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INTRODUCTION
The genetic association analysis which detects gene-

disease association, either the direct association caused by
a disease susceptibility gene itself, or the indirect associa-
tion caused by the linkage disequilibrium of a disease
susceptibility gene with adjacent markers, has now been a
very popular and promising tool to locate genes that
underlie complex human diseases [Risch, 2000; Cardon
and Bell, 2001]. A commonly used design in genetic
association studies is the population-based case-control
design, in which unrelated cases and controls are collected
and compared with respect to the frequencies of some
genetic variants. This study design has an advantage that
the implementation is very convenient, since recruiting
population controls are both time- and cost-effective.

One potential drawback for the population-based study
is its lack of protection against confounding due to
unmeasured race/ethnicity factors, so that an excess of
false-positive results may arise when population stratifica-
tion exists. To avoid a spurious association by this
confounding, the family-based designs using relatives of
the cases as controls have been proposed. The simplest
family design is the case-parent design, where both
parents of the affected subjects are chosen as the family
controls [Falk and Rubinstein, 1987; Spielman et al., 1993].
The transmission/disequilibrium test (TDT) proposed by
Spielman et al. [1993] in case-parent designs has been
popular for testing the gene-disease association, whose
validity relies only on the assumption of Mendelian
transmissions, and hence is immune to the population
stratification bias. When genotype data for parents are not

available, such as in the study of late onset diseases,
unaffected siblings of affected subjects can be chosen as
the family controls [Curtis, 1997; Schaid and Rowland,
1998; Spielman and Ewens, 1998]. The disadvantage of the
case-parent/case-sibling design is that recruiting family
controls usually requires more resources in terms of time
and money [Laird and Lange, 2006].

Recently, some authors have drawn attention to the
association study using both family-based and population-
based controls [Martin and Kaplan, 2000; Mitchell, 2000;
Nagelkerke et al., 2004; Kazeem and Farrall, 2005; Epstein
et al., 2005]. Motivations for this type of studies include: (1)
using the TDT as a follow-up and confirmatory test for gene-
disease association detected in a case-unrelated control
study, since the significance of the TDT ensures a true
association; or (2) supplementing the case-parent trios with
additional unrelated controls, if available, to ensure a
sufficient power to detect association, since parental controls
may be hard to recruit, especially for late-onset diseases.

In this work, using a weighted least-squares (WLS)
approach, a combined association analysis is proposed for
combining separate association information from the case-
parent/case-sibling analysis and the case-unrelated con-
trol analysis. We also propose a procedure for testing
whether the family data (trios/sibships) could be com-
bined with the unrelated control data. The new approach
improves over the existing methods in that it involves no
assumptions and estimation on the mating-type distribu-
tion. Power comparisons made in simulations show that
the new approach competes well with the likelihood-based
method of Epstein et al. [2005] in the setting where the
latter is applicable, and achieves substantial power gains

r 2008 Wiley-Liss, Inc.



over the separate analyses in general settings for combin-
ing data from case-parent trios/sibships and unrelated
controls. Our proposal can thus have wide applications,
such as the multiallele/locus, haplotype, and genome-
wide association analyses.

METHODS

COMBINING DATA FROM CASE-PARENT
TRIOS AND UNRELATED CONTROLS

Let D denote disease status with D 5 1 denoting affected
and D 5 0 denoting unaffected, G the genotype, and h(G) a
vector of genotype covariates, which can be coded
according to some suitable genetic model [e.g., multi-
plicative, dominant, or recessive model; Schaid and
Sommer, 1993]. Let b be the vector of log genotype relative
risk (RR) parameters so that

log
prðD ¼ 1jGÞ

prðD ¼ 1jG ¼ g0Þ

� �
¼ b0hðGÞ; ð1Þ

where g0 represents some reference genotype so that h(g0)
is a zero vector.

Suppose that we have a case-parent trio sample, which

consists of genotype data fGig
N1

i¼1 for N1 affected subjects

(cases) and genotype data fGP
i g

N1

i¼1 for both parents of the
cases. Following Self et al. [1991] and Schaid and
Sommer [1993], we can estimate b by maximizing the
conditional on parental genotypes (CPG) likelihoodQN1

i¼1 prðGijGP
i ;Di ¼ 1Þ with

prðGijG
P
i ;Di ¼ 1Þ ¼

expfb0hðGiÞgprðGijG
P
i ÞP

~gi
expfb0hð~giÞgprðG ¼ ~gijG

P
i Þ
;

where prðGijG
P
i Þ is given by the Mendelian proportions,

and ~gi is over all the possible offspring genotypes for the

given parental genotype GP
i . Denote the resulting estimator

by b̂TRIO, which is an association measure summarizing
from the case-parent data.

Suppose that we have further genotype data fGig
N1þN0

i¼N1þ1

for N0 unrelated controls. Then, based on the case-

unrelated control data fDi;Gig
N1þN0

i¼1 (where by definition
Di ¼ 1 for i ¼ 1; . . . ;N1 and Di ¼ 0 for i ¼ N1 þ 1; . . . ;
N1 þN0), we can obtain an estimate for the genotype
odds ratio (OR) parameter b� defined by

log
prðD ¼ 1jGÞ

prðD ¼ 0jGÞ

� �
¼ aþ b

0

�hðGÞ ð2Þ

with a a nuisance intercept parameter, using traditional
logistic regression analysis that treats the case-control data
as prospectively collected [Prentice and Pyke, 1979].

Denote by b̂�;CC the resulting estimator for b�.
Therefore, with genotype data from case-parent trios as

well as unrelated controls, association information can be
acquired, respectively, through b̂TRIO and b̂�;CC. In situa-
tions where the two pieces of information are essentially
equivalent, such as when the disease is rare [Breslow and
Day, 1980, pp 70–71], and the case-parent trios and
unrelated controls are sampled from the same population
where no population stratification exists [Epstein et al.,
2005], it would be advantageous to integrate them to
enhance the statistical power. Note that the equivalence of

the two sources of information can be empirically checked
via a statistical test for b ¼ b�. A likelihood-ratio statistic
for testing b ¼ b� with trio and unrelated control data has
been suggested by Epstein et al. [2005], and we will
propose an alternative Wald-type test later.

Here we assume that the suitable conditions hold such
that b � b� and the two parameters are equivalent
measures for gene-disease association. In this case, let
�11 be the variance matrix of b̂TRIO, �22 be the variance
matrix of b̂�;CC, and �12 be the covariance matrix between
b̂TRIO and b̂�;CC. By the linear model theory [Seber, 1997, pp
61–62], the optimal (most efficient) estimator for b based
on the linear combination of b̂TRIO and b̂�;CC can be
obtained by the WLS estimator, which is given by

b̂ ¼W1b̂TRIO þW2b̂�;CC; ð3Þ

where W1 ¼ ð�22 � �
0

12ÞQ
�1, W2 ¼ ð�11 � �12ÞQ�1, and

Q ¼ �11 þ �22 � �12 � �
0

12 (see the Appendix). In practical
implementation, we need to substitute suitable estimates
for �jks. Note that estimates for �11 and �22 can be,
respectively, obtained from the information (negative
Hessian) matrices of the CPG and logistic regression
analyses. The estimate for �12 can be obtained by using the
scores and information matrices for the CPG and logistic
regression analyses. Explicit expressions for estimators of
�jks are given in the Appendix.

The variance of b̂ can be estimated by

varðb̂Þ ¼ �11 �W1QW
0

1 ¼ �22 �W2QW
0

2 ð4Þ

with �jks substituted with their estimates. It can thus be
explicitly seen that the combined estimator b̂ is more
efficient than the two separate estimators b̂TRIO and b̂�;CC.
The null hypothesis of no linkage or no association
between a locus and disease, i.e., b ¼ 0, can be tested with

the Wald-test statistic b̂0varðb̂Þ�1b̂, which is an association
test integrating information from case-parent trios and
unrelated controls.

Multiple affected offsprings in a family can also be
included in the proposed combined analysis. Suppose that
b̂TRIO denotes the CPG estimator for b using all possible
case-parent trios formed by the affected offsprings and the
parents and treating them as independent, and b̂CC denotes
the logistic regression estimator using all affected offsprings
and unrelated controls as the case-control sample and
treating them as independent. A combined estimator b̂ and
its variance can still be obtained using expressions (3) and
(4), except that the involved variance-covariance matrices
�jks should be substituted with their ‘‘robust" estimates (see
the Appendix), which still provide valid variance estimation
when trios/subjects are in fact dependent.

It is seen that the proposed combined association analysis
does not require any assumptions and estimation on the
mating-type distribution. In contrast, the methods by
Nagelkerke et al. [2004] and Epstein et al. [2005] require
estimation of the mating-type parameters, which may be
high dimensional in the multiallele/locus setting and hence
may complicate the analysis. The Nagelkerke et al. method
further assumes the Hardy-Weinberg equilibrium (HWE).

A TEST FOR THE APPROPRIATENESS
OF COMBINING THE DATA

We further propose a test statistic for testing whether it
is appropriate to combine the association information from
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the case-parent and case-control analyses. Since the
equality of b and b� would encourage a combined analysis
while a discrepancy between them would not, the
proposed test statistic, TC, is based on a direct comparison
of b̂TRIO and b̂�;CC:

TC ¼ ðb̂TRIO � b̂�;CCÞ
0Q̂
�1
ðb̂TRIO � b̂�;CCÞ; ð5Þ

where Q̂ ¼ �̂11 þ �̂22 � �̂12 � �̂
0

12 is an estimate for the
variance of b̂TRIO � b̂CC, with �̂jk denoting the estimate for
�jk. Under the null hypothesis of b ¼ b� TC is distributed
as a p-df w2 random variable, where p is the dimension of
b.

COMBINING DATA FROM SIBSHIPS AND
UNRELATED CONTROLS

When parental genotype data are lacking, such as when
the disease under study is late onset, it is a common
practice to use siblings as family controls. Here we extend
our proposal to the situation where genotype data are
available for a set of sibships and a set of unrelated
controls, and it is suitable to combine information from
them. Note that the likelihood-based method by Epstein
et al. [2005] cannot be applied to this type of data.

With each sibship served as a matched set, the
conditional logistic regression analysis, originally devel-
oped for matched case-control study, can be applied to
obtain the estimate b̂�;SIB for the parameter b� in model (2)
[Siegmund et al., 2000], where the intercept a is allowed to
be sibship-specific to account for shared but unmeasured
genetic/environmental factors in the sibship. On the other
hand, suppose that genotype data for a set of unrelated
controls are also available, and the unrelated controls and
sibships are from the same population where no popula-
tion stratification exists. We can then perform an uncondi-
tional logistic regression analysis, using the case-unrelated
control sample formed by the affected sibs and unrelated
controls, to obtain the ‘‘unconditional’’ estimate b̂�;CC. Note
that the unconditional estimate b̂�;CC is approximately
unbiased for b� in (2), even in the presence of a sibship-
specific random intercept a if the disease is rare so that
prðD ¼ 1jGÞ � expfaþ b

0

�hðGÞg [Zeger et al., 1988]. Simi-
larly for combining b̂TRIO and b̂�;CC, we can use the WLS
approach to obtain the estimator b̂� combining b̂�;SIB and
b̂�;CC, where

b̂� ¼W1b̂�;SIB þW2b̂�;CC

with W1 ¼ ð�22 � �
0

12Þð�11 þ �22 � �12 � �
0

12Þ
�1 and

W2 ¼ ð�11 � �12Þð�11 þ �22 � �12 � �
0

12Þ
�1. Here, �11 is the

variance matrix of b̂�;SIB, �22 is the variance matrix of b̂�;CC,
and �12 is the covariance matrix of b̂�;SIB and b̂�;CC. The
variance-covariance matrices �jks can be estimated by the
scores and information matrices from the conditional and
logistic regression likelihoods. When there are multiple
affected sibs in a sibship, to ensure valid variance
estimation with the resulting correlated data, robust
variance estimates should be used for �11 [Siegmund
et al., 2000; Fay et al., 1998] and for �22 [Liang and Zeger,
1986], and also a robust covariance estimate should be
used for �12. See the Appendix for expressions for robust
estimators of �jks. The variance of b̂� is again of form (4),
and a combined association test can be performed by the
Wald test based on b̂� and its variance estimate. Further, a

test statistic analogous to (5) that compares b̂�;SIB and b̂�;CC
can be used for checking the appropriateness of combining
data from sibships and unrelated controls.

When genotype data on the affected subjects, their
parents and unaffected siblings, and a set of unrelated
controls are all available, the proposed WLS approach can
still be applied to yield integrated information. In this case
we can obtain three separate estimates for the association
parameters: b̂TRIO from the case-parent analysis, b̂�;SIB from
the case-sibling analysis, and b̂�;CC from the logistic
regression analysis with the case-control sample formed
by affected subjects and unrelated controls. Let Y ¼
ðb̂
0

TRIO; b̂
0

�;SIB; b̂
0

�;CCÞ
0 be the vector obtained by stacking the

three set of parameter estimates and X ¼ ½IpjIpjIp�
0 the

matrix formed by stacking three p-dimensional identity
matrices Ip (p is the dimension of b). The proposed
combined estimator is the optimal linear combination of
the three separate estimators given as

b̂ ¼ ðX0��1XÞ�1X0��1Y;

where � is the variance-covariance matrix for
Y ¼ ðb̂

0

TRIO; b̂
0

�;SIB; b̂
0

�;CCÞ
0, whose component submatrices

can be estimated in the way described previously. The
variance of b̂ is obtained as varðb̂Þ ¼ ðX0��1XÞ�1. We
proposed the Wald test based on b̂ as an association test
employing joint information from cases, parents, unaf-
fected siblings, and unrelated controls.

SIMULATION RESULTS

We examine the performance of the proposed combined
association test through simulation studies. These simula-
tions are conducted under settings where the combining of
the data is suitable. We suppose that both the disease and
marker loci are diallelic with a common minor allele
frequency (MAF) equal to 0.1 (rare variant) or 0.4
(common variant), and the standardized linkage disequili-
brium coefficient [Lewontin, 1988] between them is fixed
at 0.8. The recombination rate is set to 0. Given the
haplotype frequencies so determined, the diplotype
(haplotype pair) for a subject is generated assuming
HWE and random mating. The disease outcome is
generated by model (1) or (2) with G given by the
genotype at the disease locus and h(G) specified according
to a multiplicative, dominant, or recessive model. The
disease prevalence is fixed at 5%. The size of the tests
considered is evaluated with the genotype RR or the
genotype OR at the disease locus set to 1, and the power
are evaluated at two values of RR or OR that are greater
than 1. The size and power are evaluated under a
significance level of 0.05. When performing the analysis,
we use only the marker genotypes as the genetic data, and
code h(G) as the number of copies of the minor allele; that
is, we treat the true genetic model as unknown and use a
multiplicative working model. All results are based on
1,000 simulation replications.

We first examine the size and power of the proposed
association test combining data from 100 trios and 100
unrelated controls, and compare the performance with
that of the likelihood-ratio test proposed by Epstein et al.
[2005]. In Figure 1 we show the size and power for the
combined association tests from our proposal and Epstein
et al. Also shown are the size and power from the CPG
analysis using only the trio data, and the logistic
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regression analysis using only data from affected off-
springs and unrelated controls. It is seen that all the
association tests considered have correct size (type-I error
rate) under the null hypothesis (RR 5 1). Compared to the
likelihood-based method of Epstein et al., the proposed
Wald test based on b̂ has comparable power for detecting
gene-disease association; it is equally or slightly more
powerful when the disease/marker allele is common and
the genetic effect is multiplicative or dominant, while is
slightly less powerful when the allele is rare or the genetic
effect is recessive. The combined analyses (the proposed
and the Epstein et al. methods) do achieve higher power
than the separate analyses (the CPG and the logistic
regression analyses). Since in this study it is suitable to
combine the trio and unrelated control data, we also
examine whether the proposed test statistic TC for
checking the appropriateness of combining the data can
reveal the appropriateness with sufficient probability. The
empirical size given in Table I for various genetic models
and various values of RR shows that the proposed test
does have correct type-I error rates.

Based on the above setting for the multiplicative model
with RR 5 1.7, we further vary the number of unrelated
trios from 100 to 250 while fix the number of unrelated

Fig. 1. Size and power at 5% significance level of the tests based on case-parent analysis (Trios), case-unrelated control analysis (Case-

Control), and the combined association analyses of the Epstein et al. and the proposed methods. RR denotes the genotype relative risk
at the disease locus. The MAF (for both the disease and marker loci) is 0.1 (rare variant) or 0.4 (common variant). Results are based on

100 trios and 100 unrelated controls, and 1,000 simulation replications. MAF, minor allele frequency. Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.

TABLE I. Size at 5% significance level of the proposed
test for checking the appropriateness of combining the
trio and unrelated control dataa

Rare variantb Common variantc

Multiplicative model
RR 5 1 0.051 0.056
RR 5 1.5 0.040 0.042
RR 5 1.7 0.047 0.057

Dominant model
RR 5 1 0.051 0.056
RR 5 2 0.057 0.050
RR 5 3 0.057 0.060

Recessive model
RR 5 1 0.051 0.051
RR 5 2 0.045 0.060
RR 5 3 0.046 0.050

RR, relative risk; MAF, minor allele frequency.
aBased on 1,000 simulations (100 trios and 100 unrelated controls
in each), under the settings same as those in Figure 1.
bMAF (for both the disease and marker loci) 5 0.1.
cMAF (for both the disease and marker loci) 5 0.4.
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controls at 100. The power curves in Figure 2 show that the
proposed and Epstein et al. association tests gain power as
the number of trios increases. The proposed combined
association test tends to be slightly more powerful than the
Epstein et al. test in the common-variant settings, but is
slightly less powerful in the rare-variant settings. We also
evaluate the power of the association tests with the
number of trios fixed at 100 while varying the number of
unrelated controls from 100 to 300. Both the tests from our
proposal and Epstein et al. gain power as the number of
unrelated controls increases, and the two tests have
virtually equivalent performance (data not shown).

Next we assess the power of the proposed association
test combining data from sibships and unrelated controls.
Genotypes and disease outcomes for sibships of size 3 are
generated, with the intercept a in model (2) being a normal
random variable which has a variance of 1 and a mean to

yield an overall disease prevalence of 5%. A total of 100
sibships with at least one affected and one unaffected
subject are selected for analysis. A set of 100 unrelated
controls are sampled from the same population. Figure 3
displays the size and power for the association tests based,
respectively, on b̂�;SIB, b̂�;CC, and the proposed estimate b̂
combining b̂�;SIB and b̂�;CC. It is seen that, relative to the
separate analyses based only on sibship data or data from
affected sibs and unrelated controls, the proposed com-
bined test can achieve substantial power gains. Note that
in this case there may be multiple affected sibs in a family
and there is linkage between the disease and the marker
locus; hence, there exists residual familial correlation. All
the tests considered are thus based on the robust variance
estimates presented in the Appendix, and the correct type-
I error rates of these tests shown in Figure 3 imply that the
robust variance estimation works well.

To examine the power of the proposed test for checking
the appropriateness of combining the family data with
unrelated controls, an additional set of simulations is
conducted under two scenarios where combining the data
is not valid. The first scenario is a setting where the
unrelated controls and the trios are sampled from different
populations: the MAF (for both the disease and marker
loci) is set to 0.2 in the population where the trios are
sampled, while that in the population where the unrelated
controls are sampled is varied from 0.15 to 0.35. In each of
the two populations, parental genotypes are generated
under HWE and random mating. There exists no gene-
disease association (RR 5 1) and the disease prevalence is
5%. The second scenario is a setting with population
stratification, where the population at large consists of two
strata with constituent proportions (50, 50%). The trios and
unrelated controls are randomly sampled from the
population at large. There exists no gene-disease associa-
tion (RR 5 1) and the disease prevalence in the two strata is
2 and 10%, respectively. The MAF in the first stratum is
0.1, while that in the second stratum is varied from 0.2 to
0.5. Each of the two strata is under HWE, and the mating is
random and restricted within the same stratum.

It is seen from Table II that, at significance level of 5%,
the proposed test has satisfactory power to detect the
inappropriateness of combining data from trios and
unrelated controls. In the scenarios considered, the
performance of our proposal is quite comparable to that
of the Epstein et al. method: both the two methods have
similar amount of bias in their respective estimates for the
association parameter, and have similar power for detect-
ing the inappropriateness of combining the data.

DISCUSSION

The methodology proposed can be extended to more
complicated situations. Since the resulting test statistics
involve only outputs from standard analyses (e.g., the CPG
analysis and the unconditional or conditional logistic
regression), the proposed method can be conveniently
and efficiently implemented and hence is very suitable for
genome-wide association analyses. Another important
extension is to the haplotype-disease association analysis.
To be specific, let b̂TRIO now denote some estimate for the
log haplotype RR parameters obtained by the CPG
analysis based on haplotypes. Such an estimate can be
obtained by, for example, Cordell and Clayton [2002] or

Fig. 2. Power at 5% significance level of the combined associa-

tion tests from the proposed and Epstein et al. methods, when
the number of trios increases from 100 to 250. The number of

unrelated controls is fixed at 100. Data are simulated under the

multiplicative model with RR 5 1.7. The MAF is 0.1 (rare

variant) or 0.4 (common variant). Results are based on 1,000
simulation replications. RR, relative risk; MAF, minor allele

frequency. Color figure can be viewed in the online issue, which

is available at www.interscience.wiley.com.
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Allen and Satten [2007]. Let b̂�;CC now denote some
estimate for the log haplotype OR parameters from the
case-unrelated control analysis based on haplotypes,
which can be obtained by, for example, Epstein and Satten
[2003], Stram et al. [2003], Zhao et al. [2003], and Allen and
Satten [2008]. An estimate b̂ combining b̂TRIO and b̂�;CC can
then be obtained by expression (3), with �ijs being
estimated using scores (or estimating functions) and
information matrices for these two separate estimates.
Note that some existing haplotype-based analyses [e.g.,
Epstein and Satten, 2003] depend crucially on further
assumptions such as HWE [Allen and Satten, 2008].

In some situations, genotype data may also be available
for, in addition to case-parent trios/sibships and unrelated
controls, a set of unrelated cases. In this case, in addition to
the estimate b̂TRIO=b̂�;SIB from the case-parent/case-sibling
analysis, and the estimate b̂�;CC from the logistic regression
analysis with data from the affected offsprings/sibs
and unrelated controls, we can also have the association
parameter estimate ~b�;CC from the logistic regression
analysis with data from unrelated cases and unrelated
controls. When combining the data is suitable, our
WLS approach can be easily applied to combine
separate information from b̂TRIO=b̂�;SIB, b̂�;CC, and ~b�;CC,
and obtain the combined estimator b̂ ¼ ðX0��1XÞ�1X0��1Y
and its variance varðb̂Þ ¼ ðX0��1XÞ�1; here, Y ¼

Fig. 3. Size and power at 5% significance level of the tests based on case-sibling analysis (Sib), case-unrelated control analysis (Case-

Control), and the proposed combined association analysis. OR denotes the genotype odds ratio at the disease locus. The MAF is 0.1
(rare variant) or 0.4 (common variant). Results are based on 100 trios and 100 unrelated controls, and 1,000 simulation replications. MAF,

minor allele frequency. Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.

TABLE II. Power at 5% significance level of the tests for
checking the appropriateness of combining the trio and
unrelated control data, and the bias of the combined
estimates for log genotype relative riska

Proposed Epstein et al.

Power Bias Power Bias

Scenario I: different populationsb

pA 5 0.15 0.244 0.132 0.259 0.147
pA 5 0.25 0.197 �0.171 0.214 �0.164
pA 5 0.30 0.642 �0.310 0.643 �0.300
pA 5 0.35 0.916 �0.440 0.912 �0.432
Scenario II: population stratificationc

pA 5 (0.1, 0.2) 0.141 0.105 0.146 0.117
pA 5 (0.1, 0.3) 0.322 0.169 0.356 0.185
pA 5 (0.1, 0.4) 0.554 0.219 0.612 0.245
pA 5 (0.1, 0.5) 0.702 0.285 0.769 0.317

MAF, minor allele frequency.
aBased on 1,000 simulations (100 trios and 100 unrelated controls
in each).
bThe populations where trios and unrelated controls are sampled
have MAFs 0.2 and pA, respectively.
cTrios and controls are randomly sampled from a population
consisting of two strata with disease prevalence (2, 10%) and
MAFs given as pA.
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ðb̂0TRIO; b̂
0
�;CC; ~b

0
�;CCÞ

0 or ðb̂0�;SIB; b̂
0
�;CC; ~b

0
�;CCÞ

0 is the vector
obtained by stacking the three sets of parameter estimates,
X ¼ ½IpjIpjIp�

0 the matrices formed by stacking three p-
dimensional identity matrices Ip (p 5 dimension of b), and
� the variance-covariance matrix of Y. The association test
combining all the data can be performed by the Wald test
based on b̂. Also, the test for checking the appropriateness
of combining the family and unrelated data can be based
on the Wald-type test statistic which checks the equality of
the limiting values of the three estimates b̂TRIO, b̂�;CC, and
~b�;CC.

In conclusion, we have proposed a simple method for
integrating gene-disease association information from the
family-based and population-based analyses. It applies in
general association studies without any assumptions and
estimation on the mating-type distribution.
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APPENDIX

DERIVATION OF EXPRESSIONS (3)
AND (4)

The following derivation is based on well-known results
in the linear model theory. Let Y ¼ ðb̂

0

TRIO; b̂
0

�;CCÞ
0 be the

vector obtained by stacking b̂TRIO and b̂�;CC and X ¼ ½IpjIp�
0

the matrix formed by stacking two p-dimensional identity
matrices Ip (p is the dimension of b). Note that, when the
case-parent trios and unrelated controls are sampled from
the same population and the parameters b in (1) and b� in
(2) are essentially equivalent, the 2p� 1 vector Y follows
asymptotically a 2p-variate normal distribution with mean
Xb and variance-covariance matrix �. Denote the compo-
nent submatrices of � by �11, �12, �21, and �22, where �11 is
the asymptotic variance matrix of b̂TRIO, �22 is the
asymptotic variance matrix of b̂�;CC, and �12 ¼ �

0

21 is the
asymptotic covariance matrix between b̂TRIO and b̂�;CC. By
the linear model theory [Seber, 1997, pp 61–62], the
optimal (most efficient) estimator for b based on the linear
combination of b̂TRIO and b̂�;CC is given by the WLS
estimator

b̂ ¼ ðX0��1XÞ�1X0��1Y;
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which, by some matrix algebra, leads to

b̂ ¼W1b̂TRIO þW2b̂�;CC;

where W1 ¼ ð�22 � �
0

12ÞQ
�1 and W2 ¼ ð�11 � �12ÞQ�1 with

Q ¼ �11 þ �22 � �12 � �
0

12. The variance matrix of b̂ is
given by ðX0��1XÞ�1, and by matrix algebra we have

ðX0��1XÞ�1
¼ �11 �W1QW

0

1 ¼ �22 �W2QW
0

2:

ESTIMATORS OF �jk WHEN THERE IS ONLY
ONE AFFECTED OFFSPRING/SIB IN EACH
FAMILY

For i ¼ 1; . . . ;N1, let SCPG;i and SCC;i be the scores of the
CPG and logistic regression likelihoods for the ith affected
subjects. For i ¼ N1 þ 1; . . . ;N1 þN0, let SCC;i denote the
logistic regression scores for the unrelated subjects. Let
ICPG and ICC be the respective information (negative
Hessian) matrices from the CPG analysis with trio data
and the logistic regression analysis with case-unrelated
control data. Note that the score and information matrices
for the logistic regression include additional components

for the intercept parameter a. Let b̂�;CC ¼ Lŷ, where ŷ ¼
ðâ; b̂�;CCÞ

0 and L ¼ ½0jIp�, where Ip is the p-dimensional

identity matrix. Estimates for �11 ¼ I�1
CPG and �22 ¼ LI�1

CCL0

can be obtained from outputs of standard CPG and logistic
regression analyses. To estimate �12 (the covariance

between b̂TRIO and b̂�;CC), recall that the covariance

between b̂TRIO and ŷ, denoted by covðb̂TRIO; ŷÞ, can be

estimated by I�1
CPGf

PN1

i¼1 SCPG;iS
0

CC;igI
�1
CC, and that

�12 ¼ covðb̂TRIO; ŷÞL
0; the estimate of �12 can thus be

obtained as

I�1
CPG

XN1

i¼1

SCPG;iS
0

CC;i

( )
~I
�1

CC; ðA1Þ

where ~ICC is the information matrix for the logistic
regression with the first column (corresponding to the
intercept a) dropped

In the case where the case-sibling data are used in place
of the case-parent data, �11 is now obtained from the

standard conditional logistic regression analysis with
sibship data, and �12 ¼ covðb̂�;SIB; b̂�;CCÞ can be obtained
as (A1), with the CPG scores and information matrix
replaced by those from the conditional logistic regression.

ROBUST ESTIMATORS OF �jk WHEN THERE
ARE MULTIPLE AFFECTED OFFSPRINGS/SIBS
IN A FAMILY

In the case where each family may have multiple
affected offsprings/siblings, we use the subscripts i ¼
1; . . . ;M to index families in the case-parent (case-sibling)
sample, and use i ¼Mþ 1; . . . ;MþN0 to index unrelated
subjects. Suppose that there are ni affected subjects in
family i, i ¼ 1; . . . ;M. Recall that in this case the estimator

b̂TRIO is a CPG estimator that treats the ni case-parent trios

in the ith family as independent, and the estimator b̂�;CC is
a logistic regression parameter estimator that treats the
affected offsprings and the unrelated controls as an
independent case-control sample. Let SCPG;il and SCC;il be
the CPG and logistic regression scores for the lth affected
offspring in the ith family, l ¼ 1; . . . ; ni, i ¼ 1; . . . ;M, and
SCPG;i ¼

Pni

l¼1 SCPG;il, SCC;i ¼
Pni

l¼1 SCC;il are the respective
CPG and logistic regression scores contributed from the ith
family, i ¼ 1; . . . ;M. For i ¼Mþ 1; . . . ;MþN0, let SCC;i

denote the logistic regression scores for the unrelated
subjects. Then the robust estimator for �11 is given as

I�1
CPGf

PM
i¼1 SCPG;iS

0

CPG;igI
�1
CPG, and the robust estimator of �22

is I�1
CCf
PMþN0

i¼1 SCC;iS
0

CC;ig
~I
�1

CC. The �12 can be estimated by

I�1
CPGf

PM
i¼1 SCPG;iS

0

CC;ig
~I
�1

CC. Here again, the ICPG and ICC are
information matrices from the current CPG and logistic

regression analyses, respectively, and ~ICC is the submatrix
of ICC with the first column (corresponding to the intercept
parameter a) dropped.

When the case-sibling data are used in place of the case-
parent data, the estimates of �11 and �12 are obtained as
above by replacing ICPG and SCPG;i with the information
matrix and the ith family’s score from the conditional
logistic regression with sibship data [Fay et al., 1998]. An
alternative robust estimate for �11 can be obtained as in
Siegmund et al. [2000].
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