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Abstract The genetic influences on complex disease

traits generally depend on the joint effects of multiple

genetic variants, environmental factors, as well as their

interplays. Gene 9 environment (G 9 E) interactions play

vital roles in determining an individual’s disease risk, but

the underlying genetic machinery is poorly understood.

Traditional analysis assuming linear relationship between

genetic and environmental factors, along with their inter-

actions, is commonly pursued under the regression-based

framework to examine G 9 E interactions. This assump-

tion, however, could be violated due to nonlinear responses

of genetic variants to environmental stimuli. As an exten-

sion to our previous work on continuous traits, we pro-

posed a flexible varying-coefficient model for the detection

of nonlinear G 9 E interaction with binary disease traits.

Varying coefficients were approximated by a non-para-

metric regression function through which one can assess

the nonlinear response of genetic factors to environmental

changes. A group of statistical tests were proposed to

elucidate various mechanisms of G 9 E interaction. The

utility of the proposed method was illustrated via simula-

tion and real data analysis with application to type 2

diabetes.

Keywords B-spline �Nonlinear genetic penetrance �
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Abbreviations

BIC Bayesian information criterion

BMI Body mass index

G 9 E Gene–environment interaction

GENVEA Gene, Environment Association Studies

Consortium

GWAS Genome-wide association study

HPFS Health Professionals Follow-up Study

LM Linear predictor model

LM-I Linear predictor model with interaction

MAF Minor allele frequency

NHS Nurses’ Health Study

SNP Single nucleotide polymorphism

T2D Type 2 diabetes mellitus

VC Varying-coefficient

Introduction

It has been increasingly recognized that the predisposition

of many complex diseases is not purely triggered by

genetic factors. They are also influenced by environmental

exposures, due to potential gene–environment interactions.

For example, type 2 diabetes mellitus is a typical complex

human disease whose incidence is heavily contingent on

the environmental exposures such as behavioral and dietary

factors, in addition to genetic susceptibility (Zimmet et al.

2001; Patel et al. 2013). Studies on gene 9 environment

(G 9 E) interactions will shed novel light on the genetic

responses to environment dynamics and how environment

changes mediate gene expression to increase disease risks.
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Such phenomenon that disease risk or genetic expression

varies under different environment conditions is also

termed phenotypic plasticity (Feinberg 2004).

G 9 E interactions were historically pursued by evalu-

ating the gene effect under different environment condi-

tions. Figure 1a shows the case of G 9 E interaction under

two discrete environment conditions, protective and pre-

disposing such as non-smoking and smoking. When envi-

ronment conditions are measured in a continuous scale,

more information is available to assess the gradient/

dynamic change of genetic effect under subtle environment

changes. For example, adult bone mineral density changes

with age and vitamin D intake (Peacock et al. 2002). Fig-

ure 1b–d displays several scenarios where the environment

mediator is measured in a continuous scale. Example of

continuous environment could be age for age-related dis-

eases such as Alzheimer, or body mass index for type 2

diabetes or hypertension. In Fig. 1b, no G 9 E interaction

is observed since the genetic effects of the three genotypes

are parallel to each other. Figure 1c shows a typical

example of linear G 9 E interaction, while Fig. 1d dis-

plays a non-linear G 9 E interaction pattern assuming the

Aa genotype is the baseline. As seen in the following

section, most current G 9 E interaction model assumes the

case displayed in Fig. 1c. Few statistical analysis has

considered the case shown in Fig. 1d.

In fact, much literature work supports the view of non-

linear G 9 E interaction. Sparrow et al. (2012) found that

mutations in gene HES7 and MESP2 caused congenital

scoliosis, and the risk was highly related to transient

hypoxia during mice pregnancy. The rate of risk increase

was non-linearly correlated with increasing hypoxic levels.

Laitala et al. (2008) reported that the reaction of personal

genetic effects on coffee consumption showed a non-linear

relationship with age. Martinez et al. (2003) found that

women carrying Gln27Glu genotype in ADRB2 gene had

higher probability for obese and the obesity rate was non-

linearly correlated with the amount of carbohydrate intake.

Even though these empirical evidences are limited to small-

scale observational studies, they underscore the importance

of further exploration on non-linear G 9 E interaction

when searching for genetic roots of complex diseases.

Within the statistical framework, G 9 E interactions in

human diseases have been investigated mainly through

model-based approaches, ranging from the standard linear

model with interaction in diverse design settings, such as

the case–control design, the case only design and the two-

stage screening design, to more sophisticated models, such

as profile likelihood-based semi-parametric models,

empirical Bayesian models and Bayesian model average

(reviewed in Mukherjee et al. 2012). However, as pointed

out in Ma et al. (2011), the model-based regression

framework generally needs strong model assumptions

between genetic effects and environmental influences,

which cannot be directly applied to the above mentioned

empirical studies in which non-linear interaction exists.
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Fig. 1 Different models of

gene–environment interaction: a
the interaction of gene and

environment in discrete

environmental conditions; cases

with b no G 9 E interaction;

and c linear and DS non-linear

G 9 E interactions. AA, Aa and

aa represent three different

genotypes in a gene, and

environment mediator

represents a continuous

environment variable
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In this paper, we extended the varying-coefficient (VC)

model proposed in Ma et al. (2011) for continuous quan-

titative responses to binary disease responses. We first laid

out the VC modeling framework for binary responses, with

details on parameter estimation and hypothesis testing. The

utility of our approach was demonstrated through extensive

simulations. Finally, we applied our method to two case–

control type 2 diabetes cohorts data sets, followed by

discussions.

Statistical method

For a sample of n unrelated individuals collected from a

population, let n1 and n2 be the number of affected (cases)

and unaffected (controls) individuals, respectively, with

n = n1 ? n2. All individuals in the sample could be gen-

otyped either based on candidate genes or on a whole

genome-wide scale. Let Yi = 1 if the ith individual is

affected and 0 otherwise. Let G be the genetic variable

which is coded as 0, 1, 2 corresponding to genotype aa, Aa

and AA where allele A is the minor allele. This coding

scheme assumes an additive disease model, although a

genetic variant may show dominant or recessive action

mode. In reality we can do a model selection to choose

which one is the optimal one using AIC or BIC criterion.

Suppose in addition to the genetic variables, the disease

risk is also affected by environmental factors as well as the

interaction between them. Let X be the environmental var-

iable which is measured in a continuous scale. Throughout

this work, we are only interested in environment changes

that display in a continuous scale (e.g., geographical loca-

tion or temporal changes). Traditional analysis for G 9 E

was commonly pursued by discretizing an environmental

variable into different groups (e.g., old vs young), as shown

in Fig. 1. However, we can have more information to assess

the G 9 E relationship when a continuously measured

environment factor is treated in a continuous scale. Thus,

the purpose of the work is to model the genetic responses

under different environmental stimuli, and further assess in

what form genes respond to these changes.

For a continuous phenotype Y, the general form of an

additive VC model to investigate the non-linear G 9 E

interaction between X and G can be expressed as,

Y ¼ aðXÞ þ bðXÞGþ rðXÞe ð1Þ

where the error term e satisfies E(e|X,G) = 0 and

Var(e|X,G) = 1. Ma et al. (2011) evaluated the perfor-

mance of the model by assuming aðXÞ ¼ a0 þ a1X: The

key components of the VC model lie in proper estimation

of the smoothing function bðXÞ and the variance function

r2(X), through which the effect of the genetic variant can

be evaluated as a function of environment exposures.

Various tests have been proposed to assess the linear or

non-linear mechanisms via likelihood ratio test. When

inhomogeneous variance (i.e., r(X) varies with X) and no

parametric distribution are assumed for the error term, wild

bootstrap is a common choice to assess the significance of

the likelihood ratio statistic.

In human genetics, many diseases are displayed as dis-

crete qualitative traits. The focus of this work is to extend

the above model to responses that do not follow continuous

distribution. In a generalized linear model setup, the rela-

tionship between the mean of a response variable Y and the

independent variables (X, G) under the varying-coefficient

model can be expressed as

EðY jX;GÞ ¼ l ¼ g�1 aðXÞ þ bðXÞGgf

where g is a link function. When Y is measured as counts

(e.g., tumor numbers), a log link function can be assumed.

When Y is a binary variable (i.e., affected vs unaffected),

then a logit link function is commonly applied. In the later

case, the logit varying-coefficient model is given by:

logitðpÞ ¼ aðXÞ þ bðXÞG ð2Þ

where p = Pr(Y = 1|X, G). In this work, we allow the

intercept function a(X) varies with X instead of assuming a

linear structure, to make it more flexible to capture the

underlying mean function when there is no genetic con-

tribution (i.e., bðXÞ ¼ 0).

If we allow b(X) = b1, the logistic VC model is reduced

to a logistic linear predictor model without G 9 E inter-

action (denoted as LM). If we allow b(X) = b1 ? b2X, the

logistic VC model is reduced to a logistic linear predictor

model with linear G 9 E interaction (denoted as LM-I),

i.e.,

logitðpÞ ¼ aðXÞ þ ðb1 þ b2XÞG
¼ aðXÞ þ b1Gþ b2XG

ð3Þ

One can also put structures on the function of a(X). For

example, we can let a(X) = a0 ? a1X. Such a model like

logitðpÞ ¼ a0 þ a1X þ b1Gþ b2XG is often applied in

assessing G 9 E interactions in a typical logistic regression

analysis by testing H0 : b2 ¼ 0: It can also be seen that this

model assumes a linear G 9 E interaction structure, that is,

the function bðXÞ is linear in X. Thus, without assuming

specific structure on the linear predictors, the VC model

has much flexibility to capture the underlying interaction

mechanism via fitting b(X) using smoothed nonparametric

functions. The VC interaction model can be considered as a

generalization to the linear interaction model.

Estimating b(X) function

The nonparametric estimation of varying coefficients has

undergone intensive investigations in the last two decades
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and falls generally into three categories: the local kernel

polynomial smoothing, polynomial spline, and smoothing

spline (Fan and Zhang 2008; Huang et al. 2004). Huang

et al. (2002) approximated the varying-coefficient functions

via B-spline basis expansion. Using the B-spline technique,

the authors further established the relevant asymptotic

properties of the estimators, such as consistency, conver-

gence rates and asymptotic normality. In addition, the

estimation of B-spline estimators is computationally fast

and numerically stable. These merits are especially impor-

tant in the context of high-dimensional genetic data analy-

sis, which make it a natural choice for us to choose when

estimating the varying-coefficient functions a(X) and b(X).

Let h be the degree of B-splines and N be the corre-

sponding interior knots. Further assume that the knots are

equally distributed for the B-spline basis matrix

{Bs:1 B s B (N ? h ? 1)}. Ideally we can select h and

N for a(X) and b(X) separately using the B-spline technique

when fitting each SNP variant. This process involves a

search of optimal degree and knots through a list of pos-

sible combinations for both functions. This, however, could

incur heavy computation burden when the estimation is

done for each SNP given that the number of SNP variants

to be tested could be huge. Thus, the degree h0 and knots

N0 for a(X) are selected first by fitting a logistic VC model

without the genetic components. Once the degree and knots

for function a(X) are selected, they will be fixed when

estimating degree and knots for function b(X) for each

SNP. The selection is done by using the Bayesian Infor-

mation Criterion (BIC) criteria defined as,

arg min
N;h

BICðN; hÞ ¼ arg min
N;h

‘ðc1Þ þ ðN þ hÞ logðnÞ=n;

where ‘ðc1Þ refers to the log-likelihood function. A grid

search for possible combinations of N and h can be done

and the values corresponding to the minimum BIC are the

‘‘optimal’’ ones.

Once the degree and knots for a(X) are determined, the

function a(X) can be estimated by âðXÞ ¼ ĉ1
TB1ðXÞ ¼

PN0þh0þ1
k¼1 ĉ1kB1kðxÞ: The degree h1 and the number of knots

N1 for b(X) are also selected using the same BIC criterion

defined above. The estimator for b(X) is given by b̂ðXÞ ¼
c2

TB2ðXÞ ¼
PN1þh1þ1

k¼1 c2kB2kðxÞ: Regular Newton–Raph-

son or Fisher scoring algorithm can be applied to estimate

the parameters.

Assessing G 9 E interaction

Our goal is to assess if a genetic variant is sensitive to

environment changes. If it does, then in what form, linear

or nonlinear. For this purpose, we first propose to assess if

the genetic effect is a constant by testing

HC
0 : bð�Þ ¼ b

HC
a : bð�Þ 6¼ b

�

ð4Þ

where b is an unknown constant and logitðpÞ ¼ aðXÞ þ bG

is the corresponding reduced model under the null

hypothesis. Under the H0, the genetic effect is a constant

and its contribution to disease risk has nothing to do with

environmental changes. If we fail to reject the null, then

association can be assessed via testing H0: b = 0 by fitting

the reduced model. Rejecting the null hypothesis leads to

the conclusion that the G 9 E interaction exists. We next

test the linear effect of G 9 E interaction by formulating,

HL
0 : bð�Þ ¼ b1 þ b2X

HL
a : bð�Þ 6¼ b1 þ b2X

�

ð5Þ

where b1 and b2 are unknown constants. Under the H0, the

reduced model is given by logitðpÞ ¼ aðXÞ þ b1Gþ b2XG:

If we fail to reject the null, then association can be assessed

via testing H0: b1 = b2 = 0 by fitting the reduced model. If

the null is rejected, it indicates nonlinear G 9 E interaction

effect and next we fit model 2 to assess genetic association.

The above tests are sequential. At each step if we fail to

reject the null, we stop and fit the null model and assess the

genetic effect by a likelihood ratio test or using a condi-

tional bootstrap approach (Cai et al. 2000). When H0
L is

rejected, a nonlinear G 9 E interaction effect is implied

and we allow the data tell the shape of the effect by fitting

the above described nonparametric B-spline functions. The

nonlinear effect is then assessed by testing H0: b(X) = 0

using a likelihood ratio test which asymptotically follows a

Chi-square distribution with the degrees of freedom equal

the number of fitted B-spline coefficients of function

b(X), or using a conditional bootstrap method proposed in

Cai et al. (2000). The bootstrap method may give more

accurate result, but certainly is more time-consuming.

Simulation

The statistical behavior of the proposed approach was

evaluated through extensive Monte Carlo simulations.

When using B-spline functions to estimate the varying-

coefficients, a uniform distribution on X is generally

assumed. In real application, the environment measure

(X) may not be uniformly distributed as in the type 2 dia-

betes data analyzed later in the paper. Instead, it is often

normally distributed. To mimic real situations, we gener-

ated a continuous environment measure X� from a normal

distribution, and subsequently transformed it by X ¼
UðX�� �X�

SX�
Þ; to make X� evenly distributed on the B-spline

subintervals, where Uð�Þ is the standard normal cumulative

distribution function and �X� and SX� are the sample mean
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and sample standard deviation of X�; respectively. The

B-spline basis matrix was constructed on the transformed

values. For a given minor allele frequency (MAF) pA and

assuming Hardy–Weinberg equilibrium, SNP genotypes

AA, Aa and aa were simulated from a multinomial distri-

bution with frequencies pA
2, 2pA(1 - pA) and (1 - pA)2 for

the three genotypes, respectively. We coded the genetic

variable Gi as (2, 1, 0) corresponding to genotypes (AA,

Aa, aa).

False positive control

We first evaluated the false positive control for the VC

model at the nominal 0.05 level. For comparison purpose,

we also reported the error rate for the linear predictor model

with and without interaction. Under the null of no genetic

effects, the disease phenotypes were simulated with

logitðpÞ ¼ a0 þ aðxÞ; where a(x) was generated via the

B-spline basis function, i.e., a(x) =
P

k=1
4 ckB(x) for given

spline coefficients c1 = 6.162, c2 = 5.948, c3 = 3.858,

c4 = 3.640. The spline coefficients were obtained by fitting

the real data (described later) without fitting the genetic

effect. We added a constant a0 in order to control the sim-

ulated proportion of case:control ratio to approximately 1:1

(by varying the size of a0). A total of 10,000 simulation

replicates were taken under all the combinations of sample

size (n = 500, 1,000, 2,000) and MAF (pA = 0.1, 0.3, 0.5).

The results were summarized in Fig. 2. As we can

observe, the false positive rates were estimated sensibly

from the simulated data. The VC model slightly overesti-

mated the false positive rate under low allele frequency

(pA = 0.1). But the performance improved as MAF

increases for a fixed sample size. In addition, the perfor-

mance improved as sample size increased under a fixed

MAF. In general, there were no significant deviations from

the nominal 0.05 level for all the 3 models, except in some

cases under low MAF and small sample size.

Power evaluation

For given genetic effects, the disease status was simulated

from a Bernoulli trial. The varying-coefficient function b(�)
was estimated through b̂ðxÞ �

PN1þh1þ1
s¼1 ĉsBðxÞ: In a typi-

cal simulation study with VC models, people generally

simulate data assuming a nonlinear function such as a sin

or exponential function. As SNPs do not function in such

form, we simulated data according to the fit calculated

from the real data to make it more realistic. Three scenarios

were considered. Scenario 1 assumed that the true G 9 E

interaction was nonlinear and the data were generated with

the VC model. In scenario 2, we assumed there was no

G 9 E interaction, while in scenario 3 we assumed linear

G 9 E interaction. The simulated data were then analyzed

using the VC, LM-I and LM models, to compare the per-

formance of detecting significant SNP effect under model

miss-specification .

For a given MAF, the data assuming nonlinear G 9 E

interaction were generated with the following VC model,

logitðpiÞ ¼ a0 þ aðXiÞ þ bðXiÞGi

where pi = p(Y = 1|X, G), and a0 was a constant used to

control the case:control ratio to make it close to 1. The

varying coefficient functions a(X) and b(X) were computed

based upon the quadratic B-spline basis matrix with

aðXÞ ¼ c1

0
B1ðXÞ and bðXÞ ¼ c2

0
B2ðXÞ; where c1 ¼

ð7:287; 7:146; 3:917; 3:413ÞT and c2 ¼ ð0:080;�0:460;

�0:201; 0:465ÞT were obtained from real data fit, namely

SNP rs4506565 on chromosome 10 of the Nurses’ Health

Study (NHS) data in GENEVA consortium (described

later). The binary responses were then generated from a

Bernoulli trial with case probability pi.

The likelihood ratio test was applied to assess the sig-

nificance of each test illustrated in previous section. The

comparison results are shown in Fig. 3. As we expected, a

common trend for the three models is that the power

increases as MAF and sample size increase. Under the

same sample size or MAF, the VC model always has the

best power among the three, which is not surprising since

the phenotypes were generated from a VC model. In

addition, the LM-I model performs better than the LM

model since structurally it is more close to the VC model.

We also simulated data assuming no G 9 E interaction

using the following model,

logitðpiÞ ¼ a0 þ aðXiÞ þ b1Gi

where a(x) was generated from the B-spline basis function

with aðXÞ ¼ c0

0
B0ðXÞ: The spline coefficient vector was

given by ĉ0 ¼ ð5:977; 6:011; 3:843; 3:668ÞT; and the

genetic coefficient was set as b1 = 0.271 (corresponding to

an odds ratio of 1.3). These coefficients were obtained by
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Fig. 2 The false positive rate of different models at the 0.05 level

(color figure online)
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fitting the real data with a linear predictor without inter-

action for SNP rs12255372 on chromosome 10. a0 was

used to adjust the case:control ratio as described before

under different sample sizes and MAFs. The results shown

in Fig. 4 demonstrate that the LM model outperforms the

other two models in all the scenarios, since data were

analyzed with the true data generating model. As MAF

increases, the power differences among the three models

diminishes for larger sample sizes. For example, the power

difference among the three models is very small under

pA = 0.5 and n = 2,000.

The following linear interaction model (LM-I) was

assumed to generate the linear G 9 E interaction data,

logitðpiÞ ¼ a0 þ aðXiÞ þ b1Gi þ b2XiGi

where aðXÞ ¼ c0

0
B0ðXÞ with spline coefficients ĉ0 ¼

ð6:358; 6:481; 4:232; 4:113ÞT: The genetic coefficient

b1 = 0.226 and interaction coefficient b2 = -0.787. All

the coefficients were obtained by fitting model 3 to SNP

rs17537178 on chromosome 10. Figure 5 shows that the

linear interaction model has the best performance among

the three. In addition, the power of the VC model is more

close to the linear interaction model since it is more

structurally close to the linear interaction model. As sample

size and MAF increase, the power difference between the

VC and LM-I model vanishes quickly.

In summary, when the true G 9 E interaction is linear

or when there is no interaction at all, the model assuming

linear or constant coefficient outperforms the VC model.

However, the VC model outperforms the other two when

the true interaction in nonlinear. In addition, the LM or

LM-I models suffer more from power loss when the

underlying true interaction is nonlinear in comparison to

the case when the underlying truth is linear or no interac-

tion. This is not surprising since the B-spline estimator is

consistent for large samples. Under large sample sizes, the

VC model should perform similar to the LM and LM-I

model. However, one has to be careful in finite samples.

The simulation results suggest that one should assess the

function b(X) first before testing b(X) = 0. In practice, one

can test if b(X) = b or b(X) = b1 ? b2X, then fit the

appropriate model depending on the test result.

Real data analysis

The fast increase in global prevalence of type 2 diabetes

draws worldwide attentions for the disease. About 50 novel

loci have been reported in association with type 2 diabetes

so far (Perry et al. 2012). However, only a small proportion

of disease heritability has been explained by these loci,

leaving the question of how to effectively account for

gene–environment interaction in the search of T2D sus-

ceptibility variants with the hope to capture the missing

heritability. We applied our model to two nested case–

control cohort studies of type 2 diabetes, the Nurses’

Health Study (NHS) and the Health Professionals Follow-
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Fig. 3 The power of different models under different MAFs and

sample sizes when data were generated with the VC model (color

figure online)
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Fig. 4 The power of different models under different MAFs and

sample sizes when data were generated with the LM model (color

figure online)
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up Study (HPFS), from the Gene, Environment Association

Studies Consortium (GENVEA) (Cornelis et al. 2010). The

two data sets are well-characterized cohorts of genome-

wide association studies investigating a set of hypotheses

about the dietary and lifestyle factors to the triggering of a

series of diseases, including type 2 diabetes, for women

and men. Details of the two cohorts can be found from

Colditz et al. (2005) and Rimm et al. (1991). The data sets

from the two cohort studies originally contain 3,391

females (NHS) and 2,599 males (HPFS) with European

ancestry. After data cleaning by removing subjects with

unmatched phenotypes and genotypes, excluding SNPs

with MAF \0.05 and deviation from Hardy–Weinberg

equilibrium, the final data contain 3,391 females (1,646

cases and 1,745 controls) with 635,748 SNPs in the NHS

set and 2,570 males (1,300 cases and 1,270 controls) with

636,764 SNPs in the HPFS set.

Body mass index (BMI), calculated as the quotient

between an individual’s mass (kg) and the square of height

(m2), is an indicator of human obesity. It is widely rec-

ognized that the risk of type 2 diabetes could be potentially

influenced by obesity condition evidenced by strong asso-

ciation between them for both women and men (Holbrook

et al. 1989; Carey et al. 1997; Chan et al. 1994). Therefore,

individual’s BMI can be regarded as a type of environ-

mental condition pivotal in evaluating the incidence of type

2 diabetes. Individuals carrying the same gene may have

different risks of type 2 diabetes under different obese

conditions. The phenomenon could be elucidated, at least

partially, by the complicated interaction mechanism

between the carrier’s gene and the environment (measured

by BMI). Thus, we can treat the genetic sensitivity to obese

as a dynamic process which can be captured by the pro-

posed VC model, if any.

Qi et al. (2010) assessed population stratification for the

two data sets and found that the genomic inflation factors

were 1.02 in NHS and 1.01 in HPFS, indicating no issue of

population stratification. Therefore, we analyzed the two data

sets separately without considering population structure, in

order to find sex-specific genes responsible for T2D risk.

Figure 6 shows the Manhattan plot of the -log10(p values)

for the male data. To compare the performance of the three

models (VC, LM, LM-I), we plotted all the signals at each

SNP locus. It can be seen that the overall signals for the three

models are quite consistent. The dashed red line corresponds

to the genome-wide Bonferroni threshold (7.9E-8) and the

dotted blue line corresponds to the suggestive threshold

(5E-6). Table 1 tabulated SNPs that passed both threshold.

Seven SNPs passed the Bonferroni threshold are marked by

*. Testing constant coefficient showed that the majority of

the SNPs has constant coefficients, which indicated they are

not sensitive to obese condition. This also explained why the

LM model gives relatively stronger signals than the other two

models. Columns with Pconst and Plinear showed the p values

for testing H0: b(X) = b and H0: b(X) = b1 ? b2X. The

smaller p values for testing constant and linear coefficients in

the top panel showed that the effects of those SNPs were

neither constant nor linear, thus the VC model gave the

strongest signals evidenced by smaller Pvc than PLM and

PLMI. For example, SNP rs4635456 had Pconst = 9.5E-07

and Plinear = 0.0117 which indicated the coefficient of this

SNP is varying over BMI. Thus, fitting a VC model gave the

strongest signal (Pvc = 3.05E-06 vs PLM = 0.6299 and

PLMI = 1.58E-05).

The mid-panel in the table listed SNPs with the strongest

signals fitted with the LM model. The Pconst values for the

SNPs were all large ([0.05), which suggests that b(X) was

a constant and there was no G 9 E interaction for these

SNPs. Hence the LM model assuming no interaction gave

the strongest signals. The bottom SNP in the table had the

strongest signal when data were fitted with the LM-I model

since we rejected constant coefficient (Pconst = 0.0108) but

failed to reject linear coefficient (Plinear = 0.6792).

Among the SNPs listed in the table, some have been

reported in other studies. For example, transcription factor

7-like 2 (TCF7L2) is an intensively examined gene asso-

ciated with a broad categories of diseases, including type 2

diabetes. The causal genetic association between SNPs of

the gene and the type 2 diabetes was first reported in Grant

et al. (2006) and was subsequently replicated in many

ethnic groups (Jin and Liu 2008). As the SNPs in this gene

are not sensitive to obese, it is not surprise that they can be

identified in other studies by using methods assuming a

linear relationship. But our method identified three more

that show nonlinear G 9 E relationship, even though they

did not pass the genome-wide Bonferroni threshold. We

also did QQ plot and histogram of the p values for data

fitted with the three models (see supplemental files for

details). The p values are quite uniformly distributed and

only a few show departure from the expected values (see

the QQ plot). This indicates that the models have no seri-

ous inflation of false positives and the strong signals are

likely to be true.

Figure 7 showed the Manhattan plot of the

-log10(p values) for the female data. Even though no SNPs

passed the genome-wide Bonferroni threshold, we did see

stronger signals fitted by the VC model. Those SNPs that

passed the suggestive threshold were listed in Table 2.

Again, gene TCF7L2 does not show sign of sensitivity to

obese to affect T2D risk. Gene GLI2 show sign of inter-

action with obese to affect T2D risk. Two SNPs in gene

NRIP1 located on chromosome 21 show sign of nonlinear

interaction with obese to affect T2D risk. In comparison to

the male data, it is clear that SNP effects are stronger in the

male population than in the female population. Moreover,

the genetic effects in females are relatively more sensitive
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to obese to affect T2D risk. In summary, strong sex-specific

genetic effects were observed, for example, those SNPs on

chromosome 2, 3, 4, and 21.

To further demonstrate the utility of the method, we

plotted the dynamic effect of SNP rs13050325 on chro-

mosome 21 from the female data (upper panel) and SNP

rs4635456 on chromosome 19 from the male data (lower

panel). The two curves in the left side of Fig. 8 show the

estimated dynamic genetic effect as a function of BMI

fitted with the B-spline function. We can see clear non-

linear genetic effects over BMI, which indicates nonlinear

interaction between BMI and the variants. The right side

figures show the plot of fitted probabilities against indi-

vidual BMI values corresponding to different genotypes.

We coded the heterozygote as 0 in our model. This implies

that the green curves in the two plots correspond to the

mean fitted probability when G = 0. In general, the risk of

T2D increases as BMI increases. This is consistent with our

prior knowledge that the disease prevalence is strongly

associated with body weight (McCarthy 2010).

For SNP rs13050325 on chromosome 21, the allele

frequency for the minor allele G is 0.2587. For SNP

rs4635456 on chromosome 19, the allele frequency for the

minor allele G is 0.3771. In both cases, the overall trend for

T2D risk for the baseline (corresponding to genotype AG)

increased as BMI level increases (green curve). However,

individuals carrying AA genotype had much higher chance

to develop T2D than those carrying AG or GG genotype.

Fig. 6 The Manhattan plot of -log10(p values) for testing: a H0: b(X) = 0; b H0: b = 0; and c H0: b1 = b2 = 0 when fitting the VC, LM and

LM-I model, respectively, for the male data set (color figure online)
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Man with genotype AA had the lowest risk of conferring

T2D susceptibility when BMI level was below 28 in male

and below 33 in female. After the transition points, the AA

genotype triggers larger effect, resulting in higher risk of

T2D. The association signals for both LM and LM-I model

are weaker than the one fitted with the VC model, leading

to potential miss-identification of these variants. The

results offered personalized preventive suggestions based

upon our findings fitted with the VC model. For example,

man carrying genotype AA at this SNP locus should pay

more attention to control their body weight if their BMI

level is above 28 to avoid the risk of T2D.

Discussion

It is broadly recognized that naturally occurring variations

in most complex disease traits have a genetic basis.

However, the degree of variability is believed to have a

strong environmental component in addition to genetic

causes for many disease traits such as obesity and type 2

diabetes (Qi and Cho 2008). Recent effort on epigenetics

study reveals the importance of epigenetic modification on

complex diseases (Liu et al. 2008). These epigenetic

changes involve major chromatin remodeling processes

such as DNA methylation and histone modification. These

structural changes represent environmentally driven plas-

ticity at the DNA level which reveals the interplay of gene-

environment interaction in the regulation of phenotype and

is increasingly recognized as the epigenetic basis of many

complex diseases (Liu et al. 2008). Large efforts have been

devoted to the exploration of epigenetic mechanisms for

better understandings of the molecular machinery under-

lying complex diseases (Feinberg and Irizarry 2010).

However, how the environment mediates epigenetic

changes to affect phenotypic plasticity is still poorly

understood, largely due to the lack of powerful statistical

methods to dissect this complicated process.

In this article, we proposed a novel statistical method by

modeling the genotypic effect on disease risk as a dynamic

function of environment mediators. Our model is built

upon well-studied statistical varying-coefficient model

implemented with the nonparametric spline technique to

estimate the varying coefficients. The model extends out

previously developed method on continuous traits to a

case–control population-based design. Simulation studies

show dramatically improved power when the underlying

genetic penetrance behaves nonlinearly under certain

environmental stimulus. Our model can capture the

dynamic changes of the gene functions over environmental

changes, hence has particular power to tackle long-standing

genetic questions regarding gene action and phenotypic

plasticity (Feinberg 2004).

Our simulation studies indicate that model miss-speci-

fication is a big issue in G 9 E study. The power to detect

genetic signals is heavily dependent upon the models to fit

the data. Simple models are always the first choice due to

their simplicity in interpretation. However, if they cannot

capture the underlying functional mechanism, they suffer

tremendously from power loss. For example, if the true

genetic effect does vary nonlinearly across environmental

changes, fitting a simple linear model would result in loss

of power (Fig. 3). On the other hand, complex models

always suffer from large degrees of freedom for testing.

Table 1 List of SNPs with p value \5E-06 in the HPFS (male) data set

SNP ID Gene name Chr Pvc Pconst Plinear PLM PLMI Pi

Fitted with VC model

rs4635456 SEMA6B 19 3.05E206 9.49E-07 0.0117 0.6299 1.58E-05 2.91E-06

rs4972250 Unknown 2 3.99E206 2.21E-06 1.65E-06 0.2772 0.1982 0.1516

rs4842244 RXRA 9 4.18E206 1.25E-06 2.91E-06 0.7146 0.0886 0.0299

Fitted with LM model

rs2371765 ADAMTS9-AS2 3 6.82E-09 0.2909 - 2.38E210* 1.88E-09 0.8140

rs7901695 TCF7L2 10 1.49E-06 0.8638 - 1.72E208* 1.06E-07 0.5633

rs7991210 PCCA 13 2.80E-07 0.2234 - 1.81E208* 7.07E-08 0.2655

rs12243326 TCF7L2 10 1.14E-06 0.6896 - 1.87E208* 8.88E-08 0.3570

rs4132670 TCF7L2 10 1.64E-06 0.8560 - 1.94E208* 1.07E-07 0.4632

rs12255372 TCF7L2 10 1.89E-06 0.7372 - 2.93E208* 1.49E-07 0.4076

rs4506565 TCF7L2 10 2.66E-06 0.8546 - 3.31E208* 1.87E-07 0.4967

rs11013381 C10orf67 10 7.83E-05 0.8865 - 1.32E206 7.74E-06 0.7106

rs6893115 Unknown 5 9.19E-05 0.8287 - 1.79E206 1.11E-05 0.9266

Fitted with LMI model

rs699253 PDE4B 1 3.93E-05 0.0108 0.6792 1.5E-04 4.21E-06 0.00125
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We proposed a sequential testing procedure to assess if a

simpler model fits the data better. The real data analysis

confirms that this strategy works. For example, when

testing constant shows that there is no G 9 E interaction,

the model with linear predictor and without interaction

term gives the smallest testing p values (see Tables 1, 2).

In real data analysis, one should always start by assessing

constant coefficient first, then move to test linear or varying

coefficients.

We applied our model to two type 2 diabetes data sets.

Cornelis et al. (2011) evaluated seven statistical models to

dissect G 9 E interactions using the same data sets. Both

Cornelis et al. (2011) and our work treated BMI as the

environmental factor. Cornelis et al. (2011) claimed that

specifying BMI as a continuous covariate will lead to

inflated type 1 error, which has consequence in detecting

increased number of false positives as the true signal. They

converted the continuous environment factor BMI into a

binary variable prior to further comparisons of all the seven

models. However, this conversion will result in information

loss, which might be the reason that there are no G 9 E

interaction signals passing the genome-wide significance

levels for all the seven models in both data sets in their

analysis (Cornelis et al. 2011). In our approach, we

allowed the nonlinear effect of BMI on type 2 disease

[modeled by function a(X)] rather than treated it as a linear

Fig. 7 The Manhattan plot of -log10(p values) for testing a H0: b(X) = 0; b H0: b = 0; and c H0: b1 = b2 = 0 when fitting the VC, LM and

LM-I model, respectively, for the female data set (color figure online)
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Table 2 List of SNPs with p value \5E-06 in the NHS (female) data set

SNP ID Gene name Chr Pvc Pconst Plinear PLM PLMI Pi

Fitted with VC model

rs13050325 NRIP1 21 3.79E207 3.77E-06 0.0016 0.0062 1.23E-05 1.0E-04

rs2331061 LANCL2 7 8.60E207 1.30E-06 5.26E-07 0.0703 0.1456 0.4471

rs1466042 GLI2 2 1.10E206 3.48E-06 0.0389 0.0241 1.61E-06 3.37E-06

rs11145373 VPS13A 9 2.63E206 8.41E-04 2.56E-04 1.27E-04 6.2E-04 0.7679

rs3775043 UNC5C 4 2.95E206 0.0018 6.96E-04 6.11E-05 2.56E-04 0.4929

rs12627409 NRIP1 21 4.00E206 2.38E-05 0.0441 0.0119 5.60E-06 2.38E-05

Fitted with LM model

rs10519107 RORA 15 4.84E-05 0.8381 – 8.52E207 3.72E-06 0.3802

rs809736 RORA 15 4.96E-05 0.8145 – 9.22E207 5.84E-06 0.8961

rs4506565 TCF7L2 10 4.35E-05 0.4953 – 1.69E206 4.66E-06 0.2018

rs7901695 TCF7L2 10 4.42E-05 0.4895 – 1.75E206 4.30E-06 0.1729

rs12255372 TCF7L2 10 1.2E-04 0.5576 – 4.47E206 9.73E-06 0.1543

rs4368343 Unknown 2 1.88E-04 0.7537 - 4.75E206 2.53E-05 0.6320

Fitted with LMI model

rs2677528 GLI2 2 2.63E-06 2.62E-05 0.0732 0.0064 2.16E206 1.55E-05

rs7978946 Unknown 12 3.09E-05 0.0117 0.6078 1.04E-04 3.62E206 0.0016

rs887370 TSHZ2 20 3.63E-05 1.45E-05 0.5868 0.4492 4.46E206 9.30E-07

Fig. 8 The estimated varying-coefficient function and fitted probability of SNP rs13050325 and SNP rs4635456 (color figure online)
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function (i.e., a0 ? a1X). This greatly alleviated the type 1

error inflation compared to a model fitted with a linear

function in BMI (data not shown). In our analysis, several

signals reached the genome-wide significance level, which

is a piece of convincing evidence for keeping the contin-

uous BMI measure as an environmental variable.

In the real data analysis, we observed strong sex-specific

variants associated with T2D. There was not much overlap

between genes identified in both data sets except for SNPs

in gene TCF7L2. Identification of SNPs in gene TCF7L2 on

the pathogenesis of type 2 diabetes has been successfully

replicated from different populations (Grant et al. 2006).

This information indicates the robustness of our model. In

addition, we observed stronger signals in the male data

evidenced by 7 SNPs from 3 genes reaching the genome-

wide significance threshold (cutoff = 7.9E-8), as shown in

Table 2. However, we observed stronger BMI 9 G inter-

action to affect T2D in females than in males evidenced by

more nonlinear G 9 E interaction in the female data set

(Table 2). We could miss these signals if we only focused

on linear predictor models. In a recent investigation of an

Italian population, Vaccaro et al. (2008) found a signifi-

cantly higher average BMI levels in diabetic women. So

possibly certain genes may be sensitive to high BMI level to

increase T2D risk. Our model provides a testable frame-

work to identify the underlying genetic blueprint sensitive

to obese changes to affect T2D risk. The results obtained by

our model can be applied to pathway or gene-set enrichment

analysis to identify potential sex-specific pathways for T2D.

In this work, we generalized the VC model for continu-

ous quantitative response to the case–control binary

response. There are several ongoing work worthy of further

investigation. First, the model can be easily extended to

other types of phenotype data, such as count data or survival

data by applying different link functions. Second, more

replication studies are needed by applying our approach to

type 2 diabetes of different ethnic groups to further confirm

the robustness of the method. Third, it is worth noting the

interesting result reported by Perry et al. (2012) that strat-

ification on the type 2 diabetes patients based on BMI might

help enrich the significance of potential susceptibility loci.

We could also try to carry out analysis to test if this

hypothesis leads to any new discoveries based on the VC

model. Finally, our model can easily incorporate population

stratification (PS) effect by first doing a principal compo-

nent analysis using software such as EIGENSTRAT (Price

et al. 2006), then incorporate those PCs as covariates into

the model to account for the effect of PS.

Acknowledgments The authors wish to thank three anonymous

referees for their constructive comments that greatly improved the

manuscript. This work was partially supported by NSF grant DMS-

1209112 and by National Natural Science Foundation of China grant

31371336. Funding support for the GWAS of Gene and Environment

Initiatives in Type 2 Diabetes was provided through the NIH Genes,

Environment and Health Initiative [GEI] (U01HG004399). The

datasets used for the analyses described in this manuscript were

obtained from dbGaP at http://www.ncbi.nlm.nih.gov/projects/gap/

cgi-bin/study.cgi?study_id=phs000091.v2.p1, through dbGaP acces-

sion number phs000091.v2.p1.

Conflict of interest The authors declare no conflict of interest.

References

Cai Z, Fan J, Li R (2000) Efficient estimation and inferences for

varying-coefficient models. J Am Stat Assoc 95:888–902

Carey VJ, Walters EE, Colditz GA, Caren G, Solomon et al (1997)

Body fat distribution and risk of non-insulin-dependent diabetes

mellitus in women. The Nurses’ Health Study. Am J Epidemiol

145:614–619

Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC (1994)

Obesity, fat distribution, and weight gain as risk factors for

clinical diabetes in men. Diabetes Care 17:961–969

Colditz GA, Hankinson SE (2005) The Nurse’s Health Study: lifestyle

and health among women. Nat Rev Cancer 5:388–396

Cornelis MC, Agrawal A, Cole JW, Hansel NN, Barnes KC et al

(2010) The Gene, Environment Association Studies consortium

(GENEVA): maximizing the knowledge obtained from GWAS

by collaboration across studies of multiple conditions. Genet

Epidemiol 34:364–372

Cornelis MC, Tchetgen Tchetgen EJ, Liang L, Qi L, Chatterjee N, Hu

FB, Kraft P (2011) Gene–environment interactions in genome-

wide association studies: a comparative study of tests applied to

empirical studies of type 2 diabetes. Am J Epidemiol

175:191–202. doi:10.1093/aje/kwr368

Fan J, Zhang W (2008) Statistical methods with varying coefficient

models. Stat Interface 1:179–195

Feinberg AP (2004) Phenotypic plasticity and the epigenetics of

human disease. Nature 447:433–440

Feinberg AP, Irizarry RA (2010) Stochastic epigenetic variation as a

driving force of development, evolutionary adaptation, and

disease. Proc Natl Acad Sci USA 107:1757–1764

Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu

A et al (2006) Variant of transcription factor 7-like 2 (TCF7L2)

gene confers risk of type 2 diabetes. Nat Genet 38:320–323

Holbrook TL, Barrett-Connor E, Wingard DL (1989) The association

of lifetime weight and weight control patterns with diabetes

among men and women in an adult community. Int J Obes

13:723–729

Huang JZ, Wu CO, Zhou L (2002) Varying-coefficient models and

basis function approximations for the analysis of repeated

measurements. Biometrika 89:111–128

Huang J, Wu C, Zhou L (2004) Polynomial spline estimation and

inference for varying coefficient models with longitudinal data.

Stat Sin 14:763–788

Jin T, Liu L (2008) The Wnt signaling pathway effector TCF7L2 and

type 2 diabetes mellitus. Mol Endocrinol 22:2383–2392

Liu L, Li Y, Tollefsbol TO (2008) Gene–environment interactions

and epigenetic basis of human diseases. Curr Issues Mol Biol

10:25–36

Laitala VS, Kaprio J, Silventoinen K (2008) Genetics of coffee

consumption and its stability. Addiction 103:2054–2061

Ma SJ, Yang LJ, Romero R, Cui YH (2011) Varying coefficient

model for gene–environment interaction: a non-linear look.

Bioinformatics 27(15):2119–2126

Gamboa-Melndez MA, Huerta-Chagoya A, Moreno-Macas H,

Vzquez-Crdenas P et al (2012) Contribution of common genetic

Hum Genet

123

http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000091.v2.p1
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000091.v2.p1
http://dx.doi.org/10.1093/aje/kwr368


variation to the risk of type 2 diabetes in the Mexican Mestizo

population. Diabetes 61:3314–3321. doi:10.2337/db11-0550

Martinez JA, Corbalan MS, Sanchez-Villegas A et al (2003) Obesity

risk is associated with carbohydrate intake in women carrying

the Gln27Glu beta2-adrenoceptor polymorphism. J Nutr

133:2549–2554

McCarthy MI (2010) Genomics, type 2 diabetes, and obesity. N Engl

J Med 363:2339–2350

Mukherjee B, Ahn J, Gruber SB, Chatterjee N (2012) Testing gene–

environment interaction in large-scale case–control association

studies: possible choices and comparisons. Am J Epidemiol

175:177–190

Patel CJ, Chen R, Kodama K, Ioannidis JP, Butte AJ (2013)

Systematic identification of interaction effects between genome-

and environment-wide associations in type 2 diabetes mellitus.

Hum Genet 132:495–508. doi:10.1007/s00439-012-1258-z

Peacock M, Turner CH, Econs MJ, Foroud T (2002) Genetics of

osteoporosis. Endocr Rev 23:303–326

Perry JRB, Voight BF, Yengo L, Amin N, Dupuis J et al (2012)

Stratifying type 2 diabetes cases by BMI identifies genetic risk

variants in LAMA1 and enrichment for risk variants in lean

compared to obese cases. PLoS Genet 8(5):e1002741. doi:10.

1371/journal.pgen.1002741

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA,

Reich D (2006) Principal components analysis corrects for

stratification in genome-wide association. Nat Genet 38:904–909

Qi L, Cho YA (2008) Gene–environment interaction and obesity.

Nutr Rev 66:684–694

Qi L, Cornelis MC, Kraft P et al (2010) Genetic variants at 2q24 are

associated with susceptibility to type 2 diabetes. Hum Mol Genet

19:2706–2715

Rimm EB, Giovannucci EL, Willett WC, Colditz GA, Ascherio A,

Rosner B, Stampfer MJ (1991) Prospective study of alcohol

consumption and risk of coronary disease in men. Lancet

338:464–468

Sparrow DB et al (2012) A mechanism for gene–environment

interaction in the etiology of congenital scoliosis. Cell

149:295–306

Vaccaro O, Boemi M, Cavalot F, De Feo P, Miccoli R, Patti L,

Rivellese AA, Trovati M, Ardigo D, Zavaroni I (2008) The

clinical reality of guidelines for primary prevention of cardio-

vascular disease in type 2 diabetes in Italy. Atherosclerosis

198:396–402

Zimmet P, Alberti KGMM, Shaw J (2001) Global and societal

implications of the diabetes epidemic. Nature 414:782–787.

doi:10.1038/414782a

Hum Genet

123

http://dx.doi.org/10.2337/db11-0550
http://dx.doi.org/10.1007/s00439-012-1258-z
http://dx.doi.org/10.1371/journal.pgen.1002741
http://dx.doi.org/10.1371/journal.pgen.1002741
http://dx.doi.org/10.1038/414782a

	A novel method for identifying nonlinear gene--environment interactions in case--control association studies
	Abstract
	Introduction
	Statistical method
	Estimating beta (X) function
	Assessing G x E interaction

	Simulation
	False positive control
	Power evaluation

	Real data analysis
	Discussion
	Acknowledgments
	References


