
Biostatistics (2009), 10, 1, pp. 60–69
doi:10.1093/biostatistics/kxn015
Advance Access publication on June 6, 2008

Genomic outlier profile analysis: mixture models, null
hypotheses, and nonparametric estimation

DEBASHIS GHOSH∗

Department of Statistics and Department of Public Health Sciences, Pennsylvania State University,
University Park, PA 16802, USA

ghoshd@psu.edu

ARUL M. CHINNAIYAN

Department of Pathology and Department of Urology, Michigan Center for Translational Pathology,
University of Michigan, Ann Arbor, MI 48109, USA

SUMMARY

In most analyses of large-scale genomic data sets, differential expression analysis is typically assessed
by testing for differences in the mean of the distributions between 2 groups. A recent finding by Tomlins
and others (2005) is of a different type of pattern of differential expression in which a fraction of samples
in one group have overexpression relative to samples in the other group. In this work, we describe a general
mixture model framework for the assessment of this type of expression, called outlier profile analysis. We
start by considering the single-gene situation and establishing results on identifiability. We propose 2
nonparametric estimation procedures that have natural links to familiar multiple testing procedures. We
then develop multivariate extensions of this methodology to handle genome-wide measurements. The
proposed methodologies are compared using simulation studies as well as data from a prostate cancer
gene expression study.

Keywords: Bonferroni correction; DNA microarray; False discovery rate; Goodness of fit; Multiple comparisons;
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1. INTRODUCTION

With the advent of high-throughput gene assay technologies, scientists are now able to measure genome-
wide mRNA expression levels in a variety of settings using DNA microarrays (Schena, 2000). One of
the major tasks in studies involving these technologies is to find genes that are differentially expressed
between 2 experimental conditions. The simplest example is to find genes that are up- or downregulated
in cancerous tissue relative to healthy tissue. Typically in these experiments, the number of genes, rep-
resented as spots on the biochip, is much larger than the number of independent samples in the study.
Consequently, assessing differential expression in this setting leads to performing several thousand hy-
pothesis tests, which leads to the problem of multiple comparisons.
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There has been an enormous literature on statistical assessment of differential expression in genomic
studies (e.g. Efron and others, 2001; Dudoit and others, 2002), along with multiple comparisons pro-
cedures for controlling a proper error rate, such as the familywise type-I error (FWER) (Shaffer, 1995)
or the false discovery rate (FDR) (Benjamini and Hochberg, 1995). However, in most of these studies,
differential expression is tested using a test for difference in mean expression or testing that the entire dis-
tribution functions for gene expression in the 2 conditions are the same. For the former scenario, the most
commonly used procedure is the 2-sample t-test, while for the latter, the Wilcoxon rank sum test is used.

A more interesting differential expression pattern was observed by Tomlins and others (2005). They
noticed that for certain genes, only a fraction of samples in one group were overexpressed relative to
those in the other group; the remaining samples showed no evidence of differential expression. Tomlins
and others (2005) developed a ranking method known as cancer outlier profile analysis (COPA) for calcu-
lating outlier scores using gene expression data. Their score was purely descriptive; they did not attempt
to assign any measure of significance to the gene scores. More recently, Tibshirani and Hastie (2007)
and Wu (2007) have shown that significance can be assigned using modifications of 2-sample t-tests. In
addition, a nonparametric methodology proposed by Lyons-Weiler and others (2004) could be applied to
this problem as well. We discuss all these proposals in Section 3.2.

We should mention that while the term “outlier’’ has a pejorative meaning in statistics, it is a very
meaningful concept in a biological sense. As noted by Lyons-Weiler and others (2004) and subsequently
by Tomlins and others (2005), the biology of oncogenesis permits that unique sets of genes may be
involved in tumor development across patients. While statistical outliers refer to measurements that exceed
the expected variation in a set of data, the oncogenetic outliers we seek to find will be putatively related
to cancer processes.

The goal of this article is to describe a relatively general statistical model for the outlier approach
of Tomlins and others (2005). By formulating the probabilistic model, we can clarify various issues in
outlier profile analysis that have not been previously addressed and better situate the proposals of prior
authors. In particular, their proposals are parametric in nature; we come up with alternative nonparametric
procedures for outlier analysis with genomic data. As a by-product of our methods, we link multiple
testing procedures with outlier detection. The paper is structured as follows: In Section 2, we describe the
data setup and formulate the statistical model for outlier profile analysis in the case of a single gene. Doing
this allows us to establish results about identifiability as well as develop a sample-specific hypothesis
of interest. We also develop the proposed nonparametric estimation procedure and link it with multiple
testing methodology. In Section 3, we describe the general procedure with genome-wide expression data
sets and relate the prior proposals in the literature. In Section 4, we describe application of the proposed
methodology to simulated data. Finally, we conclude with some discussion in Section 5.

2. OUTLIER PROFILE ANALYSIS: SINGLE-GENE CASE

2.1 Data, inference, and proposed methodology

The data consist of (Ygi , Zi ) , where Ygi is the gene expression measurement on the gth gene for the i th
subject and Zi is a binary indicator taking values 0 and 1, g = 1, . . . , m, i = 1, . . . , n. We will refer to
the group with Z = 0 as nondiseased samples and Z = 1 as diseased samples. We will use the notation
Yg· to denote the gene expression profile of the gth gene across all subjects and Y·i to represent the
m-dimensional expression profile for the i th individual. We will assume that there are n0 samples with
Z = 0 and n1 samples with Z = 1 so n = n0 + n1. Without loss of generality, we will assume that the
first n0 samples come from the undiseased samples.

We first consider a simple situation of G = 1 gene. Then, a simple model for modeling Yi ≡ Ygi

conditional on Zi is the following:
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Yi |Zi = 0
iid∼ F0(y),

Yi |Zi = 1
ind∼ π0 F0(y) + (1 − π0)F1i (y), (2.1)

where F0(y) is an unspecified distribution function, π0 is a fraction of samples that do not differentially
express the gene between the 2 groups, and F1i is a family of distribution functions. The following lemma
provides conditions under which such a scenario can be tested.

LEMMA 2.1

(a) If π0 �= 1 and F1i �= F0, then model (2.1) can be tested given the observed data.

(b) If Z1, . . . , Zn are not observed, then model (2.1) is not identifiable based on Y1, . . . , Yn .

Proof. The proof of (a) follows from arguments in Section 3.1 of Genovese and Wasserman (2004). For
(b), we will not be able to distinguish between F0 and F1i without information on Z . �

There are several points we wish to make at this stage. First, we have statistical independence because
the model is for 1 gene across the n samples and the samples are independent. Second, it is obvious that if
π0 = 0 and F1i does not depend on i , then we are reduced to a usual 2-sample problem. For that scenario,
a common hypothesis to test is H∗

0 : F0 = F1. Third, and perhaps, most importantly, model (2.1) is also
a model for outliers in that those observations with Zi = 1 that come from F1i represent the outliers. For
the given gene, one can thus potentially test the hypothesis H0i : the i th sample (i = 1, . . . , n) is not an
outlier versus H1i : the i th sample is an outlier. We can actually test for a more specific hypothesis than
has been discussed previously in the literature on outlier profile analysis, namely that for a given gene and
given sample, the sample represents an outlier. Furthermore, the only assumption we need on F1i is that
it does not equal F0. Note that the hypothesis being described here is more focused than that tested by
Tibshirani and Hastie (2007) and Wu (2007). We will return to discussion of the hypothesis they test in
Section 3.

We now develop the proposed procedure for our situation. At the first stage, we estimate F0 using
the gene expression measurements with Zi = 0. This yields an empirical distribution function F̂0(y) =
(n0)

−1 ∑n
i=1 I (Yi � y, Zi = 0). Next, we transform the gene expression measurements with Zi = 1

using F̂0, which generates new variables Ûi = 1 − F̂0(Yi ), i = n0 + 1, . . . , n. If F0 were known, then for
i = 1, . . . , n1,

Ui
iid∼ π0 FU (u) + (1 − π0)FWi (u),

where FU (u) = u is the cumulative distribution function (cdf) of a uniform(0,1) distribution and FWi (u) =
F0 ◦ {F−1

1i (u)}. We propose 2 algorithms for selecting outliers. Here is the first, referred to as the Bonfer-
roni algorithm:

1. Set an error level α.
2. Reject H0i for H1i for the i th sample (i.e. declare the i th sample to be an outlier) if and only if

Ûi � α/n1.

We call this the Bonferroni algorithm because the rule in Step 2 of the algorithm is very similar to the
Bonferroni correction for p-values in multiple testing. Here, the number of tests being performed is equal
to the number of diseased samples in the data set. This is why we adjust the significance level by n1 in
Step 2.

The second algorithm we propose is to use the Benjamini–Hochberg (BH) (1995) algorithm for outlier
detection. It proceeds by first sorting the Ûi s in increasing order, Û(1) � Û(2) � · · · � Û(n1), and then
selecting outliers using the following 2-step algorithm:
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1. Set an error rate α.
2. Take as outliers Û(1), . . . , Û(k̂), where k̂ = max{1 � i � n1 : Ûi � iα/n1}. If no such k̂ exists,

conclude that there are no outliers.

We have been assuming that F1i (y) � F0(y) ∀ y in (2.1). More generally, we could allow F1i (y) �=
F0(y). However, then we would have to look for outliers that have both small and large values of Ui .
Observe that F1i (y) � F0(y) in (2.1) corresponds to gene expression being stochastically larger in dis-
eased samples relative to nondiseased samples and F1i (y) > F0(y) the opposite is true. In practice, we
recommend running the procedure twice, one assuming that F1i (y) � F0(y) to find outlying samples with
overexpressed genes, the second time assuming the opposite.

2.2 Outlier detection and multiple testing

The outlier detection algorithms we have proposed have a very natural connection with multiple testing
procedures. Since we can use (2.1) as a model for outliers, we can decide whether or not each sample
is an outlier using a hypothesis test; this yields a total of n1 tests of hypotheses. We can then cross-
classify samples into the table based on their “true’’ outlier status versus what we declare: this is shown
in Table 1. Note that in the table, the only observed quantities are (n1, R, Q). Everything else about the
table is unobserved.

There is a direct correspondence between Table 1 and testing multiple hypotheses. Based on the table,
we can construct appropriate error measures to control. By an error, we mean that we declare a sample
to be an outlier when it is not an outlier in truth. Two popular error measures to control are the FWER
(Shaffer, 1995) and the FDR (Benjamini and Hochberg, 1995). In words, the FWER is the probability
of making at least 1 false declaration of a sample being an outlier, while the FDR is the average number
of false outliers among the samples declared to be outliers. Using the notation of Table 1, FWER equals
Pr(X � 1), while the FDR is E[X/R|R > 0]Pr(R > 0). Assume that F0 is known. It is easy to then show
the following results:

(a) The Bonferroni algorithm controls FWER and FDR at level α.

(b) The BH algorithm controls FDR at level α.

These are exact results for finite samples; one can invoke the theoretical results of Genovese and
Wasserman (2004) in order to study the asymptotic properties of the parameter estimators in the model.
It becomes more difficult to prove results about error control with the proposed procedure because it in-
volves F̂0 rather than F0. Since we normalize the gene expression measurements for the Z = 1 group
by F̂0, the transformed observations are not statistically independent. Using the notation of Genovese and
Wasserman, define T as a mapping from [0, 1]n1 into [0, 1]; we can then define the Bonferroni and BH

Table 1. Outcomes of n1 tests of hypotheses regarding outlying samples

Decide outlier Decide nonoutlier Total

True nonoutlier X V n10
True outlier B A n11

R Q n1

Note: The rows represent each sample being a true outlier or a true nonoutlier. In the
columns, decide outlier means that we reject H0i and decide nonoutlier means that we
fail to reject H0i .
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algorithms as
T B(Û) = α/n1

and
TBH(Û) = sup{t : M̂n1(t) = t/α},

where Û = (Û1, . . . , Ûn1) and M̂n1(t) = (n1)
−1 ∑n1

i=1 I (Ûi � t). However, the results of Genovese and
Wasserman (2004) do not directly apply to this problem because of the dependence in the transformed
observations Û. Assume that the densities corresponding to F0 and F1, f0 and f1, are continuous and
that f1 is strictly positive on {y : 0 < F1(y) < 1}. Then, this is sufficient to guarantee the convergence
of F̂0 to F0; by the continuous mapping theorem (Van der Vaart and Wellner, 1996), this implies that
the Bonferroni procedure will asymptotically control the FWER. For the BH procedure, we make the
additional 2 assumptions. First, we assume that π is identifiable; conditions guaranteeing this are given
in Genovese and Wasserman (2004, Section 3.1). Second, we assume that the range of F0 ◦ F−1

1 is [0, 1].
This guarantees the uniform convergence of M̂n1(t) to its population limit. By another application of the
argmax continuous mapping theorem, we have that T BH controls the FDR.

3. OUTLIER PROFILE ANALYSIS: GENOME-WIDE CASE

3.1 Multivariate extensions: model and methodology

Now, we wish to consider the outlier profile analysis problem for genome-scale data such as data generated
by a gene expression microarray experiment. Then, model (2.1) becomes the following:

Ygi |Zi = 0
ind∼ F0g(y),

Ygi |Zi = 1
ind∼ π0g F0g(y) + (1 − π0g)F1gi (y), (3.1)

π01, . . . , π0G ∼ P, (3.2)

where P is an arbitrary distribution function. Note that we are leaving the structure of F0g and F1gi

unspecified. We will return to this point later in Section 3.3. Now, suppose that in (3.2), the π0g (g =
1, . . . , G) are a mixture themselves of a point mass at 1 and alternative distribution function so that

π01, . . . , π0G
iid∼ pδ1 + (1 − p)FP (π). (3.3)

Now, if π0g comes from the first mixture component, then there is no differential expression for the
gth gene. To make the model sensible, we need that smaller values of π0g correspond to an increased
likelihood of coming from the distribution function FP .

What most previous authors have tested within this model (Lyons-Weiler and others, 2004; Tibshirani
and Hastie, 2007; Wu, 2007) is H0g : π0g = 1, g = 1, . . . , G. In contrast to the hypothesis described
in Section 2, which is a sample-specific hypothesis involving outliers, the null hypothesis H0g here is a
gene-specific one. When we think about assessing significance now, any multiple testing adjustment needs
to account for the multiplicity of genes in the study and not the number of samples.

Our approach is to have the following class of scores:

Sg =
n∑

i=1

Wgi I{Di = 1, Ûgi � cg
i,α}, (3.4)

where Ûgi is the gene-specific analog of Ûi from Section 2.2, Wgi is a weight function, and cg
i,α is a

critical value depending on the particular procedure being used (Bonferroni 1, Bonferroni 2, or BH). Two
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natural choices for W are Wgi = 1 and Wgi = Ygi . Using the first weight function will make the statistic
Sg fairly discrete, while using the second weight function will make the statistic Sg be more continuous.
In this paper, we use the second one.

To derive the null distribution of (3.4), we permute the class labels (Z) between the cases and the
controls. During this permutation, we recalculate F̂0. Based on this, we can then perform the usual multiple
testing adjustments controlling either the FWER or the FDR. Note that for this situation, we must adjust
for the number of genes since the number of hypotheses being tested is equal to the number of genes on
the microarray. Based on the permutations, we can then adjust the p-values for multiple testing. A variety
of procedures for doing so based on FWER can be found in Dudoit and others (2002). For presenting
scientists with a list of genes calibrated in evidence for outlierness, we use the q-value approach of Storey
and Tibshirani (2003). In words, the q-value is approximately the smallest FDR at which we would reject
the null hypothesis that there is no outlying expression for the gth gene in diseased relative to nondiseased
samples. We then rank genes based on the q-value.

3.2 Comparison with previous methods

It is instructive to consider the difference between the proposed methodology versus those previous au-
thors have constructed. We first start with the approach of Tomlins and others (2005). They standardize
the data across all samples and create new measurements

Y ∗
gi = {Ygi − median(Yg·)}

MAD(Yg·)
,

where median(Y) is the median of the vector Y and MAD(Y) denotes the median absolute deviation of Y.
The COPA score of Tomlins and others (2005) for the gth gene is the following:

COPAg = qr (Y∗
g·), (3.5)

where qr (Y) denotes the r th percentile of the vector Y. In words, Tomlins and others (2005) use the r th
percentile of Y ∗

g· for all samples; in practice, they consider r to be 75, 90, and 99. What Tibshirani and
Hastie (2007) propose is a modified t-test for finding this pattern; they use as their statistic

OSg =
n∑

i=1

Y ∗
gi I{Zi = 1, Y ∗

gi > q75(Y∗
g·) + IQR(Y∗

g·)}, (3.6)

where IQR(Y) denotes the interquartile range of a vector Y. Tibshirani and Hastie (2007) argue that the
outlier sum (OS) score (3.6) is potentially more efficient than the COPA score because it sums over all
outlying disease samples.

Wu (2007) develops an approach called the outlier robust t-statistic (ORT). He seeks to separate the
diseased and undiseased populations as much as possible because he argues that it is possible for the
distributions of gene expression measurements for the 2 groups to be different. His statistic is

ORTg =
∑n

i=1 Ygi I
{

Zi = 1, Y ∗
gi > q75

(
Yg1, . . . , Ygn0

) + IQR
(
Yg1, . . . , Ygn0

)}

median
(
median1�i�n0

∣∣Ygi −median1�i�n0 Ygi
∣∣, mediann0+1�i�n

∣∣Ygi −mediann0+1�i�nYgi
∣∣) .

(3.7)

There is a procedure proposed by Lyons-Weiler and others (2004), called the permutation percentile
separability test (PPST), that could also be applied to this problem. Their statistic is

PPSTg =
n∑

i=1

Ygi I
{

Zi = 1, Ygi > q95
(
Yg1, . . . , Ygn0

)}
. (3.8)
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For the last 3 formulae (3.6–3.8), the authors derive null distributions using permutation of the nondis-
eased and diseased samples. In comparing (3.5–3.8), we highlight several points. First, the original COPA
measure (3.5) of Tomlins and others (2005) did not attempt to ascribe any measure of significance and
defines the threshold based on all samples. The other approaches all attempt to use more statistically mo-
tivated criteria for assessing outliers, and they all sum over all n1 samples in the diseased population.
The OS approach (3.6) uses all samples for ranking, but the other 2 approaches (3.7) and (3.8) only con-
struct a cutoff using the samples in the nondiseased category. The latter 3 approaches (3.6–3.8) all test the
hypothesis H0g : πg = 1.

Our approach in (3.4) differs in one major respect from the scores (3.6–3.8). We seek to control an
error rate measure, which none of the other proposals do. This has the effect of creating a data-dependent
threshold that incorporates variability in a more flexible way than by use of the interquartile range such as
in (3.6) and (3.7).

4. NUMERICAL EXAMPLES

4.1 Simulation studies

To assess the performance of the methodology, we first conducted some simulation studies. In particular,
we generated gene expression measurements for 1000 genes and allowed for 50 genes to have a differential
expression pattern different between 2 groups, each with n = 20 samples. We considered differential
expression in k = 5, 10, and 15 samples. For each simulation scenario, 100 data sets were generated.
We took the baseline distribution of gene expression to be exponential with mean 1 and the differential
expression to be exponential with mean 2. We compared the performance of the proposed methodology to
the methods discussed in Section 3.2 using receiver operating characteristic (ROC) curves, averaged over
the simulations. In terms of performance, ROC curves close to the diagonal indicate poor performance,
while those closer to the upper left-hand corner indicate better performance. For the Bonferroni and BH
methods, we took α = 0.05. The simulation results are indicated in Figure 1. We did not use the original
COPA method of Tomlins and others (2005).

Based on the curves, we find that for small values of the false-positive rate, the proposed methodology
using the BH procedure performs the best among all methods, while that using the OS method performs
the worst. One point of note is that the PPST method (3.8), which has not been previously explored in the
literature, tends to perform better than the OS and the outlier robust t-statistic and actually does better as
k increases. The proposed methods are always competitive in these situations.

We next performed a simulation that mimicked a setup used by Wu (2007). We took the baseline
distribution of genes to be standard normal with mean zero and variance one; in a fraction of samples, 50
genes had a normal distribution with mean 2 and variance 1. The simulation results are given in Figure 2.
For small k, the BH procedure tends to perform the best, while for larger k, the PPST and proposed
Bonferroni methods tend to perform much better.

4.2 Prostate cancer data set

We now apply the proposed methodology to data from a gene expression study in prostate cancer. There
is a total of 101 samples in the study: 22 noncancerous samples and 79 cancerous samples; the samples
were profiled using 2-color (red/green) microarrays. There were a total of 9984 genes on the original
microarray; the following preprocessing steps were applied before using the methodology:

1. Genes with more than 50% missing values across all samples were removed from the study.
2. Missing values were imputed using a nearest neighbors algorithm (Troyanskaya and others, 2001),

where the number of nearest neighbors is set to 10.

This left a total of 9272 genes for analysis.
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Fig. 1. Average ROC curves of various outlier detection procedures using first simulation scenario. Solid line indicates
OS method of Tibshirani and Hastie (2007). Dotted line indicates percentile-specific method (PPST) of Lyons-Weiler
and others (2004). Dashed line indicates outlier robust t-statistic of Wu (2007). Circles indicate proposed Bonferroni
method. Dashed and dotted line indicates proposed BH method for outlier detection.

As discussed in Section 2, one of the advantages of the proposed methodology here is that we can
determine which are specific samples that show evidence of outlying expression with respect to a particular
gene. As an example, we take ERG (v-ets erythroblastosis virus E26 oncogene homolog), which was
found to be part of a gene fusion product that appears to be quite common in prostate cancer (Tomlins
and others, 2005). If we apply the methods from Section 2 to ERG, we find that there are 40 samples that
show evidence of outlying expression in the cancerous samples relative to the noncancerous samples using
the Bonferroni method with α = 0.05. We get the same answer using the BH procedure with α = 0.05;
in fact, the set of samples called outliers is the same using either method. When we apply the method,
switching the 2 groups of samples, there are no samples in the noncancerous group that show evidence of
outlying expression relative to the cancerous samples.

Next, we applied the methods from Section 3 in order to do a more global search of genes that show
evidence for outlying expression. Here, we only focus on genes that show evidence of overexpression in
the cancerous samples relative to the noncancerous samples. A comparison of correlation between the
ranks of the genes based on the outlier score methods is given in Table 2. Based on Table 2, we find that
the proposed methods give highly concordant results. There is less concordance with the other 3 methods.

Next, we performed the q-value analysis of Storey and Tibshirani (2003). This was performed after
calculating the permutation distribution using 10 000 samples. Interestingly, while the estimated π0 was
one using the PPST, ORT, and OS methods, it was 0.19 for the Bonferroni procedure and 0.29 for the
BH procedure. This leads to many more genes being called significantly differentially expressed using the
latter 2 procedures versus the existing methods at any q-value cutoff.
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Fig. 2. Average ROC curves of various outlier detection procedures in second simulation scenario. See Figure 1 for
methods corresponding to different symbols.

5. DISCUSSION

In this article, we have placed a very formal statistical framework for outlier detection using genomic data.
By formulating the problem using mixture models, we are able to clarify what hypotheses can be tested.
Doing this also allows us to clarify the statistical contributions of previous work on this subject.

Another theme in this work is the relative utility of nonparametric methods. While much of the pre-
vious literature on outlier detection has used modified t-statistics, the empirical cdf-based approach pro-
posed here tends to give very good performance in the simulation settings considered. While the t-statistic
methods will be powerful in cases where the data are Gaussian, they will be less so in non-Gaussian set-
tings. By contrast, the performance of the proposed nonparametric methods will be more robust to the
choice of the data-generating mechanism.

One of the other facts noted by Tomlins and others (2005) was that there was a particular expression
pattern to the ERG–ETV1 gene pair. In a fraction of samples, one of these genes would be overexpressed,

Table 2. Correlation between outlier scores using methods in Section 3

PPST BONF ORT OS BH

PPST 1.00 0.78 0.71 0.52 0.76
BONF 1.00 0.58 0.50 0.99
ORT 1.00 0.61 0.57
OS 1.00 0.45
BH 1.00

Note: Correlation in Table 2 calculated using Spearman’s ρ. BONF, Bonferroni.
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while the other would not show any expression. This also suggests another type of gene expression pattern
to search for; it is bivariate in nature. While a threshold-based method for assessing significance was
proposed by MacDonald and Ghosh (2006), it would be desirable to extend the approach here to that
problem as well. This is currently under investigation.
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