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ABSTRACT

In anticipation of the availability of next-generation sequencing data, there is in-

creasing interest in investigating association between complex traits and rare variants

(RVs). In contrast to association studies for common variants (CVs), due to the low

frequencies of RVs, common wisdom suggests that existing statistical tests for CVs

might not work, motivating the recent development of several new tests for analyzing

RVs, most of which are based on the idea of pooling/collapsing RVs. However, there

is a lack of evaluations of, and thus guidance on the use of, existing tests. Here we

provide a comprehensive comparison of various statistical tests using simulated data.

We consider both independent and correlated rare mutations, and representative tests

for both CVs and RVs. As expected, if there are no or few non-causal (i.e. neutral or

non-associated) RVs in a locus of interest while the effects of causal RVs on the trait

are all (or mostly) in the same direction (i.e. either protective or deleterious, but not

both), then the simple pooled association tests (without selecting RVs and their as-

sociation directions) and a new test called kernel-based adaptive clustering (KBAC)

perform similarly and are most powerful; KBAC is more robust than simple pooled

association tests in the presence of non-causal RVs; however, as the number of non-

causal CVs increases and/or in the presence of opposite association directions, the

winners are two methods originally proposed for CVs and a new test called C-alpha

test proposed for RVs, each of which can be regarded as testing on a variance com-

ponent in a random-effects model. Interestingly, several methods based on sequential

model selection (i.e. selecting causal RVs and their association directions), including

two new methods proposed here, perform robustly and often have statistical power

between those of the above two classes.

Key words: C-alpha test; kernel machine regression; logistic regression;

model selection; permutation; pooled association tests; random-effects

models; SSU test; Sum test; statistical power
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INTRODUCTION

Genome-wide association studies (GWASs) have successfully identified thousands

of common genetic variants, mainly common single nucleotide variants (SNVs), as-

sociated with complex traits, including many common diseases (Hindorff et al 2010).

However, these identified variants can only explain a small proportion of inheritable

phenotypic variance (Maher 2008), leaving the door open for many more yet to be

discovered variants. A popular hypothesis is that many more rare variants (RVs)

may contribute to the missing heretability unexplained by discovered common vari-

ants (CVs) (Bodmer and Bonilla 2008; Gorlov et al 2008; Pritchard 2001; Pritchard

and Cox 2002). At the same time, biotechnological advances have made it feasible to

re-sequence parts of or whole genomes.

In anticipation of the arrival of massive amounts of next-generation sequencing

data, the chance of success in detecting association between complex traits and RVs

largely depends on statistical analysis strategies for RVs; see two excellent timely

reviews (Asimit and Zeggini 2010; Bansal et al 2010). Since frequencies of RVs are

very low, even with high penetrance, it will be difficult to detect association with any

single RV. Hence, the most popular statistical test for GWAS based on testing single

SNVs is not expected to perform well. In fact, in light of the significant difference

in variant frequencies between RVs and CVs, common wisdom might suggest that

many existing methods for CVs would not work either, motivating the development

of new statistical tests specifically targeting RVs. The most striking feature of several

recently proposed new tests for RVs is the idea of pooling or collapsing: rather than

testing on individual SNVs one by one (as in GWASs), one would pool or collapse

multiple rare SNVs together such that collectively they would have a reasonably

high frequency, and then apply a test to the collapsed genotype (Morgenthaler and

Thilly 2007; Li and Leal 2008; Madsen and Browning 2009; Price et al 2010). Albeit

well motivated and shown to perform better than single SNV-based testing, such
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a pooling strategy has its own limitations. If the RVs to be pooled are associated

with the trait in different directions, i.e. some are associated positively while others

negatively, the strategy of pooling may weaken or diminish the signal in associated

RVs. Furthermore, if many of the RVs are non-causal, i.e. they are not associated

with the traits, pooling will inevitably introduce noises into the collapsed genotype

and thus have reduced statistical power. Note that, the effects of RVs are not always

in the same direction: they can be protective or deleterious. For example, some RVs

in gene PCSK9 are associated with lower plasma levels of low-density lipoprotein

cholesterol (LDL-C) while others associated with higher levels of LDL-C (Kotowski

et al 2006). In recognition of these limitations, several methods based on model

selection have been proposed recently (Han and Pan 2010; Hoffmann et al 2010;

Bhatia et al 2010; Zhang et al 2010). The main idea is to determine whether a RV

should be pooled, and if so, what is its association direction. Since these methods

are based on either a marginal test or a step-up procedure on each individual RV,

the power of selecting a RV and determining its association direction may be limited.

Here we propose two new model-selection procedures that improve over the existing

pooled association tests while maintaining low computational cost, borrowing the idea

of Basu et al (2010) in linkage analysis.

Very recently several new tests, including a kernel-based adaptive clustering (KBAC)

(Liu and Leal 2010), a C-alpha test (Neale et al 2011) and a replication-based test

(RBT) (Ionita-Laza et al 2011), specifically designed for RVs and aiming to overcome

various weaknesses of the pooled association tests, have appeared. However, no com-

parison was made among these new tests and model-selection approaches for RVs.

More generally, in the current literature, there is no evaluation on the applicability

of most existing tests to RVs. Although most existing tests have been proposed for

and mainly applied to CVs, some were originally developed for high-dimensional data

and thus are likely to be robust to the large number of parameters facing the analysis
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of RVs, and may have reasonable power for RVs. Goeman’s score test (Goeman et al

2006) and kernel machine regression (KMR) (Liu et al 2008) are two such examples.

Since Goeman’s test is permutation-based and is equivalent to a test called the sum of

squared score (SSU) test (Pan 2009), we consider the SSU test here. As to be shown,

perhaps surprisingly, both the SSU test and KMR, along with the C-alpha test specif-

ically proposed for RVs (Neale et al 2011), performed extremely well under certain

situations when the pooled association tests had low power. In summary, given the

compelling interest of the scientific community in detecting association between com-

plex traits and RVs while little is known about the relative performance and merits

of various existing and new tests, it is timely to have a comparative evaluation of the

tests, an endeavor taken here.

METHODS

To be concrete, we restrict the attention to the case-control design with a binary

trait, say disease, though many of the methods discussed are based on logistic re-

gression and can be easily extended to generalized linear models (GLMs) for other

types of traits. We do not consider adjusting for covariates, such as environmental

factors, though again methods based on logistic regression can easily accommodate

covariates. We assume that the analysis goal is to detect whether there is any associ-

ation between the disease and a group of rare SNVs, for example, SNVs in a sliding

window or in a functional unit such as gene. We denote the binary trait Yi = 0 for n0

controls, and Yi = 1 for n1 = n − n0 cases. The k variants are coded by an additive

genetic model: Xij = 0, 1 or 2 for the number of the rare variant (minor allele) for

SNV j, j = 1, ..., k.

Methods originally proposed for common variants

Logistic regression
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Several most popular statistical tests are based on logistic regression:

Logit Pr(Yi = 1) = β0 +

k
∑

j=1

Xijβj . (1)

The null hypothesis to be tested is H0: β = (β1, ..., βk)
′ = 0. Maximum likelihood can

be utilized to derive asymptotically equivalent score test, Wald’s test and likelihood

ratio test (LRT); here we focus on the score test for its computational simplicity. For

model (1), the score vector and its covariance matrix are

U =
n
∑

i=1

(Yi − Ȳ )Xi,

V = Ȳ (1 − Ȳ )

n
∑

i=1

(Xi − X̄)(Xi − X̄)′,

where Xi = (Xi1, ..., Xik)
′, Ȳ =

∑n

i=1 Yi/n and X̄ =
∑n

i=1 Xi/n.

The most popular test for CVs in GWAS is the (univariate) minP (UminP) method

that tests on each single SNVs one-by-one and then takes the minimum of their p-

values. The corresponding UminP score test statistic is

TUminP = max
j=1,...,k

U2
j /Vjj,

where Uj is the jth element of U and Vjj is the (j, j)th element of V . An adjustment for

multiple testing has to be made. Although the Bonferroni and permutation methods

are most commonly used, a better way is to derive the null distribution of TUminP

and thus a p-value based on numerical integration with respect to a multivariate

Gaussian density (Conneely and Boehnke 2007).

A joint test as an alternative to the UminP test is the multivariate score test:

TScore = U ′V −1U,

which has an asymptotic chi-squared distribution with degrees of freedom (DF) k. If

DF k is large, the test may not have high power.
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Pan (2009) proposed two tests, called sum of squared score (SSU) and sum of

weighted squared score (SSUw) tests:

TSSU = U ′U, TSSUw = U ′(Diag(V ))−1U,

where Diag(V ) is a diagonal matrix with the diagonal elements of V . Under H0, each

of the two test statistics has an asymptotic distribution of a mixture of χ2
1’s, which

can be approximated by a scaled and shifted chi-squared distributions (Pan 2009).

The two tests can be regarded as modified score test by ignoring the non-diagonal

elements of V , i.e. correlations among the components of U , which is known to be

advantageous for high-dimensional data (Chen and Qin 2010). More importantly, as

shown by Pan (2009), the SSU test is equivalent to the permutation-based version

of Goeman’s (2008) test, which is derived as a variance component score test for a

random-effects (R-E) logistic regression model. Specifically, in model (1), if we assume

βj ’s as random effects drawn from a distribution with E(β) = 0 and Cov(β) = τΣ,

then Goeman’s score test on H0: τ = 0 is

S =
1

2
U ′ΣU − 1

2
tr(ΣV ), (2)

where tr(A) is the trace of matrix A. Observing that V is invariant to permutations

of Y , we know that, under permutations, using S is equivalent to using SP = U ′ΣU ,

which is equivalent to the SSU, SSUw and score test statistics with Σ = I, Σ =

Diag(V ) and Σ = V , respectively. Note that Goeman’s test was originally derived to

test on a large number of parameters for high-dimensional microarray data, though its

good performance for lower-dimensional SNV data have been empirically confirmed

too (Chapman and Whittaker 2008; Pan 2009).

Another test performed well under certain situations for CVs is the so-called

Sum test, as noted by Chapman and Whittaker (2008) and Pan (2009). The Sum

test was motivated to strike a balance between jointly testing on multiple SNVs

and its resulting DF. The Sum test is based on a key and generally incorrect working
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assumption that the SNVs are all associated with the trait with a common association

strength:

Logit Pr(Yi = 1) = βc,0 +

k
∑

j=1

Xijβc, (3)

where βc reflects the common odds ratio (OR) between the trait and each SNV

under the working assumption. While utilizing all the SNVs, the Sum test avoids

the possibly too large DF, and thus loss of power, of other multivariate tests. It

only requires to test on a single parameter with H0: βc = 0 by a score test (or

its asymptotically equivalent Wald’s test or LRT). Pan (2009) pointed out that the

weighted score test of Wang and Elston (2007) share the same spirit and thus similar

performance as the Sum test. Note that in model (3) we regress Y on a new “super-

SNV” that is the sum of the genotype values of all the SNVs, hence we call the

resulting test Sum test.

To incorporate prior biological information, one may want to weight SNVs using

some suitable weights, e.g. based on their MAFs (Madsen and Browning 2009) or

their predicted likelihoods of being functional (Price et al 2010). It is straightforward

to do so in logistic regression: with a set of weights w = (w1, ..., wk)
′, we can simply

weight the codings for SNVs; that is, rather than using Xi = (Xi1, ..., Xik)
′ for subject

i, we use Xi,w = (w1Xi1, ..., wkXik)
′ in logistic regression model (1). It is easy to see

that, the UminP, score and SSUw tests are invariant to such weighting, while the

SSU and Sum tests do depend on such weighting. In fact, a careful examination of

the SSU and Sum test statistics indicates that the above two tests treat Xij ’s more

or less equally across j. By the expression of V , we see that those variants with

larger MAFs tend to have larger variances for their components of the score vector.

Hence, without weighting, the SSU and Sum tests essentially give heavier weights to

the variants with larger MAFs, implying that they will be sensitive to the presence

of non-causal CVs, as to be confirmed.

To overcome the above weakness of the SSU test, a simple strategy is to weight
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each variant j inversely by its sample standard deviation SD(X1j, ..., Xnj), which is

equivalent to standardizing each predictor j to have a sample SD=1. The resulting

SSU test is essentially the same as the SSUw test. This point highlights a key dif-

ference between the SSU and SSUw tests, illustrating when one of the two is more

powerful than the other. For example, if the causal variants tend to have lower MAFs

than that of non-causal ones, the SSU test is expected to be less powerful; otherwise,

the SSU test is more powerful. A potential problem with the above weighting scheme

(and with the SSUw test) is that, since a causal variant may have a higher MAF

in cases but a lower MAF in controls, and thus a higher overall MAF across both

cases and controls, it will downweight this causal variant, leading to reduced power.

This is a reason that Madsen and Browning (2009) proposed using the MAFs of only

controls to construct weights. Specifically, if there are n0
j minor alleles for variant j

in all the controls, then we can use weights

wj = 1/
√

nqi(1 − qj), qj = (n0
j + 1)/(2n0 + 2). (4)

With such weights, which already use the disease labels, the asymptotic SSU test (and

Sum test) would have inflated Type I error rates. Alternatively, we use a standard

permutation to calculate p-values, and denote the resulting test wSSU-P.

Logistic kernel machine regression and genomic similarity-based methods

Rather than testing the effects of the SNVs parametrically (i.e. linearly in our

specified model (1)), one can adopt a nonparametric model:

Logit Pr(Yi = 1) = β0 + h(Xi1, ..., Xik), (5)

where h(.) is an unknown nonparametric function to be estimated, offering the flexibil-

ity in modeling the effects of the SNVs on the trait. In a specific approach called kernel

machine regression (KMR) (Liu et al 2008), the form of h(.) is determined by a user-

specified positive and semi-definite (psd) kernel function K(Xi., Xj), which measures
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the genomic similarity between the genotypes of subjects i and j. Some commonly

used kernels include linear, identity-by-descent (IBS) and quadratic kernels. By the

representer theorem (Kimeldorf and Wahba 1971), hi = h(Xi) =
∑n

j=1 γjK(Xi, Xj)

with some γ1,...,γn. To test the null hypothesis of no association between the phe-

notype and SNVs, one can test H0: h = (h1(X1), ..., hn(Xn))′ = 0. Denote K as the

n×n matrix with the (i, j)th element as K(Xi, Xj) and γ = (γ1, ..., γn)′, then we have

h = Kγ. Treating h as subject-specific random effects with mean 0 and covariance

matrix τK, testing H0: h = 0 for no SNV effects is equivalent to testing H0: τ = 0.

The corresponding variance component score test statistic is

Q = (Y − Ȳ 1)′K(Y − Ȳ 1),

whose asymptotic null distribution is a mixture of χ2
1’s, which can be approximated

by a scaled chi-squared distributions (Wu et al 2010).

The above logistic KMR can be extended to include other covariates and for other

traits, e.g. linear models for quantitative traits (Kwee et al 2008). Since the kernel

function measures the similarity of two genotypes, KMR is expected to be related to

genomic-distance based regression (GDBR) of Wessel and Schork (2006); see Schaid

(2010 a, b) for a review on the topic. More specifically, as shown by Pan (2011),

both KMR and GDBR are equivalent to the SSU test on H0: b = 0 in a new logistic

regression model:

Logit Pr(Y = 1) = b0 + Zb, (6)

where K = ZZ ′. Hence, the difference between the SSU test for model (1) and logistic

KMR is only in the transformation of SNV codings in model (6), while both tests

are actually an SSU test applied to two different regression models. A special case is

that, for a linear kernel K, we have K = XX ′; that is, Z = X, under which the SSU

and KMR are equivalent.

Empirically it has been found that GDBR and KMR performed very well in de-

tecting disease association with CVs (Lin and Schaid 2009; Wu et al 2010; Han and
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Pan 2010b). Albeit proposed for and mainly applied to CVs, first Wessel and Schork

(2006), and more recently Bansal et al (2010) commented that GDBR (and thus

KMR) could be applied to sequence data to detect association with RVs.

To our knowledge, the above statistical tests originally proposed for CVs have

never been applied to RVs. Intuition might argue against their application to RVs.

However, as to be shown, perhaps quite surprisingly, some of them performed quite

well in our numerical studies. We will offer some explanations in Discussion.

Methods for rare variants

Pooled association tests

The first test specifically designed for RVs is perhaps the cohort allelic sums

test (CAST) (Morgenthaler and Thilly 2007). CAST works by first collapsing the

genotypes across RVs to generate a “super-variant”: Xi,C = 1 if any Xij > 0 (i.e. any

rare variant is present), and Xi,C = 0 otherwise. It then tests the association between

the trait and this new Xi,C. It can be regarded as fitting a logistic regression model

Logit Pr(Yi = 1) = βC,0 + Xi,CβC , (7)

and testing H0: βC = 0. The most striking feature of CAST, as the Sum test, is its

testing on a single parameter, thus low DF and possibly increased power.

As pointed out by Han and Pan (2010), the CAST is closely related to the Sum

test: both test on only a single parameter representing some average effect of the

multiple SNVs. They differ in their coding of the “super-variant”: Xi,C = ∨k
j=1Xij

versus Xi,S =
∑k

j=1 Xij, similar to the use of a dominant genetic model versus an

additive genetic model for the effect of an individual variant. Note for rare variants,

we have Xi,C ≈ Xi,S. Other codings for the “super-variant” are also possible, as

considered by Morris and Zeggini (2010).

Li and Leal (2009) proposed a new test called Combined Multivariate and Col-

lapsing (CMC) test, which modifies the CAST to improve its performance when both
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rare and common variants are present. Specifically, for any rare mutations with their

minor allele frequencies (MAFs) less than some threshold, say 0.05, they will be

combined into a new group as in the CAST, while each common variant (e.g. with

MAF > 0.05) forms its own group, and the generalized Hotelling’s test (Fan and

Knapp 2003; Xiong et al 2002) is applied to such formed multiple groups. Note that

the generalized Hotelling’s test is closely related to the score test in logistic regression

(Clayton et al 2004). Hence, for only RVs, the CMC test is essentially the same as

the CAST (and the Sum test).

The weighted sum (w-Sum) test of Madsen and Browning (2009) is also based

on the idea of collapsing RVs. It differs from the Sum test in i) using a weighted

sum, instead of a simple sum, of RVs by their MAFs, and ii) comparing the ranks of

the weighted sums, rather than the sums themselves, between the case and control

groups. Hence, putting aside the difference in weighting, the wSum test is analogous

to the Mann-Whitney-Wilcoxon rank test, while other pooled association tests are

analogous to the t-test.

The main advantage of the above pooled association tests is their minimum DF at

1, hence no loss of power due to large DF or multiple testing adjustment. However,

as pointed out by Han and Pan (2010), they all share a common weakness: they

suffer from possibly significant power loss if the association directions of the causal

variants are opposite. This can be most clearly seen from the Sum test. Generally,

the common association parameter βc in (3) can be viewed as a weighted average

of the individual β1, ..., βk; see a closed-form expression for β̂c for linear regression

given in Pan (2009). Hence, depending on the signs of β1, ..., βk, |βc| may be very

small, leading to loss of power in the Sum test. To overcome this limitation, several

methods based on model selection have been proposed, as to be presented next.

Methods based on model selection
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A general model has been proposed by Hoffmann et al (2010):

Logit Pr(Yi = 1) = βc0 +
k
∑

j=1

γjXijβc, (8)

with γj = wjsj , where wj is a weight assigned to SNV j, sj = 1 or −1 indicating

whether the effect of SNV j is positive or negative, and sj = 0 indicating the exclusion

of SNV j from the model (i.e. the SNV is unlikely to be associated with the trait).

Madsen and Browning (2009) suggested to weight RVs with the weights depending on

their MAFs. However, it is still debatable on how to appropriately weight the SNVs,

and if needed, it is not difficult to incorporate a weighting scheme into most methods

discussed here. Hence we do not discuss the use of weights and always assume wj = 1

for any test except the wSum test.

The pooled association tests correspond to fixing sj = 1 for all j’s. Several existing

model-selection-based methods can be classified into one of the two classes:

1) Choosing sj = 1 or −1 in a data-dependent manner. Han and Pan (2010)

proposed an adaptive Sum (aSum) test, in which the value of each sj is determined

based on a univariate test on the marginal association between the trait and SNV j

for j = 1, ..., k.

2) Choosing sj = 1, 0 or −1 in a data-dependent manner. A Step-up procedure

(Hoffmann et al (2010) and a covering method (called RareCover) (Bhatia et al 2010)

have been proposed to determine the value of sj’s, both in a manner of forward

variable selection: starting from a null model without any SNV, SNVs are selected

one by one based on their statistical significance and then added into the model.

Here we propose two new methods, both of which start from the Sum test with

all sj = 1. The main motivation is that, since the individual effect of each RV is hard

to detect while the Sum test (or any other pooled association test) has proven useful

for RVs, rather than starting from a null model (as in the Step-up and the RareCover

procedures) or testing on marginal association (as in the aSum test), we would like
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to start from the Sum test and make any necessary adjustment on the values of sj’s,

which may result in higher power. In the first method, called Sequential Sum test

(Seq-Sum), for each SNV j with j = 1 and increased to k, we determine which of

the two models, the current model with sj = 1 and the other model with sj = −1

(while all other sj’s fixed at their current values for both models), is preferred based

on which model yields a larger (maximized) likelihood; then we increase j by one and

repeat the above process until we have tried j = 1, ..., k. In the second method, called

Sequential Sum test with variable selection (Seq-Sum-VS), starting from SNV j = 1,

we consider three models with sj = 1, 0, and −1 respectively, and choose the model

with the largest (maximized) likelihood; then we increase j by 1, and repeat the

above process until having tried j = 1, ..., k sequentially. Hence Seq-Sum considers

only the coding of each SNV (i.e. its protective or harmful effect), while Seq-Sum-VS

considers selecting both SNVs and their association directions. It is noted that the

two methods consider only a total of k + 1 and 2k + 1 candidate models respectively.

Due to the nature of their sequential search and dependence on the order of the SNVs,

unlike the Step-up and CoverRare procedures, it is unlikely that they will select the

best model (in terms of the largest maximized likelihood). Nevertheless, there are two

possible benefits. One is the obviously reduced computational cost when compared

to an exhaustive search for exponentially many (i.e. 2k and 3k) models. The second

benefit is less obvious: there is also lower cost for multiple testing adjustment due

to a reduced number of model comparisons. Computationally, rather than using the

maximized likelihood as the criterion to select models, which requires fitting each

model by an iterative algorithm to obtain the maximum likelihood estimates, we

adopt a score test, which is computationally much faster. The proposed Seq-Sum

test is closely related to a new adaptive Sum test of Pan and Shen (2011), which

is more flexible while overcoming a weakness of the Seq-Sum method, namely, its

dependence on an arbitrary ordering of the SNVs.
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In general, it is difficult to analytically derive the null distribution of a test statistic

after model selection. For each procedure above, we use permutations to calculate

p-values.

Kernel-based adaptive clustering

Liu and Leal (2010) proposed a method called kernel-based adaptive clustering

(KBAC) for RV association testing. KBAC works by grouping/clustering mutation

patterns across the variants, and assigning each mutation pattern a kernel-based

weight adaptively determined by data. Specifically, suppose that among the cases

and controls, we have M + 1 mutation patterns across all k variants, denoted as

G0, G1,...,GM , where G0 represents the wild-type without any mutation. We also

assume that there are n1,i cases and n0,i controls with mutation pattern Gi; denote

n.i = n1,i + n0,i. For mutation pattern Gi, the risk of having disease is estimated as

Ri = n1,i/n.i. The KBAC test statistic is

TKBAC =

(

M
∑

i=1

(n1,i/n1 − n0,i/n0)wi

)2

,

where the weight wi is determined by a hyper-geometric kernel:

wi =

∫ Ri

0

k0
i (r)dr =

∑

r∈{ 0

n.i
, 1

n.i
,...Ri}

C(n.i, n.ir)C(n − n.i, n1 − n.ir)

C(n, n1)

with C(a, b) as the combination number of choosing b out of a. The p-value is calcu-

lated by standard permutations (for small samples while a Monte Carlo approximation

is used for large samples).

From the expression of TKBAC , we see that its performance may deteriorate in the

presence of both protective and harmful causal variants: some positive and negative

components (n1,i/n1 − n0,i/n0)wi may cancel out with each other in the sum, though

the use of weight wi may alleviate the problem. A simple modification as shown below
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may help overcome the problem:

TmKBAC =
M
∑

i=1

(n1,i/n1 − n0,i/n0)
2wi,

though we do not pursue it here. In addition, KBAC includes non-causal variants in

forming mutation patterns, which may dramatically increase the number of mutation

patterns (M) and thus effectively reduce the group sizes n.i’s, leading to loss of power.

Nevertheless, the KBAC test is attractive in detecting possible interactions among

the variants, though we do not pursue this issue here.

C-alpha test

Neale et al (2011) proposed using the C-alpha test of Neyman and Scott (1966).

It is based on testing for a common value (i.e. homogeneity) for a set of binomial

proportions, not on logistic regression.

For SNV j, assume there are nj subjects with the rare mutation (or minor allele);

among those nj subjects, we have mj cases with mutation (and nj − mj controls

with mutation). We assume mj ∼ Bin(nj , pj). Under the null hypothesis of no

association between the disease and SNV j, we have pj = p0 for some common p0 for

all j = 1, ..., k. For a case-control study as considered here, we have p0 = 1 − n0/n.

The C-alpha test is based on the following:

TC =

k
∑

j=1

TC,j =

k
∑

j=1

(mj − njp0)
2 − njp0(1 − p0),

VC =
k
∑

j=1

V ar(TC,j) =
k
∑

j=1

E[(mj − njp0)
2 − njp0(1 − p0)]

2,

where

V ar(TC,j) =

nj
∑

u=0

[(u − njp0)
2 − njp0(1 − p0)]

2f(u|nj, p0)

and f(u|nj, p0) = C(nj , u)pu
0(1 − p0)

nj−u is the binomial probability Pr(U = u) for

U ∼ Bin(nj , p0). If all mj’s are independent, then under the null hypothesis of
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no association between any SNV and the disease, the test statistic Z = TC/
√

VC

has an asymptotic distribution of N(0, 1), from which a p-value can be calculated.

Alternatively, one can permute the disease labels Y , calculate Z’s for permuted data

and thus a p-value. We denote the two versions of the tests using the asymptotic

distribution and the permutation distribution respectively as C-alpha-A and C-alpha-

P.

The C-alpha test treats SNV-specific mutation rates pj’s as a random sample

drawn from some common distribution, say G. Under H0, the distribution reduces to

a point mass at p0. Hence, the C-alpha test can be regarded as testing on the variance

component of G: the variance of pj ’s is 0 under H0. The C-alpha test is a score test

for such a homogeneity problem (Zelterman and Chen 1988), bearing some similarity

to the framework of the variance component testing for a R-E model, under which

the SSU and KMR can be formulated. In fact, as shown in Appendix, the general

homogeneity score test of Zelterman and Chen (1988) has the same form of Goeman’s

test.

Each component of the C-alpha test statistic, TC,j, contrasts the sample variance

for variant j with its theoretical variance under H0. Since the 4th central moment is

E(mj − njp0)
4 = 3(njp0q0)

2 + njp0q0(1 − 6p0q0)

with q0 = 1 − p0, under H0, we have

V ar(TC,j) = 2(njp0q0)
2 + njp0q0(1 − 6p0q0),

which is an increasing function of nj . Thus, similar to the SSU test (and KMR),

since the C-alpha test statistic is a simple sum of the statistics for the variants,

TC =
∑k

j=1 TC,j, it may be dominated by the variants with large V ar(TC,j), e.g.

those with high MAFs; it is possible, and even productive, to weight the components

suitably with a set of weights wj’s to yield a weighted version of the C-alpha test:

TC,w =

k
∑

j=1

wjTC,j .
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As to be shown, similar to the SSU test, the C-alpha test does not perform well in the

presence of non-causal CVs, in which case its weighted versions are more powerful.

We can use weights wj as shown in (4), or wj = 1/
√

V ar(TC,j), and calculate their

-p-values using permutations; we denote the resulting tests as w1C-alpha-P and w2C-

alpha-P respectively. Since V ar(TC,j) = 0 and 0.25 for nj = 1 and nj = 2 respectively,

we define wj = 1/0.5 for nj = 1, the same as wj for nj = 2, in the w2C-alpha-P test.

As to be shown, the two weighted C-alpha tests did not perform as well as the wSSU-P

test, and will be skipped in most of simulations.

Replication-based test

Ionita-Laza et al (2011) proposed a new test called replication-based test (RBT).

The RBT is similar to a pooled association test but purposefully designed to deal

with possibly different association directions. In addition, a new weighting scheme

is adopted to improve power. Using the same notation as before, suppose that for

variant j there are nj mutations in cases and mj − nj mutations in controls. Define

a statistic to measure the enrichment of mutations in cases:

S+ =

k
∑

j=1

I(nj > mj/2)w(nj, mj)

with weight

w(nj, mj) = − log Pr(nj, mj) = − log (ppois(mj − nj , mj/2)[1 − ppois(nj − 1, mj/2)]) ,

where ppois(a, b) is the cumulative distribution function of a Poisson distribution

Pois(b) evaluated at a. Similarly we measure the enrichment of mutations in controls

with

S− =
k
∑

j=1

I(nj < mj/2)w(mj − nj, mj).

The final test statistic is TR = max(S+, S−). The p-value is calculated by permuta-

tions
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Although the RBT was designed to differentiate between protective and harmful

variants, it treats and tests the two groups separately, hence may lose power. Fur-

thermore, for a non-causal variant j, it is likely that nj 6= mj/2, under which case

non-causal variant j will be pooled over into the test statistic, though its weight wj

may be relatively small; nonetheless, the RBT may lose power in the presence of a

large number of non-causal RVs.

A summary

We compare the above tests in several aspects as shown in Table 1. We do not

include CAST and CoverRare since they are similar to CMC and Step-up respectively.

We note that the wSum test uses permutations to estimate the mean and variance of

its asymptotic Normal distribution, and does not need a large number of permutations

to reach high statistical significance, which is required by other permutation-based

tests. We also note that the CMC was proposed to use the generalized Hotelling’s

test, which does not accommodate covariates and other types of traits as shown in

Table 1. However, since Hotelling’s test is equivalent to the score test in logistic

regression (Clayton et al 2004), it is easy to generalize the CMC test to accommodate

covariates and other types of traits if the score test in a GLM is adopted. Finally, we

will call the Sum, CMC and wSum tests loosely as the pooled association tests (that

do not consider selecting SNVs and their association directions).

Simulated data

We generated simulated data as in Wang and Elston (2008) and Pan (2009).

Specifically, we simulated k SNVs with the sample size of 500 cases and 500 controls.

Each RV had a mutation rate or MAF uniformly distributed between 0.001 and 0.01,

while for a CV it was between 0.01 and 0.1. First, we generated a latent vector Z =

(Z1, ..., Zk)
′ from a multivariate normal distribution with a first-order auto-regressive

(AR1) covariance structure: there was an correlation Corr(Zi, Zj) = ρ|i−j| between
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any two latent components. We used ρ = 0 and ρ = 0.9 to generate (neighboring)

SNVs in linkage equilibrium and in linkage disequilibrium (LD) respectively. Second,

the latent vector was dichotomized to yield a haplotype with MAFs each randomly

selected. Third, we combined two independent haplotypes and obtained genotype

data Xi = (Xi1, ..., Xik)
′. Fourth, the disease status Yi of subject i was generated

from the logistic regression model (1). For the null case, we used β = 0; for non-null

cases, we randomly selected 8 non-zero components of β while the remaining ones

were all 0. Fifth, as in any case-control design we sampled 500 cases and 500 controls

in each dataset.

We considered several simulation set-ups. Throughout the simulations, we fixed

the test significance level at α = 0.05 (or α = 0.01 in a few cases), and used 500

permutations for each permutation-based method. The results were based on 1000

independent replicates for each set-up.

We used the R code of Wu et al (2010) implementing the KMR methods. We

used the linear, IBS and quadratic kernels; since the first two performed similarly

across all simulations, we present results for the linear and quadratic kernels. We

used the R package thgenetics implementing the Step-up procedure, and a C++/R

implementation of KBAC. We implemented all other tests in R. For the CMC test,

we used the default cut-off of MAF ≤ 0.05 for RVs, though we explored using the

cut-off ≤ 0.01 in a few cases.

RESULTS

Independent RVs

We first consider that there is no linkage disequilibrium (LD) between any two

RVs, mimicking the situation where mutations are all completely random and inde-

pendent of each other. To investigate the possible dependence of performance on the

significance level, we used both α = 0.05 and α = 0.01.
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Table 2 shows that all the tests had satisfactory Type I error rates except that the

C-alpha-A test might have some inflated Type I error rates at α = 0.01, suggesting

that perhaps a larger sample size is needed for using its asymptotic distribution with

a more stringent significance level.

For power comparison, the overall conclusions are the same with either α = 0.05

and α = 0.01. First, for the non-null case that the eight causal RVs shared a common

OR (Table 3), which is ideal for the pooled association tests (Sum, CMC, wSum),

the pooled association tests and KBAC were most powerful if there were no or few

non-causal RVs (i.e. RVs not associated with the trait). As the number of non-causal

RVs increased, the SSU and KMR gradually became the most powerful while the C-

alpha test and the model selection approaches also had much improved performance

relatively. The KBAC was most powerful except for the case with 64 non-causal RVs.

Note that the aSum test maintained power as high as that of the Sum test, while the

single SNV-based test, UminP, most commonly used in GWAS, had consistently low

power.

For the case that the association strengths of the causal RVs were not constant

with possibly opposite directions (Table 4), it is confirmed that the pooled association

tests performed similarly and suffered from substantial loss of power. Across all the

situations, the SSU, KMR and C-alpha performed similarly and were most powerful.

Although the three sequential model selection approaches (Step-up, Seq, Seq-VS), the

KBAC and the aSum test performed well with no or few non-causal RVs, surprisingly,

as the number of non-causal RVs increased, their performance deteriorated more than

that of the SSU, KMR and C-alpha tests. Nevertheless, the above procedures did

improve over the pooled association tests.

It is noted that the CMC(0.01) test (with MAF ≤ 0.01 as the cut-off for RVs)

was less powerful than the default CMC, i.e. CMC(0.05), test in Table 3 because

the former unnecessarily formed a few extra groups for CVs and increased the DF
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of the test; in contrast, the former performed better than the latter in Table 4,

presumably because some causal RVs might have an overall MAF > 0.01 (due to

their enrichment in cases) and the CMC(0.01) test grouped these causal RVs into

separate groups, avoiding pooling them over with other causal RVs with opposite

association directions and thus improving power. Hence, the choice of the MAF

threshold for RVs is important for CMC, but it is unclear how to do so generally in

practice.

It is noted that since the true model was the main-effects model (1), KMR with

a linear kernel corresponded to using the true model, thus it was more powerful than

using a quadratic kernel; the small performance difference between using the two

kernels demonstrated the robustness of the KMR method. It is also noted that, since

all the RVs were independent, the covariance matrix V was nearly diagonal, and

thus the score test and SSUw test performed similarly. Finally, since in the current

simulation set-up, causal RVs were randomly chosen with various MAFs, it was not

informative to weight the variants according to their MAFs, suggesting why the SSU

test outperformed the wSSU-P and SSUw tests.

RVs in LD

We next consider the case where all the RVs, both causal and non-causal ones,

were possibly correlated. In this case, if a RV was associated with the disease, so

were the other RVs since they were in LD. For the null case (Table 5), all the tests

except C-alpha-A had their Type I error rates well controlled. Since the asymptotic

distribution of the C-alpha test is derived under the assumption that all the RVs are

independent, which was violated here, one has to use its permutational distribution,

which appears to work well.

For the non-null case with varying association strengths (Table 5), again all the

pooled tests suffered from significant power loss, while the SSU, KMR and C-alpha-

P tests were most powerful. The three sequential model selection approaches and
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KBAC performed similarly and better than the aSum test, and all improved over the

pooled association tests.

Due to the LD among the RVs, the score test and SSUw test performed differently:

When there was no non-causal RVs, the score test was more powerful; however, as

the number of non-causal RVs increased, the SSUw test became much more powerful

than the score test.

No LD between causal RVs and non-causal RVs

Now we consider the case where causal RVs were correlated, non-causal RVs were

also correlated, but there was no LD between causal and non-causal RVs. For the

null case (Table 6), again all the tests except the C-alpha-A had satisfactory Type

I error rates. The C-alpha-A did not work because its independence assumption on

the RVs was violated.

For power comparison, again due to the presence of opposite association directions,

the pooled association tests performed similarly and had the lowest power. With no

or few non-causal RVs, Seq-aSum and Seq-aSum-VS performed best, closely followed

by the C-alpha-P, KMR and SSU tests; for a larger number of non-causal RVs, the

C-alpha-P, KMR and SSU tests were the winners.

Independent RVs and CVs

Finally we considered the case with independent RVs and four non-causal CVs

(with MAFs randomly between 0.01 and 0.1). Although the aSum test was proposed

by Han and Pan (2010) to group CVs separately from RVs, as done in CMC, for

simplicity here, we did not do such groupings. All the tests had satisfactory Type

I error rates (not shown). For power comparison (Table 7), it is most notable that

the SSU, KMR and C-alpha tests were all low-powered, due to the undue influence

of the CVs, as analyzed before. The performance of the pooled association tests

and KBAC also degraded. With CVs, variable selection worked well as evidenced

by the good performance of the Step-up procedure, and by that the Seq-aSum-VS
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performed much better than Seq-aSum without variable selection. We also note that

the weighted C-alpha tests were much more powerful than the original unweighted

C-alpha test; between the two weighted C-alpha tests, the first one with weights

inversely proportional to the MAFs performed much better than the second one in

the presence of a large number of non-causal RVs, but not so otherwise; neither was

more powerful than the wSSU-P test. Overall, the weighted SSU test (wSSU-P)

performed best, closely followed by the Step-up procedure, then by the SSUw and

score tests.

DISCUSSION

The three pooled association tests (i.e., Sum, CMC and wSum) performed sim-

ilarly for RVs. They were most powerful when there were no opposite association

directions and when there were no or only few non-causal RVs; otherwise, they suf-

fered from a substantial loss of power.

Perhaps the most surprising and interesting finding is that, overall, in the presence

of opposite association directions and non-causal RVs, the SSU, KMR and C-alpha-P

performed similarly and best. Although the three methods appear quite different,

they share a common feature: all can be regarded as testing on a variance component

in a random-effects model, thus are robust to a large number of parameters induced

by a large group of RVs. This is related to the success story of the class of gene

set tests, including both the SSU-equivalent Goeman’s test (Goeman et al 2004)

and KMR (2008), applied to high-dimensional microarray data. Furthermore, the

SSU test and KMR are themselves closely related to each other (Pan 2011), and

share some advantages: they can be applied to other GLMs for other types of traits,

such as quantitative or survival traits, and to adjust for other covariates, such as

environmental factors, which are important as argued by Bansal et al (2010).

The approaches based on model selection (aSum, Step-up, Seq-aSum, Seq-aSum-
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VS) improve over the pooled association tests in the presence of opposite association

directions. However, in spite of their strong motivation for model selection, their

performance might not be as impressive as expected, especially in the presence of a

large number of non-causal RVs. A possible explanation lies in the trade-off between

the gain and the cost of model selection: in spite of possibly a strong association

with the trait, due to its low frequency of any single RV, often there is only minimal

power to detect its own association with the trait, rendering it difficult to distinguish

whether the RV is or is not associated with the trait, and if so, whether its effect is

protective or harmful. As shown by the close performance between Seq-aSum and

Seq-aSum-VS, there is only minimal gain or loss in selecting causal RVs. On the other

hand, as shown here, when there were both protective and deleterious causal RVs and

few non-causal RVs, our newly proposed Seq-aSum and Seq-aSum-VS were or nearly

were the most powerful, suggesting their applicability not only to RVs, but also to

CVs: in analyzing multiple common SNVs in an LD region, if the untyped causal

SNV is in LD with the multiple typed SNVs, the two methods could be powerful. In

addition, leveraging on the idea of pooling and thus reduced degrees of freedom, they

can be also applied to detect epistasis, as done in He et al (2010).

Several approaches are not considered here, including penalized regression (e.g.

Malo et al 2008 for CVs, Zhou et al 2010 for both CVs and RVs) and some non-

parametric regression techniques, such as logic regression (Kooperberg et al 2001)

for CVs, and a Bayesian GLM (Yi and Zhi 2011), largely due to their difficulty in

controlling Type I error rates (which is required to make a formal and fair comparison

with other statistical tests) and associated high computing cost in permutation tests,

especially if one aims to take account of the uncertainty in choosing optimal penal-

ization or tuning parameters. Penalized regression and logic regression belong to the

class of model selection-based approaches. Compared to the four selection methods

compared here, penalized regression and logic regression are believed to have some
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advantages. However, existing penalized regression and logic regression methods do

not incorporate the strategy of collapsing RVs or of random-effects models, two key

elements for the success of the compared methods for RVs; further studies are needed

to evaluate their performance. Another approach is based on haplotype inference

(Zhu et al 2010; Li et al 2010), which is appealing for its applicability to GWAS for

association analysis of more frequent RVs in the MAF range of 0.1%-5%.

We note that Price et al (2010) proposed using multiple thresholds and (possibly

predicted) biological functional annotations to group RVs and empirically showed its

advantage over using only one group. For simplicity, we have only considered the use

of a single group. However, our conclusion should be useful for the case with multiple

groups for RVs: a test with high power for a single group is likely to be even more

powerful for multiple groups that are appropriately constructed, as shown by Pan and

Shen (2011). As shown by our simulation studies, mixing non-causal CVs (or RVs

with relatively higher MAFs) with RVs may degrade the performance of several tests,

especially the SSU, KMR, C-alpha and KBAC tests. Hence it is a critical question

in practice how to define RVs, to which a test is applied. There are two possible

ways. The first way is to use the multiple cut-offs of MAF to define RVs and then

combine the test results, as implemented in the multiple threshold test of Price et al

(2010) and in the adaptive tests of Pan and Shen (2011). Second, as shown here and

by other authors (Madsen and Browning 2009), weighting the variants in a test with

suitably chosen weights (e.g. inversely proportional to their MAFs) may improve the

performance of the test. We have not investigated these issue extensively and more

studies are needed in the future. Finally, the simulation set-ups considered here are

similar to Li and Leal (2008), but may still be over-simplified. Although there is no

compelling statistical argument for the strong dependence of our conclusions on the

simulation set-ups, it would be helpful to consider more practical set-ups, such as using

real sequencing data; we did not pursue it here due to lack of publicly available large
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samples of sequencing data. With a sample size of currently only several hundreds

with multiple racial/ethnic groups provided by the 1000 Genome Project, it is not

clear how to best construct simulated data to mimic real data while maintaining the

low MAFs of RVs. Although we acknowledge the limitation of our current simulation

set-ups, they do illustrate some useful properties of various tests, such as how they

perform in the presence of opposite association directions, of non-causal RVs and/or

CVs, and of correlated SNVs.

In summary, since there is a large power difference between the pooled association

tests and the random-effects model-based approaches (SSU, KMR and C-alpha-P) at

either of the two extremes (i.e. whether there are opposite association directions), we

recommend the use of a test from each class if it is unclear which extreme is likely to

hold. We also recommend the use of the KBAC test and a variable selection-based

approach, e.g. our newly proposed Seq-Sum-VS test; the former may be able to ex-

plore some complex interactions among RVs, while the latter may shed light on which

SNVs are associated with the trait and if so, their association directions. Among the

pooled association tests, they all perform similarly, while for the other class, the SSU

and KMR have certain advantages: their known asymptotic distributions avoid the

use of computationally demanding permutations, they can be implemented in any

GLMs, which implies their applicability to binary, quantitative and other types of

traits, and their ability to adjust for other covariates such as environmental factors

and to detect environment-gene interactions, their applicability to CVs and/or RVs

no matter whether they are in LD or not. We note that the SSU test can be applied

to more complex regression models, e.g. with both main effects and some interaction

terms; equally, in KMR we can use a kernel that can capture some complex inter-

actions among the SNVs. Of course, as shown earlier, with any given kernel and its

decomposition, we can have an SSU test equivalent to KMR. It would be of interest to

compare the performance of the SSU/KMR and KBAC in the presence of interactions
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among RVs.

A potentially useful resource resulting from this work is freely available software:

we have implemented most of the compared methods in R; R code will be posted on

our web site at http://www.biostat.umn.edu/∼weip/prog.html.
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APPENDIX: RELATIONSHIPS BETWEEN GOEMAN’S

TEST AND ZELTERMAN AND CHEN’S

HOMOGENEITY TEST

We first review Zelterman and Chen’s homogeneity test. Suppose that y1,...,yn

are independent random variables with respective pdf’s fi(yi|λi), conditional on a

k-dimensional parameter λi. Under H0, all λi’s are equal to a fixed vector λ0. It

is assumed that λi’s are random: λi = λ0 + az, where z is a k-dimensional random

variable with E(z) = 0 and Cov(z) = Σ = (σst). Under this formulation, testing H0

is equivalent to testing H ′
0: a = 0. Zelterman and Chen (1988) showed that the score

test statistic for H ′
0 is

TZ =
1

2

n
∑

i=1

k
∑

s=1

σss

∂2fi(yi|λ0)

∂λ2
0s

1

fi(yi|λ0)
+

n
∑

i=1

∑

s<t

σst

∂2fi(yi|λ0)

∂λ0s∂λ0t

1

fi(yi|λ0)
,

where λ0 = (λ01, ..., λ0k)
′.
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For observation Yi, the score vector is U(i) = (f ′
i,1/fi, ..., f

′
i,k/fi)

′, and

U ′
(i)ΣU ′

(i) =
∑

s,t

σstf
′
i,sf

′
i,t.

For simplicity we use notation f ′
i,s = ∂fi/∂λ0s. On the other hand, we have the

(s, t)th element of V as

Vst = −
n
∑

I=1

∂U(i),s

∂λ0t

= −
n
∑

I=1

f ′′
i,stfi − f ′

i,sf
′
i,t

f 2
i

.

Since E(U ′
(i)ΣU(j)) = E(U ′

(i))ΣE(U(j)) = 0, by ignoring cross-product terms U(i)ΣU(j),

we have Goeman’s test statistic

S =
1

2
U ′ΣU − tr(ΣV ) =

1

2

n
∑

i=1

∑

s,t

σstf
′′
i,st/fi = TZ .

Hence, Goeman’s test is equivalent to Zelterman and Chen’s homogeneity test, which

covers the C-alpha test as a special case (with mi as yi and fi as Bin(ni, pi)). By

the equivalence among permutation-based Goeman’s test, SSU test and KMR test

with a linear kernel, we know that the SSU test, KMR test with a linear kernel,

and permutation-based C-alpha test are all equivalent (if a common random variable

of interest is modeled). However, in the current context, since the disease status of

subject i is treated as random variable of interest yi in the SSU test and KMR, while

the mutation status of variant i is treated as yi in the C-alpha test, the three tests

are closely related but not exactly equivalent.
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Table 1: A summary of the properties of the tests to be compared: originally proposed

to target CVs or RVs (or both), whether pooling over variants, whether sensitive to

association directions (+/-), to a large number of non-causal RVs (nRVs) and to a few

non-causal CVs (nCVs), requiring permutations for p-value calculations, capability

to adjust for other covariates (Cov), applicability to other non-binary traits, whether

can be formulated as testing on a variance component in a random-effects (R-E)

model, and references for more details.

Original Sens to Sens to Sens to Other

Test target Pool +/- nRVs nCVs Permut Cov traits R-E Refs

UminP CV No No No No No Yes Yes No 3

Score CV No No No No No Yes Yes Yes 1

SSU CV No No No Yes No Yes Yes Yes 2

wSSU-P Both No No No No Yes Yes Yes Yes here

SSUw CV No No No No No Yes Yes Yes 2

Sum CV No Yes Yes Yes No Yes Yes No 2

KMR CV No No No Yes No Yes Yes Yes 4, 5

CMC RV Yes Yes Yes No No No No No 6

wSum RV Yes Yes Yes Some Some No No No 7

aSum-P Both Yes Some Yes Some Yes Yes Yes No 8

Step-up RV Yes Some Some No Yes Yes Yes No 10

Seq-aSum Both Yes Some Some Yes Yes Yes Yes No here

Seq-aSum-VS Both Yes Some Some No Yes Yes Yes No here

KBAC RV No Some Some Some Yes Some No No 11

C-alpha-A RV No No No Yes No No No Yes 9

C-alpha-P RV No No No Yes Yes No No Yes 9

RBT RV Yes Some Yes No Yes No No No 12

Refs: 1. Clayton et al (2004); 2. Pan (2009); 3. Conneely&Boehnke (2007); 4. Kwee et al

(2008); 5. Wu et al (2010); 6. Li&Leal (2008); 7. Madsen&Browning (2009); 8. Han&Pan

(2010); 9. Neale et al (2011); 10. Hoffmann et al (2010); 11. Liu and Leal (2010); 12.

Ionita-Laza et al (2011).
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Table 2: Type I error rates at nominal level α based on 1000 replicates for 8 RVs plus

a number of non-causal RVs. There is no LD among the RVs.

α = 0.05 α = 0.01

Test # of neutral RVs # of neutral RVs

0 4 8 16 32 0 4 8 16 32

UminP .027 .027 .016 .011 .019 .003 .001 .004 .001 .002

Score .043 .049 .040 .040 .040 .006 .009 .005 .005 .007

SSU .044 .055 .045 .037 .043 .004 .013 .009 .005 .011

wSSU-P .052 .051 .048 .048 .046 .008 .008 .014 .010 .008

SSUw .041 .049 .039 .034 .040 .006 .011 .005 .005 .007

Sum .047 .055 .041 .054 .038 .012 .007 .010 .010 .007

KMR(Linear) .046 .056 .046 .042 .047 .007 .016 .011 .007 .012

KMR(Quad) .046 .056 .047 .039 .046 .007 .016 .010 .006 .011

CMC(0.01) .035 .053 .044 .055 .039 .008 .014 .010 .011 .009

CMC .048 .053 .043 .056 .051 .010 .009 .011 .011 .007

wSum .050 .057 .038 .059 .056 .010 .012 .011 .009 .006

aSum-P .058 .064 .052 .063 .047 .012 .011 .010 .010 .011

Step-up .046 .059 .056 .051 .051 .012 .011 .009 .009 .010

Seq-aSum .044 .066 .056 .055 .059 .008 .013 .008 .008 .013

Seq-aSum-VS .050 .058 .056 .051 .058 .011 .018 .011 .009 .013

KBAC .058 .044 .053 .054 .046 .013 .007 .009 .012 .009

C-alpha-A .045 .051 .042 .036 .043 .016 .030 .022 .010 .014

C-alpha-P .050 .065 .058 .051 .055 .005 .016 .013 .006 .012

RBT .045 .045 .050 .062 .044 .011 .010 .011 .011 .005
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Table 3: Empirical power for tests at nominal level α based on 1000 replicates for

an ideal case for 8 causal RVs with a common association strength OR = 2 and a

number of non-causal RVs. There is no LD among the RVs.

α = 0.05 α = 0.01

Test # of neutral RVs # of neutral RVs

0 4 8 16 32 64 0 4 8 16 32 64

UminP .441 .336 .296 .222 .175 .117 .142 .089 .094 .050 .043 .029

Score .746 .632 .595 .471 .332 .245 .496 .391 .314 .221 .143 .073

SSU .756 .702 .694 .626 .499 .423 .525 .479 .448 .379 .283 .205

wSSU-P .821 .732 .714 .644 .514 .390 .573 .471 .407 .332 .222 .161

SSUw .743 .638 .593 .477 .339 .268 .502 .389 .316 .218 .153 .082

Sum .951 .875 .808 .673 .484 .313 .859 .709 .605 .438 .248 .116

KMR(Linear) .762 .711 .699 .631 .509 .438 .548 .500 .473 .405 .308 .234

KMR(Quad) .755 .707 .699 .629 .501 .410 .545 .497 .466 .403 .299 .215

CMC(0.01) .853 .761 .702 .628 .484 .396 .672 .524 .452 .384 .268 .218

CMC .938 .853 .777 .616 .399 .211 .831 .679 .570 .383 .196 .086

wSum .940 .846 .782 .618 .424 .267 .838 .687 .568 .394 .216 .114

aSum-P .933 .858 .780 .669 .499 .313 .781 .611 .534 .381 .257 .125

Step-up .859 .801 .769 .679 .521 .335 .712 .608 .552 .431 .301 .135

Seq-aSum .810 .705 .663 .547 .407 .312 .596 .470 .415 .320 .190 .128

Seq-aSum-VS .798 .722 .692 .590 .420 .344 .598 .506 .452 .345 .216 .141

KBAC .960 .911 .867 .779 .600 .388 .858 .749 .680 .529 .317 .160

C-alpha-A .741 .687 .664 .597 .460 .364 .637 .580 .538 .446 .320 .234

C-alpha-P .771 .712 .688 .627 .484 .378 .542 .492 .459 .402 .305 .219

RBT .941 .849 .784 .664 .463 .321 .813 .667 .587 .424 .238 .121
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Table 4: Empirical power for tests at nominal level α based on 1000 replicates

for a non-ideal case for 8 causal RVs with various association strengths OR =

(3, 3, 2, 2, 2, 1/2, 1/2, 1/2) and a number of non-causal RVs. There is no LD among

the RVs.

α = 0.05 α = 0.01

Test # of neutral RVs # of neutral RVs

0 4 8 16 32 0 4 8 16 32

UminP .607 .532 .481 .417 .346 .318 .259 .227 .204 .142

Score .869 .772 .721 .632 .483 .660 .532 .480 .356 .233

SSU .895 .835 .815 .774 .696 .723 .662 .645 .583 .472

wSSU-P .861 .776 .735 .685 .550 .606 .510 .460 .401 .258

SSUw .867 .773 .732 .633 .501 .661 .550 .481 .355 .238

Sum .682 .566 .465 .365 .258 .471 .348 .257 .172 .101

KMR(Linear) .897 .842 .824 .783 .707 .740 .678 .667 .619 .495

KMR(Quad) .893 .835 .815 .781 .698 .734 .680 .663 .608 .484

CMC(0.01) .703 .669 .670 .670 .590 .511 .457 .470 .470 .383

CMC .661 .544 .456 .336 .204 .461 .337 .235 .157 .086

wSum .659 .548 .459 .335 .228 .460 .336 .236 .158 .093

aSum-P .854 .745 .684 .574 .430 .670 .538 .430 .315 .207

Step-up .839 .767 .724 .640 .527 .652 .564 .518 .413 .285

Seq-aSum .892 .811 .757 .671 .528 .752 .620 .532 .438 .273

Seq-aSum-VS .885 .807 .768 .686 .545 .729 .623 .567 .448 .293

KBAC .907 .813 .763 .642 .436 .737 .607 .536 .399 .199

C-alpha-A .892 .826 .802 .757 .655 .824 .732 .720 .653 .512

C-alpha-P .906 .844 .823 .775 .674 .735 .673 .661 .612 .496

RBT .810 .659 .603 .482 .301 .590 .429 .356 .250 .125
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Table 5: Type I error (with OR = 1) and power (with eight causal RVs with

OR = (3, 1/3, 2, 2, 2, 1/2, 1/2, 1/2)) for tests at nominal level α = 0.05 based on

1000 replicates for 8 RVs and a number of other non-causal RVs. There is LD among

the RVs.

OR = 1 OR = (3, 1/3, 2, 2, 2, 1/2, 1/2, 1/2)

Test # of neutral RVs # of neutral RVs

0 4 8 16 32 0 4 8 16 32

UminP .033 .027 .026 .016 .013 .489 .479 .452 .365 .318

Score .034 .022 .025 .019 .023 .599 .538 .491 .380 .276

SSU .040 .041 .052 .044 .036 .603 .624 .635 .581 .574

wSSU-P .057 .043 .047 .062 .053 .566 .586 .609 .585 .491

SSUw .035 .042 .049 .033 .034 .532 .561 .574 .506 .493

Sum .049 .047 .059 .033 .049 .342 .312 .315 .258 .239

KMR(Linear) .042 .045 .057 .046 .043 .611 .630 .644 .597 .590

KMR(Quad) .038 .033 .041 .030 .025 .545 .563 .565 .493 .474

CMC .045 .053 .056 .036 .060 .296 .283 .189 .182 .365

wSum .045 .054 .056 .040 .063 .369 .297 .287 .191 .200

aSum-P .050 .046 .061 .038 .053 .350 .323 .325 .258 .243

Step-up .047 .060 .059 .042 .050 .524 .516 .532 .429 .409

Seq-aSum .045 .062 .054 .056 .055 .658 .617 .596 .484 .416

Seq-aSum-VS .043 .056 .058 .054 .049 .658 .606 .577 .472 .414

KBAC .050 .054 .050 .053 .049 .497 .439 .426 .371 .275

C-alpha-A .065 .076 .092 .097 .110 - - - - -

C-alpha-P .050 .049 .062 .057 .048 .629 .650 .668 .607 .598

RBT .047 .039 .036 .060 .056 .374 .343 .386 .357 .279
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Table 6: Type I error (with OR = 1) and power (with eight causal RVs with

OR = (3, 1/3, 2, 2, 2, 1/2, 1/2, 1/2)) for tests at nominal level α = 0.05 based on 1000

replicates for 8 RVs and a number of other non-causal RVs. There is LD among the 8

RVs and among other non-causal RVs, but no LD between the 8 RVs and non-causal

RVs.

OR = 1 OR = (3, 1/3, 2, 2, 2, 1/2, 1/2, 1/2)

Test # of neutral RVs # of neutral RVs

0 8 16 32 64 0 8 16 32 64

UminP .032 .018 .021 .014 .007 .506 .380 .324 .288 .208

Score .029 .029 .028 .019 .021 .631 .480 .373 .241 .160

SSU .049 .051 .035 .034 .034 .642 .553 .475 .444 .334

wSSU-P .045 .060 .042 .050 .052 .606 .494 .424 .362 .269

SSUw .045 .040 .027 .015 .036 .562 .450 .352 .272 .187

Sum .046 .059 .046 .046 .046 .345 .229 .159 .110 .079

KMR(Linear) .051 .056 .039 .040 .037 .649 .568 .490 .459 .356

KMR(Quad) .046 .049 .022 .021 .017 .572 .487 .392 .331 .205

CMC .046 .053 .040 .050 .047 .339 .235 .193 .124 .111

wSum .048 .052 .041 .053 .048 .342 .237 .199 .133 .114

aSum-P .052 .061 .049 .046 .052 .364 .239 .170 .113 .081

Step-up .057 .055 .047 .048 .051 .554 .449 .378 .304 .213

Seq-aSum .051 .053 .041 .046 .052 .703 .584 .453 .353 .249

Seq-aSum-VS .053 .053 .048 .041 .054 .701 .572 .447 .351 .258

KBAC .048 .058 .036 .053 .047 .527 .388 .321 .262 .180

C-alpha-A .076 .093 .084 .092 .118 - - - - -

C-alpha-P .055 .065 .043 .050 .047 .669 .585 .504 .472 .340

RBT .057 .059 .049 .042 .054 .376 .285 .188 .141 .097
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Table 7: Empirical power for the tests at nominal level α = 0.05 based on 1000

replicates with eight causal RVs, four neutral CVs and a number of other neutral

RVs. There is no LD among the CV/RVs.

OR = (2, 2, 2, 2, 2, 2, 2, 2) OR = (3, 3, 2, 2, 2, 1/2, 1/2, 1/2)

Test # of neutral RVs # of neutral RVs

0 4 8 16 32 0 4 8 16 32

UminP .355 .283 .269 .213 .156 .518 .482 .441 .412 .331

Score .628 .580 .498 .424 .348 .766 .706 .629 .584 .466

SSU .148 .128 .134 .131 .135 .225 .201 .206 .203 .215

wSSU-P .777 .729 .700 .589 .518 .810 .764 .724 .655 .582

SSUw .634 .592 .515 .429 .332 .765 .704 .631 .599 .489

Sum .455 .438 .396 .348 .299 .231 .225 .195 .199 .152

KMR(Linear) .158 .138 .151 .145 .153 .237 .216 .222 .223 .234

KMR(Quad) .153 .124 .136 .137 .141 .219 .198 .204 .201 .219

CMC .575 .512 .429 .309 .212 .296 .254 .209 .155 .124

wSum .533 .508 .469 .408 .346 .291 .285 .249 .230 .181

aSum-P .467 .457 .414 .355 .310 .239 .245 .206 .202 .158

Step-up .776 .750 .715 .610 .522 .727 .712 .658 .605 .499

Seq-aSum .368 .314 .323 .300 .266 .453 .410 .392 .395 .342

Seq-aSum-VS .550 .518 .502 .450 .379 .610 .617 .567 .541 .471

KBAC .554 .537 .478 .446 .370 .415 .402 .358 .335 .270

C-alpha-A .106 .083 .089 .088 .082 .165 .154 .146 .149 .160

C-alpha-P .165 .150 .145 .139 .139 .245 .233 .228 .220 .225

w1C-alpha-P .542 .527 .527 .496 .474 .670 .642 .632 .636 .593

w2C-alpha-P .628 .568 .476 .388 .298 .773 .698 .606 .563 .422

RBT .826 .770 .688 .592 .453 .630 .581 .487 .410 .321
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