Hjort and Claeskens (2003) and Claeskens and
Hjort (2008, chaps. 6 and 7). This result in particular encom-
passes the case of postselection estimators, as long as the model
selection scheme can be given in terms of Dn, or in a form
large-sample equivalent to such functions of Dn. The Mallows
scheme of Cp used by Efron is of this type, as it can be seen to
be first-order equivalent to the AIC method, and with w(j | Dn)
equal to 1 for the maximizer of

AIC(j,Dn) = Dt
nQ

−1π t
jQjπjQ

−1Dn − 2j

and 0 for the others.

2. APPLYING THE THEORY

Result (6) gives a precise description of the distribution of
postselection estimators and also of more general model average
estimators, as when w(j | Dn) is taken as a function of the Cp or
AIC score, for example, giving more weight to the best models
and less weight to those doing badly, without being restricted
to trusting only the winner. The limits in question are nonlinear
mixtures of normals (unless the weights w(j | Dn) are fixed, i.e.,
do not depend on data), and often quite nonnormal. They are also
not centered around zero, reflecting modeling bias. Result (6)
may also be used as a starting point for constructing confidence
intervals and more generally full confidence distributions; see
Schweder and Hjort (2014). The limiting distribution of (6) may
be simulated for each position δ in the parameter space for γ =
δ/

√
n, for example, at the estimated position δ̂ = Dn =

√
nγ̂ .

Thus we have machinery for calculating confidence limits for
each such position δ/

√
n, but the issue is more complicated as δ

cannot be consistently estimated inside this local large-sample
framework. A conservative two-stage method of the Bonferroni
kind is outlined in Claeskens and Hjort (2008, chap. 7), but other
approximations may be developed, such as those flowing from
Efron’s work, and then evaluated for accuracy using (6).

Another use of the machinery above is to use specially de-
signed model selectors for different focus parameters. The lim-
iting mean squared error when using model Mj is

MSEj = τ 2
0 + ωtGjQGt

jω + {ωt(I − Gj )δ}2,

and estimating this quantity unbiasedly in the limit experiment
leads to formulas containing quantities which then may be esti-
mated from data; this essentially yields the focused information
criterion (FIC) of Claeskens and Hjort (2003, 2008). The point
is then that different optimal models are selected for different
purposes, unlike for the Cp, the AIC, the BIC, etc. When run-
ning the FIC through the 164 tasks of estimating each person’s
µ = E yi = m(xi), with appropriate calculations and computa-
tions of the required matrices G0,G1, . . . ,G5, along with say
τ0,i and ωi for each m(xi), one finds that the simplest model
M0 (linear trend) wins in 50% of the cases, whereas models M1

(quadratic), M2 (cubic), M3 (quartic) win in 8%, 37%, 5% of the
cases, respectively, with the two biggest models of polynomial
orders 5 and 6 never being selected. In contrast, the Cp and
AIC methods deliver one and only one model, to be used for all
purposes.

We may also illustrate the nonnormality of the actual distri-
butions involved, by simulating from the precise limit distribu-
tion (6), for a given dataset, a focus parameter of interest, and
at, for example, the estimated position in the parameter space.
Figure 1 displays such densities for µ̂AIC − µ and µ̂FIC − µ, for
the cholesterol dataset, with focus parameter µ = m(x1), follow-
ing Efron, the mean for the individual with c = c1, the smallest
value. Here µ̂AIC and µ̂FIC are the postselection estimators us-
ing, respectively, the AIC and the FIC methods. The densities
displayed are those of the exact limit distributions given by (6),
with τ0, δ, Q, and the Gj and w(j | D) estimated from the data,
and then divided by

√
n to mimic the random errors µ̂AIC − µ

and µ̂FIC − µ. The nonnormality is striking for both, hence also
pointing to the difficulty of setting good confidence limits. The
mean squared errors following AIC and FIC are actually very
similar, for this case of the left-most position c = c1, though the
error distributions are markedly different. For the clear majority
of other positions c = ci , however, the post-FIC error distribu-
tion is more tightly concentrated around zero than the post-AIC
error distribution.

3. THEORY FOR BAGGING

Efron has aptly argued that passing from a postmodel estima-
tor µ̂ to its bagged cousin, the bootstrap smoothed µ̃, is indeed a
smoother function of data and, hence, lending itself more easily
to further analysis, including variances and approximate confi-
dence limits. Developing these methods, and demonstrating that
they work well, does not touch the perhaps deeper issue, though,
which is whether and then in which ways bagging improves on
the behavior and precision of the original unbagged estimator. I
shall now exhibit a clear large-sample result for such bootstrap
smoothed estimators, exploiting the same local large-sample
framework as above. The point is partly to make it possible
to compare performances, for example, via risk functions, but
also to have a framework where accuracy of approximations to
confidence distributions may be assessed.
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Figure 1. Densities of the limit distributions for µ̂AIC − µ (dotted line) and µ̂FIC − µ (full line), computed at the maximum likelihood
estimated position in the parameter space, for the cholesterol dataset, with µ = m(x1), the mean at position c = c1.

Though the theory briefly summarized below generalizes
suitably to collections of general parametric models, I shall
again be content to use the simpler framework of nested regres-
sion models, as above. The narrow model has parameter θ of
length p, whereas the wider model has an additional parameter
γ of length q. Submodel Mj uses parameters (θ, γ1, . . . , γj ),
for j = 0, 1, . . . , q, with the narrow model corresponding to
these extra parameters γj being zero. Consider then a general
postselection or model averaging estimator of the form (5), again
with Dn =

√
nγ̂ and the weights w(j | Dn) summing to one, and

for which the limit distribution is described by (6). The paramet-
ric bootstrap smoothed version is µ̃ = B−1 ∑B

b=1 µ̂(y∗
b ), with

the y∗
b being bootstrap datasets sampled from the estimated

wide model, that is, at (θ̂, γ̂ ). This is the finite-bootstrap version
for our computer, so to speak, whereas the theoretical version
may be expressed as µ̃ = EBµ̂(y∗), with expectation being with
respect to the distribution of y∗ given the dataset. One may then
prove the master theorem

√
n(µ̃ − µtrue) →d #0 + ωt{δ − µ̃(D)}, (7)

as a clear analogue of result (6) for the unsmoothed estimator.
Here µ̃(D) is the bootstrap expectation of µ̂(D∗), in the limit
experiment, where D∗ is from the properly estimated version of

Nq(δ,Q), that is, D∗ | D ∼ Nq(D,Q). In other words,

µ̃(D) = EBµ̂(D∗) =
∫

µ̂(u)φ(u − D,Q) du

=
∫ q∑

j=0

w(j | u)Gjuφ(u − D,Q) du,

writing φ(v,Q) for the density of Nq(0,Q).
Armed with limit distributions (6) and (7) we may now com-

pare performance aspects, for example, via risk functions, which
with squared error loss become, respectively,

r0(δ) = τ 2
0 + E [ωt{δ − δ̂(D)}]2,

r(δ) = τ 2
0 + E [ωt{δ − δ̃(D)}]2.

We learn that differences in performance rests with how well
the two estimators ψ̂ = ωt̂δ(D) and ψ̃ = ωt̃δ(D) perform as
estimators of the linear combination parameter ψ = ωtδ, with
known coefficients ω, in the very clean limit experiment where
a single D ∼ Nq(δ,Q) is observed, with mean δ unknown and
variance matrix Q known. Note that these risk functions pan out
differently for different focus parameters, via ω of (3), so boot-
strap bagging may be more successful for some parameters than
for others, even with the same data and the same list of candidate
models. We also see that these constructions do not matter so
much in cases where τ0 is large compared to (ωtQω)1/2, also
since the individual estimators µ̂j then will be highly correlated,
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Figure 2. Risk functions for the AIC related postselection estimator δ̂ = DI {|D| ≥
√

2} (dotted line) and the bagged or bootstrap smoothed
version δ̃ (full line). Also indicated is the flat risk function for the minimax estimator δ̄ = D.

and hence nearly equal with high probability. In cases where τ0

is relatively smaller, however, differences in performance show
up, and the potential gain by careful model averaging is more
significant.

As a simple illustration, consider the case where the nar-
row model has p parameters and the wider model has just one
more extra parameter, that is, q = 1. In that case the various
formulas above simply, for example, to G0 = 0 and G1 = 1,
and risk functions differences hinge on the simpler E (̂δ − δ)2

and E (̃δ − δ)2. A start estimator of the form δ̂(D) = w(D)D
then needs to be compared to its bootstrap smoothed version
δ̃(D) =

∫
w(u)uφ(u − D,Q) du; here 1 − w(Dn) and w(Dn)

are the weights given to the narrow and the wide model,
respectively. Figure 2 displays these two risk functions, for
the Cp or AIC case, which can be seen to correspond to
δ̂(D) = I {|D|/Q1/2 ≥

√
2}, and where I choose Q = 1 when

displaying the plots. We note that bagging helps significantly, in
parts of the parameter space, but not uniformly. Risk function
mountains and hills caused by the bumpiness of Cp and AIC
shall be made low. The same applies to other choices of w(D).
The figure also displays the flat minimax risk function for the
estimator δ̄ = D, associated with sticking to the widest model;
here bagging simply reproduces the same estimator.

Note that results (6) and (7) are generally valid for any model
averaging methods, not merely the special cases just pointed

to, those associated with postselection inference. We may, for
example, compare smoothed AIC with smoothed FIC, along
with their bagged versions.

The theory developed here may also be used to assess the
accuracy of the confidence limit methods of Efron, for example,
the µ̃ ± 1.96 s̃dB of Section 2, and to working out alternatives.
One would expect there to be certain improvements on that par-
ticular ±1.96 method, as the distribution of µ̃ − µ is typically
highly nonnormal, asymmetric, etc.
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Rejoinder
Bradley EFRON

Model selection was an underdeveloped country on the map of
classical statistics. The blame lay with intractable mathematics,
of the sort connected with discontinuous functional forms. That
excuse has worn thin in an era of virtually infinite computer
power. The current article shows some progress being made
through a combination of a little mathematics with a lot of
computation, while the discussants offer other promising paths
forward. It seems a safe bet that model selection, how to do it
and what are its effects on inference, will continue to be a major
topic for statisticians. Here I have touched on both aspects,
bootstrap smoothing for the how-to-do-it part, and two bagging
accuracy theorems on its effects.

Professor Hjort, following through on his ambitious series
of articles with Claeskens, puts the problem into an asymp-
totic framework. This necessarily involves making the signal
weaker (“γj = δj /

√
n”) as sample size n increases. Otherwise

the model-selection aspect disappears: in terms of my schematic
Figure 9, the distributional ellipses shrink to lie within a single
wedge. Here, we have to worry that changing the signal strength
may reduce asymptotics’ relevance to the situation at hand. No
such change is necessary in the classical picture of Figure 8,
where the asymptotics are inherently simpler.

My article avoids asymptotics, or at least the mention of
asymptotics. Bootstrap methods are by their nature nonasymp-
totic, though their formal justification in the literature usually
involves large-sample calculations. Professor Politis’ Model-
Free Prediction Principle for regression is justified in terms
of transformations that induce heteroscedastic residuals. This
is similar in intention to Efron (1987), where bootstrap confi-
dence intervals are justified by hypothetical transformations to
normality, avoiding at least a direct appeal to asymptotics.

Politis’ discussion is a reminder that neither of my current the-
orems applies to bootstrapping residuals. On the other hand, they
do apply to model-selection situations other than regression—K-
means clustering for example, or data-based choice of window
width in kernel density estimation.

I was reassured by the new method’s good performance in the
simulation studies of Professors Wang, Sherwood, and Li, no-
tably more ambitious than the few in my article. The questions
raised of the number of bootstrap replications B is an impor-
tant one. The tactic in my examples, choosing B much bigger
than necessary, might be impractical in more complicated prob-
lems. Formula (3.11) provides a data-based guide to the choice,
supplemented with the bias correction calculations of Remark
J.

The bootstrap is fundamentally a plug-in methodology, along
the lines of maximum likelihood estimation (MLE). As such I
would not expect s̃eB to perform well in the “large p” context of

Bradley Efron is Professor of Statistics and Biostatistics, Depart-
ment of Statistics, Stanford University, Stanford, CA 94305-4065 (E-mail:
brad@stat.stanford.edu).

Wang–Sherwood–Li’s second question, but I would be happy to
be proven wrong.

Bootstrap smoothing, or bagging, can be thought of as a form
of nonparametric MLE (Efron and Tibshirani 1997): suppose
x = (x1, x2, . . . , xn) is an iid sample from distribution F, and
θ̂ = t(x) is an unbiased estimator of a parameter of interest
θ = θ (F ),

θ (F ) = EF {θ̂}.

Then the nonparametric MLE of θ is

θ̃ = θ (F̂ ) = EF̂ {θ̂∗},

where F̂ is the empirical distribution corresponding to x; in
other words θ̃ is the bagged version of θ̂ = t(x).

Professors Gelman and Veharti’s first example is one in which
bagging works well. Figure 4 implies that their statistic must
have been quite nonlinear as a function of the bootstrap counts.
Remark F emphasizes the point that bagging is not helpful in
the case where θ̂ is already linear.

Blind application of bootstrap smoothing is not going to work
if θ̂∗ = t(x∗) can take on infinite values. This is a sign that
the statistic t(·) is unstable in the relevant neighborhood of the
sample space, and that some regularization, of the kind Gelman
and Veharti use in the “bad” example, is called for. In other
words, one should not throw out the bootstrap with the bad
statistic’s bathwater.

Professors Gupta and Lahiri suggest two more approaches
to the post model-selection accuracy problem. Zou’s interesting
ALASSO method asymptotically selects the right model. In
terms of Figure 9, the sampling ellipses around the ALASSO
estimate must shrink to lie entirely within a single wedge, and in
fact the correct one. In the examples I have looked at, admittedly
not all that many, model selection was realistically far more
random than that.

A quite different approach is suggested as the maximum fre-
quency (MF) method: only employ those bootstrap replications
that fall into the same wedge as the original data, thereby avoid-
ing model-selection jumpiness. For the Cholesterol example of
Table 3, MF gives approximate 95% interval

4.71 ± 1.96 · 5.43 = [−5.93, 15.35],

far to the right of the smoothed interval [−13.3, 8.0].
This raises the question of conditionality: perhaps the statis-

tician should condition on the observed selected model (though
this raises the peril of ignoring model selection effects, our orig-
inal objection to classical practice).

Bayesian estimates of accuracy are automatically condi-
tional. For model selection problems, however, they require

© 2014 American Statistical Association
Journal of the American Statistical Association

September 2014, Vol. 109, No. 507, Theory and Methods
DOI: 10.1080/01621459.2014.932172
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a fearsome amount of prior specification: prior probabilities
for the different models, and then informative prior distribu-
tions within each model. In two current articles (Efron 2012,
2014), I have drawn connections between “objective” Bayes’
analysis and bootstrap estimates of variability. That line of
thinking supports the unconditional kinds of bootstrap smooth-
ing suggested in the current article, but so far it is only a
suggestion.

My thanks go to the discussants and editors for an informative
exchange on an important topic.
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