
Vol. 30 ISMB 2014, pages i26–i33
BIOINFORMATICS doi:10.1093/bioinformatics/btu268

A statistical approach for inferring the 3D structure of the genome
Nelle Varoquaux1,2,3, Ferhat Ay4, William Stafford Noble4,5,* and Jean-Philippe Vert1,2,3,*
1Centre for Computational Biology, Mines ParisTech, Fontainebleau F-77300, 2Institut Curie, 3U900, INSERM, Paris,
F-75248, France, 4Department of Genome Sciences and 5Department of Computer Science and Engineering, University
of Washington, Seattle, WA 98195, USA

ABSTRACT

Motivation: Recent technological advances allow the measurement,

in a single Hi-C experiment, of the frequencies of physical contacts

among pairs of genomic loci at a genome-wide scale. The next chal-

lenge is to infer, from the resulting DNA–DNA contact maps, accurate

3D models of how chromosomes fold and fit into the nucleus. Many

existing inference methods rely on multidimensional scaling (MDS), in

which the pairwise distances of the inferred model are optimized to

resemble pairwise distances derived directly from the contact counts.

These approaches, however, often optimize a heuristic objective func-

tion and require strong assumptions about the biophysics of DNA to

transform interaction frequencies to spatial distance, and thereby may

lead to incorrect structure reconstruction.

Methods: We propose a novel approach to infer a consensus 3D

structure of a genome from Hi-C data. The method incorporates a

statistical model of the contact counts, assuming that the counts be-

tween two loci follow a Poisson distribution whose intensity decreases

with the physical distances between the loci. The method can auto-

matically adjust the transfer function relating the spatial distance to the

Poisson intensity and infer a genome structure that best explains the

observed data.

Results: We compare two variants of our Poisson method, with or

without optimization of the transfer function, to four different MDS-

based algorithms—two metric MDS methods using different stress

functions, a non-metric version of MDS and ChromSDE, a recently

described, advanced MDS method—on a wide range of simulated

datasets. We demonstrate that the Poisson models reconstruct

better structures than all MDS-based methods, particularly at low

coverage and high resolution, and we highlight the importance of

optimizing the transfer function. On publicly available Hi-C data from

mouse embryonic stem cells, we show that the Poisson methods lead

to more reproducible structures than MDS-based methods when we

use data generated using different restriction enzymes, and when we

reconstruct structures at different resolutions.

Availability and implementation: A Python implementation of the

proposed method is available at http://cbio.ensmp.fr/pastis.

Contact: william-noble@uw.edu or jean-philippe.vert@mines.org

1 INTRODUCTION

Spatial and temporal 3D genome architecture is thought to play

an important role in many genomic functions, but is still poorly

understood (van Steensel and Dekker, 2010). In recent years, the

technique of chromosome conformation capture (3C; Dekker

et al., 2002), which identifies physical contacts between different

genomic loci and yields information about their relative spatial

distance in the nucleus, has paved the way for the systematic

analysis of the 3D structure of DNA. Coupled with high-

throughput sequencing, genome-wide conformation capture

assays, broadly referred to as Hi-C (Lieberman-Aiden et al.,

2009), have emerged as promising techniques to investigate the

global structure of DNA at various resolutions. Hi-C has opened

new avenues to understanding many biological processes includ-

ing gene regulation, DNA replication, somatic copy number

alterations and epigenetic changes (De and Michor, 2011;

Dixon et al., 2012; Ryba et al., 2010; Shen et al., 2012).
A typical Hi-C experiment yields a DNA contact map, that is,

a matrix indicating the frequency of interactions between all

pairs of loci at a given resolution. A fundamental question is

then to reconstruct the 3D structure of the genome from this

contact map. Two general approaches have been proposed for

that purpose: (i) consensus methods that aim at inferring a unique

mean structure representative of the data and (ii) ensemble meth-

ods that yield a population of structures.
Consensus approaches (Bau et al., 2011; Duan et al., 2010;

Tanizawa et al., 2010) model each chromosome by a chain of

beads, convert the contact map frequencies into pairwise dis-

tances (which we refer as wish distances) using various biophys-

ical models of DNA and infer a 3D conformation that best

matches the pairwise distances by solving a multidimensional

scaling (MDS) problem (Kruskal and Wish, 1977). Converting

interaction counts to physical wish distances requires, however,

strong assumptions that are not always met in practice. For

example, this mapping may change from one organism to an-

other (Fudenberg and Mirny, 2012), from one resolution to an-

other (Zhang et al., 2013), from one genomic distance range to

another (Ay et al., 2014a) or from one time point to another

during the cell cycle (Ay et al., 2014b; Le et al., 2013).

To alleviate this problem, Zhang et al. (2013) proposed

ChromSDE, a method that jointly optimizes the 3D structure

and a parameter of the function that maps contact frequencies

to spatial distances, in addition to modifying the objective func-

tion of MDS. Ben-Elazar et al. (2013) proposed an approach

akin to non-metric MDS (NMDS; Kruskal, 1964), where the

3D structure and the wish distances are alternatingly optimized

in an attempt to preserve coherence between the ranking of pair-

wise distances and the ranking of pairwise contact frequencies.
As for the ensemble methods, Hu et al. (2013) and Rousseau

et al. (2011) describe two formal probabilistic models of contact

frequencies and their relationship with physical distances. They

then use a Markov chain Monte Carlo (MCMC) sampling pro-

cedure to produce an ensemble of 3D structures consistent with

the observed contact counts. Kalhor et al. (2011) propose an

optimization framework that generates a population of struc-

tures by enforcing each contact to define an active constraint

in only a fraction of the inferred structures, thereby mimicking*To whom correspondence should be addressed.
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the heterogeneity of contacts coming from each cell in the Hi-C
sample. Applying a similar method to budding yeast, Tjong et al.
(2012) demonstrate that a large population of structures inferred

using known physical constraints of yeast genome architecture
can recapitulate, to a large extent, the consensus contact map
observed from Hi-C experiments.

Both consensus and ensemble models have benefits and limi-
tations. Ensemble approaches are biologically more accurate be-
cause Hi-C data are derived from a population of cells, each with

potentially a unique 3D architecture. An inferred population of
3D structures may therefore better reflect the diversity of struc-
tures than a single consensus structure. In concordance with such

ensemble methods, a recent development in Hi-C technology,
assaying chromatin conformation at a single cell level, demon-
strates that chromatin structure varies highly from cell to cell by

modeling the single-copy X chromosomes of a male mouse cell
line (Nagano et al., 2013).
However, an ensemble approach raises the question of inter-

pretability: one often has to fall back to interpreting a mean
signal from the population structure (Kalhor et al., 2011) or to
selecting a few structures, representative in some way of the di-

versity of the population (Rousseau et al., 2011). Consensus
methods, in contrast, provide a single structure more amenable
to visual inspection and analysis. This structure can be seen as a

useful model to recapitulate the rich information captured in
Hi-C data and to allow easy integration with other sources of
data, such as RNA-seq, which are usually also population based.

In addition, despite the stochasticity of cell-to-cell variations,
certain hallmarks of genome organization observed by consensus
methods, such as chromosome territories or topological domain

organization, are conserved across different cells (Hu et al., 2013;
Nagano et al., 2013). Computationally, ensemble methods are
more demanding than consensus methods because they need to

sample from a large dimensional space of possible structures with
complicated likelihood landscapes. Optimization-based consen-
sus methods are usually faster to converge to a local optimum,

but may miss the global optimum corresponding to the best
structure when the objective function is non-convex.
In this work, we focus on the consensus approach, and we

propose a new method to infer a 3D structure from Hi-C data.
We propose to replace the arbitrary loss function minimized by
existing MDS-based approaches by a better-motivated likelihood

function derived from a statistical model, similar to the one used
by a previous ensemble method (Hu et al., 2013). Specifically,
our proposed method models the interaction frequency between

two loci by a Poisson model (PM), the intensity of which de-
creases with the increasing spatial distance between the pair of
loci. Similar to the problem of inferring the wish distances from

interaction frequencies faced by MDS-based approaches, our
model faces the difficulty of transforming spatial distances into
intensities of the Poisson distribution. To solve this problem, we

propose two variant methods. The first method (PM1) uses a
default transfer function motivated by a biophysical model,
whereas the second method (PM2) uses a parametric family of

transfer functions, the parameters of which are automatically
optimized together with the 3D structure to best explain the
observed data.

We compare both PM variants to four MDS-based methods,
including metric MDS with two stress functions, NMDS and

ChromSDE. We demonstrate on simulated data that the new

models reconstruct more accurate 3D structures than all MDS-
based methods, especially at low coverage and high resolution.

We also assess the negative effect of using an incorrect transfer

function, and we show that PM2 is able to overcome this diffi-

culty. On real data, we show that, compared with MDS-based

methods, PM1 and PM2 generate more similar models when

applied to replicate experiments performed with different restric-

tion enzymes or when applied to the same data at varying reso-

lutions. The results suggest that the PM methods we describe

here provide promising alternatives to current methods for con-

sensus DNA structure inference.

2 APPROACH

We model chromosomes as series of beads in 3D, each bead representing

a genomic window of a given length, and we denote by X=ðx1; . . . ;xnÞ

2 R
3�n the coordinate matrix of the structure, where n denotes the total

number of beads in the genome (for example, n=1216 at 10kb reso-

lution for the yeast genome) and xi 2 R
3 represents the 3D coordinate of

the i-th bead. The Hi-C data can be summarized as an n-by-n matrix c in

which each row and column corresponds to a genomic locus, and each

matrix entry cij is a number, called the contact frequency or contact count,

indicating the number of times locus i and j were observed to contact one

another. The matrix is by construction square and symmetric.

2.1 Data normalization

The raw contact count matrix suffers from many biases, some technical

(from the sequencing and mapping) and others biological (inherent to the

physical properties of chromatin) (Imakaev et al., 2012; Yaffe and Tanay,

2011). Therefore, before inferring the 3D structure of the genome, we

normalize each raw contact matrix using iterative correction and eigen-

value decomposition (Imakaev et al., 2012), a method based on the as-

sumption that all loci should interact equally. Due to mappability issues,

some beads have zero contact counts. We remove these beads from the

optimization and only try to infer the positions of beads with non-zero

contact counts.

2.2 MDS-based methods

2.2.1 Metric MDS Metric MDS is a classical method to infer coord-

inates of points given their approximate pairwise Euclidean distances

(Kruskal and Wish, 1977). To use MDS in the context of DNA structure

inference from Hi-C data, we need to assign each pair of beads (i, j) a

physical wish distance �ij—i.e. the distance that we aim to capture with

our 3D model—derived from the bead pair’s contact count cij.

Performing this assignment requires us to decide how contact counts

are transformed into physical distances. In Section 2.4 we discuss a com-

monly used transformation of the form �ij=�c
�3
ij if cij40 motivated by

polymer physics. Metric MDS then places all the beads in 3D space such

that the Euclidean distance dijðXÞ=jjxi � xjjj between the beads i and j is

as close as possible to the wish distance �ij. Denoting by D the subset of

indices whose distances we wish to constrain [typically, the set of pairs

(i, j) with non-zero contact counts cij40], metric MDS attempts to min-

imize the following objective function, usually called the raw stress:

minimize
X

X
ði;jÞ2D

ðdijðXÞ � �ijÞ
2

ð1Þ

In two previous studies that use metric MDS, Duan et al. (2010) and

Tanizawa et al. (2010) infer the 3D structure of DNA from Hi-C data by

solving Equation (1), limiting D to pairs of indices with statistically sig-

nificant contact counts (false discovery rate 0.01%). Both methods use
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additional constraints such as minimum and maximum distances between

adjacent beads, minimum pairwise distances between arbitrary beads to

avoid clashes and organism-specific constraints that concern the position-

ing of centromeres, telomeres and ribosomal RNA coding regions. In the

experiments we present here, we simply solve Equation (1) without any

constraints but including all pairs of beads with positive counts in D, and

we call the resulting method MDS1. In general, we have observed that

adding constraints related to minimal and maximal distances between

beads is unnecessary because the structures found by MDS1 typically

fulfill all of these constraints (data not shown).

A drawback of the raw stress of Equation (1) in our context is that the

quadratic form is dominated by large values, corresponding to pairs of

loci with large wish distances (i.e. small contact counts). Because these

counts are less reliable than large contact counts, we propose a variant of

MDS1, which we call MDS2, where we weight the contribution of a pair

(i, j) in the stress by a factor inversely proportional to the square wish

distance between the corresponding beads:

minimize
X

X
ði;jÞ2D

��2ij ðdijðXÞ � �ijÞ
2

ð2Þ

While other weighting schemes could be proposed to decrease the

influence of pairs with large wish distances, we found this formulation

to be robust in practice. Notice that MDS2 can be thought of as a quad-

ratic approximation of the raw stress (minimized by MDS1) applied

to log-transformed distances because in the setting dijðXÞ � �ij it holds

that

X
ði;jÞ2D

log dijðXÞ � log �ij
� �2

=
X
ði;jÞ2D

log
dijðXÞ

�ij

� �2

�
X
ði;jÞ2D

dijðXÞ

�ij
� 1

� �2

Both MDS1 and MDS2 implicitly ignore non-interacting pairs of beads

(i.e. pairs with zero contact counts).

In addition to MDS1 and MDS2, we include in our benchmark

ChromSDE (Zhang et al., 2013), a recently proposed method that also

attempts to minimize a weighted stress function penalized by an add-

itional term to push non-interacting pairs far from each other. In add-

ition, ChromSDE optimizes the exponent of the transfer function that

maps from contact counts to wish distances. However, it does not infer

the relative positions of chromosomes. Accordingly, we compare only the

reconstruction of each individual chromosome produced by each method.

Note that, because intra-chromosomal counts are more reliable than

inter-chromosomal counts, ChromSDE should not be penalized com-

pared with the other methods by only considering intra-chromosomal

counts.

2.2.2 Non-metric MDS The derivation of the transfer function from

contact counts to 3D wish distances, needed by metric MDS-based meth-

ods, relies on strong assumptions about the physics of DNA (Section 2.4).

NMDS (Kruskal, 1964; Shepard, 1962) offers an alternative way to pro-

ceed, which was proposed in the context of DNA structure inference from

Hi-C data by Ben-Elazar et al. (2013). Instead of inferring physical dis-

tances from the contact matrices, NMDS relies on the sole hypothesis

that if two loci i and j are observed to be in contact more often than loci k

and ‘, then i and j should be closer in 3D space than k and ‘. Using this

hypothesis, NMDS attempts to solve the following problem:

PROBLEM 2.1. Given a set of similarities cij (e.g. the contact frequency

between i and j), find X 2 R3�n such that

cij � ck‘ , jjxi � xjjj2 � jjxk � x‘jj2 ð3Þ

Equation (3) is known as the non-metric constraint, or the ordinal

constraint. This problem was first introduced by Shepard (1962) and

formalized as an optimization problem by Kruskal (1964). It can be

solved by minimizing the cost function:

minimize
X;�

X
i;j

jjxi � xjjj2 ��ðcijÞ
� �2

�ðcijÞ
2

ð4Þ

with respect to the embedding X and the function �, where � is a

decreasing function. Algorithms to solve this optimization problem in-

volve iterating over two steps: (i) fixing � and minimizing the objective

function with respect to X (hence falling back to solve MDS2) and (ii) fit-

ting � to the new configuration X subject to the ordinal constraints. This

second step of the algorithm can be performed using an isotonic regres-

sion method, such as the pool adjacent violator algorithm (Best et al.,

1999).

A trivial solution of this problem is to set � equal to 0. In this case, all

points will collapse on the origin. To avoid this collapse, we add add-

itional constraints on X or on �, such as
P

i;j jjxi � xjjj2=K for some

constant value of K.

2.3 Poisson model

Instead of metric or NMDS-based methods, which attempt to minimize a

stress function that measures a discrepancy between the wish distances

and the 3D distances of the structure, we propose to cast the problem of

structure inference as a maximum likelihood problem. For that purpose,

we need to define a probabilistic model of contact counts parametrized by

the 3D structure that we want to infer from contact count observations.

For that purpose, we take a model similar to the one used in the

BACH algorithm (Hu et al., 2013) and model the contact frequencies

ðcijÞði;jÞ2D as independent Poisson random variables, where the Poisson

parameter of cij is a decreasing function of dijðXÞ of the form �dijðXÞ
�, for

some parameters �40 and �50. We can then express the likelihood as

‘ðX; �; �Þ=
Y
i;j

ð�d�ijÞ
cij

cij!
expð��d�ijÞ

By maximizing the log likelihood, a new optimization problem naturally

emerges from this formulation:

max
�;�;X
LðX; �; �Þ=

X
i5j�n

cij�log dij+cijlog �� �d
�
ij ð5Þ

With this new formulation, we can either provide the parameter �, using

prior knowledge, and only optimize the structure and � (which depends

on the dataset), or we can use a non-metric approach, by inferring �. We

refer to the former as PM1 and to the latter as PM2.

PM2 is solved using a coordinate-descent algorithm: first choose ran-

domly an X configuration, then iterate between maximizing L with re-

spect to � and � and, fixing � and � and maximizing L with respect to X.

In this work, we try to initialize X with a good approximation of the

solution by first evaluating the parameters � and � using some prior

knowledge and initialize X with the inferred structure from the MDS.

All optimization problems (MDS1, MDS2, NMDS, PM1 and PM2)

were solved using IPOPT, an interior point filter algorithm (W€achter and

Biegler, 2006) and the isotonic regression implementation from the

Python toolbox Scikit-Learn for NMDS (Pedregosa et al., 2011).

2.4 Default contact-to-distance transfer function

A prerequisite for both the MDS and the PM1 model (and for good

initialization of the NMDS and PM2 methods) is a function that converts

from contact counts to wish distances. Extensive previous studies of the

behavior of polymers in general and DNA in particular have yielded

proposed relationships between, on the one hand, the genomic distance

s and contact counts c and, on the other hand, genomic distance s

and physical distances d for several classes of polymers (Fudenberg and

Mirny, 2012; Grosberg et al., 1988; Lieberman-Aiden et al., 2009). For a
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fractal globule polymer, representative of mammalian DNA, the contact

count is inversely proportional to the genomic distance (c� s�1), whereas

the volume scales linearly with the subchain length (d3� s), from which

we deduce a relationship between d and c of the form d� c�1=3. For an

equilibrium globule, representative of a smaller genome such as

Saccharomyces cerevisae, the relationships differ: c� s�3=2 and d� s1/2

up to a maximum distance, corresponding to the size of the nucleus in

which the DNA is confined. Conveniently, coupling those two relation-

ships for either type of polymer yields the same mapping between contact

counts and physical distances:

d� c�1=3 ð6Þ

Thus, by default we convert contact counts cij into 3D wish distances �ij
using the following relationship:

�ij=�c
�1=3
ij ð7Þ

where � defines the scale of the structure. It is important to note that this

relationship holds true for only a subset of the full genomic distance range

and that this range varies for different genomes. In practice, we will not

infer � for the MDS and NMDS problem: the structures can easily be

rescaled after convergence to match biological knowledge of the organism

studied.

2.5 Data

To test various 3D architecture inference methods, we conducted experi-

ments on both simulated datasets and publicly available genome-wide

Hi-C datasets.

For the simulation, we generated 170 datasets using the yeast genome

architecture proposed by Duan et al. (2010). Because the repetitive rDNA

on yeast chromosome XII cannot be observed in practice, we discard all

contacts involving these loci, and we do not infer the position of the

corresponding rDNA. We generate these 170 datasets using the following

model:

cij=Pð�d�ijÞ ð8Þ

where �=3 (corresponding to the theoretical exponent discussed in

Section 2.4) and � varies between 0.01 and 0.7 (0.01, 0.01, 0.02, 0.03,

0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) with

10 different random generator seeds, thus obtaining 10 different datasets

per parameter. The � parameter controls the number of contact counts in

the datasets. A low � will yield a dataset with few counts; hence, the

corresponding wish distance matrix will be less likely to be close to the

true distance matrix. To estimate how noisy the generated data are, we

compute the following measure of signal-to-noise ratio (SNR):

SNR=

X
cijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ð�d�ij � cijÞ
2

q ð9Þ

The numerator (the signal) corresponds to the number of counts, and the

denominator (the noise) corresponds to the sum of deviation between

each count and its expected value. We use this first ensemble of simulated

datasets to assess the robustness to noise of the different methods. Note

that in actual data, the SNR gets smaller when we sequence fewer reads

or when we infer a structure at a higher resolution.

We simulated another ensemble of datasets to compare non-metric and

metric methods when the parameters provided to the different algorithms

are not the correct ones. We generate 20 datasets according to Equation

(8), with � between 4 and 2 (4, –3.5, 3, 2.5, 2) and � between 0.4 and 0.7

(0.4, 0.5, 0.6, 0.7).

We also applied our methods to publicly available Hi-C data from

mouse embryonic stem cells (Dixon et al., 2012). We started with the

data at 20 kb resolution and considered only chromosomes 1–19, with

both available restriction enzymes (HindIII and NcoI). We then

subsampled the data at resolutions of 100kb, 200kb, 500kb and 1Mb.

Note that the methods studied here infer a single copy per chromosomes,

thus yielding a consensus model for both homologous chromosomes.

2.6 Structure similarity measures

To assess the ability of a method to reconstruct a known structure from

simulated data, or the stability of the reconstructed structure with respect

to change in resolution or library preparation, we need quantitative meas-

ures of similarity between 3D structures. We use two such measures: the

root mean square deviation (RMSD) and the distance error, which we

now explain.

The RMSD is a standard way to compare two sets of structures

described by their coordinates X;X0 2 R3�n, widely used for example to

compare protein 3D structures. It is given by

RMSD=min
X�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i=1

ðXi � X�i Þ
2

s

where the structure X* is obtained by translating, rotating and rescaling

X0 ðX�=sRX0 � t, where R 2 R3�3 is a rotation matrix, t 2 R3 is a trans-

lation vector and s is a scaling factor). Because ChromSDE does not infer

the relative position of chromosomes, the RMSD values we report below

are sums of RMSDs computed independently on each chromosome.

We also directly compare the 3D distance matrices corresponding to

the two structures with the distance error:

distanceError=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i;j=0

ðdijðXÞ � di;jðX
0ÞÞ

2

vuut
The main difference between the optimization formulated by

ChromSDE and those of the other methods is the penalty assigned to

non-interacting beads. Owing to this penalty, ChromSDE should recover

better long distances than other MDS-based methods. This property is

not well captured by the RMSDmeasure, and therefore, we also compute

how well the distance matrix is recovered with the distance error, which

assigns most of the weight to long distances. We expect that methods

based on MDS, which optimize an objective function based on the dis-

tance matrix, should perform better on this measure than others.

3 RESULTS

To assess the relative strength of our new PM-based methods,

PM1 and PM2, we compare them to a panel of four MDS-based

methods: MDS1, MDS2, NMDS and ChromSDE on simulated

and real data.

3.1 Simulated Hi-C data

We first tested the six methods on data simulated as explained in

Section 2.5.

3.1.1 Performance as a function of SNR We ran all six meth-

ods—MDS1, MDS2, NMDS, PM1, PM2 and ChromSDE—on

the 170 simulated datasets with varying SNR levels. Our goal

here is to assess how well the different methods manage to re-

construct a known 3D structure from simulated data at different

SNR levels. Remember that SNR estimates how far the empirical

counts differ from their expectations; in real Hi-C data, SNR

typically decreases when we have fewer reads in total, or when

we want to increase the resolution of the structure. In this first

series of experiments, we provide the correct count-to-distance or

distance-to-count transfer functions to the methods that need
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them (MDS1, MDS2, PM1). In this setting, for infinite SNR, all

methods should consistently estimate the correct structure.

Figure 1 shows the performance of the different methods in

terms of RMSD (top) and distance error (middle) as a function

of the � parameter, which controls the SNR (bottom). As ex-

pected, all methods perform well when the SNR is high, but

exhibit marked differences in performance for finite SNR. In

the low SNR setting (SNR52), both PM1 and PM2 significantly

outperform all MDS-based methods, in both RMSD and dis-

tance error. Interestingly, we observe no significant difference

between PM1 and PM2, which shows that there is no price to

pay in terms of inferred structure if we do not specify the expo-

nent of the distance-to-count transfer function. In this setting,

PM2 is able to estimate the structure accurately enough to pro-

duce a structure of the same quality as PM1. AmongMDS-based

methods, we see that NMDS generally outperforms MDS2,

which itself outperforms MDS1. This observation highlights

that in the non-asymptotic low SNR setting, the choice of

stress function influences the performance of MDS.

ChromSDE performs better than other MDS-based methods

on datasets with a low SNR, corresponding to datasets with

low coverage and, consequently, many non-interacting pairs of

beads. This may be due to the way ChromSDE explicitly handles

such pairs. On the other hand, in a more favorable setting

(SNR42), ChromSDE does not perform as well as other

MDS-based methods; we hypothesize that when the coverage

is high enough, taking into account non-interacting pairs of

beads does not add any additional information. Because

ChromSDE is not better than other MDS-based methods, and

requires much longer to run, we do not report its performance

on the next experiments and instead focus on the differences

between the other MDS-based methods and the PM methods.

3.1.2 Metric versus non-metric methods: robustness to incorrect
parameter estimation Three of the methods tested, which we

collectively refer to as metric methods, require as input a

count-to-distance or distance-to-count transfer function:

MDS1, MDS2 and PM1. In reality, however, the DNA may

not follow the ideal physical laws underlying the default transfer

function discussed in Section 2.4, and the structures inferred

from these methods may diverge from the correct one because

of miss-specification of the transfer function.
To assess this phenomenon, and evaluate the robustness of the

different methods (including NMDS and PM2, which automat-

ically infer a transfer function), we now study the performance of

the methods on datasets generated with varying � parameters.

We therefore run the MDS1, MDS2, NMDS, PM1 and PM2

methods on the second ensemble of simulated datasets. We pro-

vide the default transfer function to all metric methods, thus

inducing a miss-specification for all simulated datasets with

� 6¼ 3.
Figure 2 shows the RMSD of each method, averaged over the

datasets with different �, as a function of �. The performance

curve of PM1, which is the best method when the data are simu-

lated with the correct parameter �=3, exhibits a characteristic

U-shape centered around �=3. This curve confirms that PM1

performs better when given the true parameter and performs

worse as � moves away from 3. On the other hand, the perform-

ance curves of the two other metric methods, MDS1 and MDS2,

do not exactly follow this trend: MDS1 and NMDS perform

increasingly better when � decreases, and MDS2 achieves the

best performance when �=3.5. This phenomenon occurs be-

cause in our simulation, when � decreases, the SNR for a

given � increases, counterbalancing the negative effect of the

transfer function miss-specification. Thus, for MDS-based meth-

ods, it is apparently more important to have more data than to

have a correct � parameter. Finally, we see that, as expected, the

non-metric approaches, NMDS and PM2, are more robust to

transfer function misspecification than the metric approaches

because they automatically estimate it. When the parameter is

wrong, PM2 outperforms the other methods for low SNR,

whereas for high SNR, NMDS performs better.

3.2 Real Hi-C data

We now test the different methods on real Hi-C data. Because in

this case the true consensus structure is unknown, we investigate

A

B

C

Fig. 1. Performance evaluation on simulated data, varying the parameter

�. (A) RMSD of each experiment for varying values of the parameter �.

ChromSDE failed to yield consistent results for 14 experiments (it re-

ported the wrong number of beads in the results file), and the PM2

algorithm failed to converge at the desired precision for one experiment

(it exceeded the maximum number of iterations). (B) Distance error of

each experiment for varying values of �. (C) Average SNR for each �.
Higher SNR corresponds to better quality data
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the behaviors of the different methods in terms of their ability to

infer consistent structures from different datasets and across

resolutions.

3.2.1 Stability to enzyme replicates The Hi-C assay depends on
a restriction enzyme to cleave the DNA after cross-linking, and

the same sequence library can be analyzed multiple times using

different enzymes. Although the resulting restriction fragments

will differ, we expect a priori that the overall genome architecture

should be the same from such replicate experiments. We there-

fore evaluate each genome architecture inference method with

respect to the similarity of the structures inferred from two rep-

licate Hi-C experiments that differ only in the choice of restric-

tion enzyme. Specifically, we apply each method to two enzyme

replicates, HindIII and NcoI, carried out in mouse embryonic

stem (ES) cells (Dixon et al., 2012) for chromosomes 1–19.

To measure the stability of the methods, we compute (i) the

Spearman correlation between the two pairwise Euclidean dis-

tance matrices of the pairs of predicted structures and (ii) the

RMSD between the rescaled predicted structures. Note that,

before computing our two error measures, we filter out from

the pair of structures any beads for which the inference has

not been done on either dataset, i.e. beads that have zero contact

counts in either dataset.
To give a sense of how similar the two replicate datasets are,

we also compute the Spearman correlation directly on the data,

rather than on the inferred structures. As expected (Table 1), the

higher the resolution is, the lower the correlation between the

pairs of datasets is and the more different the inferred structures

are. Across different enzyme replicates, the PM2 method yielded

significantly higher correlation than all of the other methods

(P50.05, signed-rank test adjusted for multiple tests with a

Bonferroni correction).

3.2.2 Stability to resolution Zhang et al. (2012) show that the

mapping from contact counts to physical distance differs from

one resolution to another, underscoring the importance of good

parameter estimation. To study the stability of the structure in-

ference methods to changes in resolution, we compute the

RMSD between pairs of structures inferred at different reso-

lutions. Let ðX;YÞ 2 ðR3�n;R3�mÞ be a pair of predicted struc-

tures such that n5m (i.e. X is a structure at a lower resolution

than Y). We compute a downsampled structure Y� 2 X3�n at the

same resolution as X by averaging the coordinates of beads. We

then compute the RMSD between this new structure Y* and X,

as well as a corresponding Spearman correlation of the distance

matrices.
Results are shown in Figure 3 and Table 2. PM2 is signifi-

cantly (P50.05) more stable to resolution changes, both in terms

of RMSD and correlation of distances.

4 DISCUSSION AND CONCLUSION

In this work, we present a novel method for inferring a consensus

genomic 3D structure from Hi-C data. The method maximizes a

likelihood derived from a statistical model of the relationship

between the contact counts and physical distances, and includes

an automatic tuning of the parameters defining the link between

a 3D distance and the Poisson parameter of the corresponding

contact count. We showed in simulations that the new method

outperforms a panel of MDS-based approaches, including

ChromSDE, which optimize an often ad hoc stress function.

The improvement is particularly important at low SNR, corres-

ponding to more difficult problems where we want to increase

the resolution of the model with a fixed total number of reads;

Table 1. Stability across enzyme replicates

Resolution Corr MDS1 MDS2 NMDS PM1 PM2

Corr RMSD Corr RMSD Corr RMSD Corr RMSD Corr RMSD

1Mb 0.981 13.13 0.945 5.54 0.964 5.80 0.965 7.28 0.931 4.92 0.976

500kb 0.959 10.00 0.942 5.68 0.959 5.67 0.959 7.14 0.913 4.66 0.968

200kb 0.845 5.64 0.940 3.74 0.945 3.73 0.946 4.01 0.891 3.42 0.958

100kb 0.605 5.07 0.736 2.53 0.676 2.52 0.666 2.51 0.664 2.76 0.771

Note: For each resolution, the table lists the Spearman correlation the two enzyme replicate datasets, and, for each inference method, the average RMSD and Spearman

correlation between pairs of structures inferred from the two datasets. Boldface values correspond to the best RMSD or correlation values among all five methods. In general,

higher resolution leads to a lower correlation between pairs of inferred structures.

Fig. 2. Performance evaluation for simulated data, varying the parameter

�. The figure plots the average RMSD of the inferred structures for a

range of � values. As � increases, the SNR of the dataset also increases
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this is typically the situation where one expects a correct

maximum likelihood estimator to outperform more ad hoc esti-

mators. We also showed that misspecification in the count-

to-distance transfer function can harm the performance of

metric methods, while our model can adapt to unknown distri-

butions within a parametric family. Finally, we also demon-

strated, on real Hi-C data, the robustness of our methods to

resolution change and enzyme duplicated datasets.
Our probabilistic model of reads is similar to the model pro-

posed by Hu et al. (2013); however, instead of generating a

family of structures by MCMC we use the model for direct max-

imum likelihood estimation of a consensus structure. Although

the consensus structure might not be a definitive structure in vivo,

it provides us with a rich model for further analysis, conserving

hallmarks of genome organization such as the water lily form of

the budding yeast (Duan et al., 2010) or topological domains

(Kalhor et al., 2011).
The PM underlying our approach remains basic and could be

subject to many improvements. For example, physical con-

straints, such as the size of the nucleus, could be incorporated

Fig. 3. Predicted structures for chromosome 1 at different resolution Contact counts matrices and predicted structures for the MDS2, NMDS, PM1 and

PM2 methods at 1Mb (A), 500 kb (B), 200kb (C) and 100kb (D)

Table 2. Stability across resolution

Measure MDS1 MDS2 NMDS PM1 PM2

RMSD 14.86 12.92 12.98 13.03 11.48

Correlation 0.781 0.754 0.738 0.737 0.807

Note: The table lists the average RMSD and Spearman correlation between pairs of

structures of different resolutions. In bold are the lowest average RMSD and high-

est average Spearman correlation. These values were computed on mouse ESC

HindIII libraries [Dixon et al. (2012)].
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into the model. Better models for zero entries may be possible

because those can either come either from non-interacting loci or

from measurement errors due to, for example, mappability prob-

lems. Overall, expressing the structure inference problem as a

maximum likelihood problem offers a principled way to improve

the method by improving the probabilistic model of measured

data.
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