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Abstract

Methods for multivariate meta-analysis of genetic association studies are reviewed, summa-
rized and presented in a unified framework. Modifications of standard models are described in
detail in order to be applied in genetic association studies. The model based on summary data is
uniformly defined for both discrete and continuous outcomes and analytical expressions for the
covariance of the two jointly modeled outcomes are derived for both cases. The models based on
the binary nature of the data are fitted using both prospective and retrospective likelihood. Further-
more, formal tests for assessing the genetic model of inheritance are developed based on standard
normal theory. The general model is compared to the recently proposed genetic model-free bi-
variate approach (either using summary or binary data), and it is clearly shown that the estimates
provided by this approach are nearly identical to the estimates derived by the general bivariate
model using the aforementioned tests for the genetic model. The methods developed here as well
as the tests, are easily implemented in all major statistical packages, escaping the need of self
written software. The methods are applied in several already published meta-analyses of genetic
association studies (with both discrete and continuous outcomes) and the results are compared
against the widely used univariate approach as well as against the genetic model free approaches.
Illustrative examples of code in Stata are given in the appendix. It is anticipated that the methods
developed in this work will be widely applied in the meta-analysis of genetic association studies.
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1. Introduction 
 

The continuously increasing number of published genetic epidemiology studies 

(Becker et al, 2004; Hirschhorn et al, 2002), warrants the need for collecting and 

synthesizing the available information for a particular gene-disease association 

providing a quantitative overall estimate, a procedure known as meta-analysis 

(Normand, 1999; Petiti, 1994; van Houwelingen et al, 2002). Besides the 

problems encountered in meta-analysis of observational studies, special care is 

needed when dealing with meta-analyses of genetic factors speculated to be 

involved in a particular disease etiology (Attia et al, 2003; Ioannidis, 2005a; 

Ioannidis, 2005b; Ioannidis & Trikalinos, 2005; Salanti et al, 2005).  Methods for 

combining evidence from family-based studies have been proposed (Gu et al, 

2001), as well as methods for combining in a meta analysis the results from 

population-based and family-based studies (Evangelou et al, 2006; Kazeem & 

Farrall, 2005).  

For population-based genetic association studies, which are of main 

interest and often fall under the well known in Epidemiology case-control design, 

several approaches have been proposed. Some of them are based on traditional 

approaches for meta-analysis of epidemiological studies with minor modifications 

to handle the genotype effects (Thakkinstian et al, 2005), whereas other more 

sophisticated methods have been proposed, using multivariate methods of meta-

analysis (Minelli et al, 2005a; Minelli et al, 2005b). The major disadvantage of 

the multivariate methods proposed so far, is that they require specialized user-

written software that is not currently available. Thus, in the vast majority of the 

published meta-analyses of genetic association studies (Attia et al, 2003; Ioannidis 

& Trikalinos, 2005; Ioannidis et al, 2003), the data are routinely analyzed in a 

univariate fashion ignoring the within studies pairwise correlation of genotype 

contrasts. 

In this work, the various methods that were proposed in the past for 

performing meta-analysis of genetic association studies are summarized and a 

general multivariate framework for meta-analysis of genetic association studies is 

presented. The methodology is based on the general approach of bivariate meta-

analysis (van Houwelingen et al, 2002), adapted for handling the correlation 

between the outcomes encountered in genetic association studies. The methods 

are capable of handling both discrete and continuous outcomes and can be easily 

applied in any major statistical package capable of fitting multivariate generalized 

linear models. Methods for performing inferences concerning the genetic model 

of inheritance are also presented and thus, a connection of the general multivariate 

framework with the genetic-model free approach is presented. The paper is 

organized as follows: In section 2, the problem is described in order to establish 

notation. The widely used univariate methods are presented and some multivariate 
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methods proposed earlier are discussed. In section 3, the bivariate approach using 

aggregate (summary) data is presented for both discrete and continuous outcomes 

and connections to the model-free approach (Minelli et al, 2005b) are discussed. 

In section 4 models using directly the binary nature of the data (for discrete 

outcomes) are presented, using either the retrospective or the prospective 

likelihood. In section 5, a general approach for inferring the genetic model of 

inheritance from the models presented here is given and the equivalence to the 

genetic model-free approach is shown. In section 6, application of the proposed 

methods in several published meta-analyses of genetic association studies 

concerning both discrete and continuous outcomes are presented and discussed. In 

section 7, the overall conclusions of this work are summarized and some other 

more special-purpose methods of multivariate meta-analysis that were developed 

for genetic association studies are discussed. Finally, in the Appendix, simple 

Stata programs are presented for performing the analyses reported in this paper. 

 

2. Meta-analysis of genetic association studies 
 

Consider a locus having two alleles (A, B) where the second (B) is assumed to be 

the risk factor for a particular disease. The possible genotypes of a person could 

be AA, AB and BB. Table 1 presents the data used in a meta-analysis of k studies, 

in which retrospectively sampled cases and controls were classified according to 

their genotypes. The majority of published genetic association studies involve 

dichotomous outcomes that can be represented in such a table. Another, even 

though not so commonly encountered situation (Table 2), is when the outcome of 

interest is continuous, such as Systolic Blood Pressure (SBP), cholesterol levels 

and so on. In this case, the studies are usually classified as having a cross-

sectional design, where a representative sample from the general (or from a high-

risk) population is collected, the individuals are genotyped and the mean values of 

the continuous measure that is under investigation are compared across genotypes. 

 
Table 1. A typical layout of the data used in a meta-analysis of case-control genetic association 

studies involving a single bi-allelic locus with a dichotomous outcome. The distribution of the 

various genotypes (AA, AB and BB) is listed for cases and controls, whereas the different studies 

(i=1, 2 …k) included in the meta-analysis are listed in different rows. 

 

 

 

Study Cases Controls 
1 AA11 AB11 BB11 AA01 AB01 BB01 

2 AA12 AB12 BB12 AA02 AB02 BB02 

… … … … … … … 

k AA1k AB1k BB1k AA0k AB0k BB0k 
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Currently, the majority of meta-analyses of genetic association studies 

involving one locus with two variants (A vs. B), are performed by collapsing the 

genotypes in two categories assuming implicitly a particular genetic model and 

then performing comparisons by means of the Odds Ratio (OR, for dichotomous 

outcomes) or using the average difference (also known as weighted mean 

difference-WMD, for continuous outcomes). For instance, considering the 

contrast of BB+AB vs. AA genotypes, we implicitly assume a dominant model of 

inheritance, BB vs. AB+AA corresponds to a recessive model and so on. Another 

approach, which in the majority of the situations is performed in addition to the 

previous approach, is to compare allele frequencies between cases and controls (in 

the case of dichotomous outcomes) implying by this way an underlying co-

dominant model of inheritance. Finally, another approach is to perform multiple 

comparisons (i.e. BB vs. AB, AB vs. AA etc) with the risk of an inflated Type I 

error rate. 

 
Table 2. A typical layout of the data used in a meta-analysis of genetic association studies 

involving a single bi-allelic locus with a continuous outcome. The distribution of the various 

genotypes (AA, AB and BB) is listed for all participants (N), accompanied by the mean and the 

standard deviation of the measured continuous outcome in each group. The different studies (i=1, 

2 …k) included in the meta-analysis are listed in different rows. 

 

No matter which of the above-mentioned approaches is used, traditional 

methods of meta-analysis of summary measures are applicable either relying on 

random-effects or on fixed-effects models (Normand, 1999; Petiti, 1994). In a 

traditional fixed-effects meta-analysis using summary measures, the assumption 

usually made is that the individual estimates yi of the logOR (or the mean 

difference) of each study, are distributed normally with mean equal to the true 

effect θ and variance σ
2
, which is the estimated variance of the logOR (or the 

mean difference) of the particular contrast of each study (Normand, 1999; Petiti, 

1994). In the presence of heterogeneity, an alternative and perhaps preferable 

method, is the method of random-effects, which assumes that the true effects vary 

randomly between studies and a random component of the between studies 

variance (τ
2
) is introduced. The most common approach for estimation of τ

2
 is the 

non-iterative method of moments (MM)  proposed by DerSimonian and Laird 

 genotypes 

AA AB BB 
Study 

mean (sd) N mean (sd) N mean (sd) N 

1 yAA1 (sAA1) AA1 yAB1 (sAB1) AB1 yBBA1 (sBB1) BB1 

2 yAA2 (sAA2) AA2 yAB2 (sAB2) AB2 yBBA2 (sBB2) BB2 

… … … … … … … 

k yAAk (sAAk) AAk yABk (sABk) ABk yBBAk (sBBk) BBk 
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(DerSimonian & Laird, 1986). Other methods summarized by Thompson and 

Sharp (Thompson & Sharp, 1999), include iterative techniques, such as maximum 

likelihood (ML), restricted maximum likelihood (REML) and empirical Bayes 

estimation (EB). When heterogeneity is absent, τ
2
 is essentially equal to zero and 

the fixed and random-effects methods coincide. Similar models have also been 

described in a Bayesian framework (Smith et al, 1995; Sutton & Abrams, 2001; 

Warn et al, 2002). In all of the above-mentioned methods, one could incorporate 

study-level covariates as linear predictors that potentially reduce the observed 

heterogeneity, resulting in a random-effects meta-regression (Thompson & 

Higgins, 2002; Thompson & Sharp, 1999).  

Thakkinstian and coworkers (Thakkinstian et al, 2005), proposed a general 

framework for performing meta-analysis of genetic association studies that 

includes predefined steps involving tests for Hardy-Weinberg equilibrium (HWE), 

tests for heterogeneity and finally deciphering the most plausible genetic model. 

However, the authors still relied on fixed and random-effects methods based on 

summary measures. Most importantly however, they treated the inherently 

multivariate genetic data as if they were univariate, performing simultaneous 

inferences. The data on Table 1, can naturally been modeled by treating the two 

logORs derived from the mutant allele (AB vs. AA and BB vs. AA) as a bivariate 

response whose estimates are correlated. Taking this correlation into account is 

necessary when one attempts to draw simultaneously inferences concerning the 

statistical significance of the two logORs, as well as, when trying to compare 

them in order to decipher the genetic model of inheritance.   

Even though general models for multivariate meta-analysis are available 

for years (Berkey et al, 1998; van Houwelingen et al, 1993), it is noteworthy that 

no attempt has been performed for adapting them in genetic-association studies. 

More importantly, the majority of published meta-analyses of genetic association 

studies treat the multiple outcomes as independent ones or by performing multiple 

comparisons (Attia et al, 2003; Ioannidis & Trikalinos, 2005; Ioannidis et al, 

2003). On the other hand, during the last years some very interesting multivariate 

models have been proposed. Minelli and coworkers (Minelli et al, 2005b), 

proposed a very interesting (genetic) model-free approach for meta-analysis of 

genetic association studies, which does not specify in advance the genetic model 

but instead infers it from the data. In particular, they introduced the joint modeling 

of the logarithm of ORBB, which is the OR of BB genotype vs. AA, and λ which is 

the ratio of the logORBB and logORAB (i.e the OR of AB genotype vs. AA), an 

approach that recognizes the fact that the two ORs are correlated. Lately, Minelli 

and coworkers extended their method in a Bayesian framework (Minelli et al, 

2005a). Salanti and coworkers introduced another Bayesian method that 

incorporates directly in the meta-analysis the deviations from HWE using fixation 

coefficients (Salanti et al, 2006). A somewhat different approach was followed in 
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the so-called “Mendelian Randomization” method, which has been proposed in 

order to account for the pairwise correlations between phenotype-genotype and 

genotype-disease (Minelli et al, 2004; Thompson et al, 2005). Under this 

approach, we could finally decipher the association between phenotype and 

disease taking into account multiple sources of evidence from the literature. 

Lately, Bagos and Nikolopoulos (Bagos & Nikolopoulos, 2007) proposed an 

intuitive approach based on random coefficient logistic regression models easily 

implemented in Stata. However, most of the above mentioned methods are not 

widely used in practice for a series of reasons. For instance, the genetic model-

free and the Mendelian randomization approaches cannot be easily implemented 

since the authors performed the analyses using self-written programs in Stata that 

were not published along with the respective papers. Bayesian methods on the 

other hand, even though appealing, they are difficult to be widely used from 

people performing meta-analysis, since an investigator should have knowledge of 

Bayesian statistics and programming skills in WinBUGS (Spiegelhalter et al, 

2004). Furthermore, a Bayesian analysis requires a significant amount of time in 

order to monitor the convergence of MCMC and perform the necessary 

diagnostics. However, a major advantage of these methods is the fact that 

WinBUGS is freely available software. In any case though, it would be 

advantageous to have available Maximum Likelihood methods capable of 

performing the same analyses in a frequentist framework.  

In the following section, the general model of bivariate random-effects 

meta-analysis is going to be presented and adapted for genetic association studies. 

The methodology is going to be presented separately for discrete and continuous 

outcome data. For comparison, the genetic model-free approach is going to be 

presented and the differences of the two approaches will be highlighted. 

 

3. Multivariate meta-analysis using aggregate data 
 

3.1 The general multivariate model of meta-analysis for discrete 

outcomes 
 

In the general approach for bivariate meta-analysis (van Houwelingen et al, 2002), 

the two logORs derived from the mutant allele (AB vs. AA and BB vs. AA) could 

be modeled simultaneously as a bivariate response. The logarithm of ORAB (the 

OR of heterozygous versus homozygous for the wild type) is given by: 

1 0
1

1 0

log i i
i

i i

AB AA
y

AA AB

 
=  

 
       (3.1) 

with an approximate variance calculated by: 
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2

1 0 1 01
1 1 1 1

i i i ii
s AA AA AB AB= + + +      (3.2) 

Under the same rationale, the logarithm of ORBB (the OR of homozygous for the 

mutant allele versus the homozygous for the wild type) is given by: 

1 0
2

1 0

log i i
i

i i

BB AA
y

AA BB

 
=  

 
       (3.3) 

with variance:  
2

2 0 1 01
1 1 1 1

i i i ii
s AA AA BB BB= + + +      (3.4) 

In a random-effects setting, we assume that the two logORs are distributed 

following a bivariate normal distribution: 
2

1 1 1 12 1 2

2

2 2 12 1 2 1

~ ,
i i i W i i

i i W i i i

y s s s
MVN

y s s s

β ρ
β ρ

      
     
       

   (3.5) 

with the means (β1i, β2i) which are considered random terms, distributed similarly 

as: 
2

1 1 1 12 1 2

2

2 2 12 1 2 2

~ ,
i B

i B

MVN
β β τ ρ τ τ
β β ρ τ τ τ

      
     
      

    (3.6) 

Thus, the final marginal model on which we base the inference is: 
2 2

1 1 1 1 12 1 2 12 1 2

2 2

2 2 12 1 2 12 1 2 2 2

~ ,
i i W i i B

i W i i B i

y s s s
MVN

y s s s

β τ ρ ρ τ τ
β ρ ρ τ τ τ

    + +  
      + +      

  (3.7) 

In the above notation, cov(y1i, y2i) = ρW12s1is2i is the within studies covariance 

(with ρW12 being the within studies correlation that has to be known beforehand) 

whereas ρB12τ1τ2 is the between studies covariance of the random terms that is to 

be estimated from the data (ρB12 is thus the between-studies correlation). In the 

general models of bivariate meta-analysis, the within-studies correlation is usually 

assumed zero or needs to be provided by the individual studies (Berkey et al, 

1998; van Houwelingen et al, 1993). However, in genetic association studies, the 

two logORs are correlated since they both are estimating a comparison against the 

same baseline category (the individuals carrying AA genotype) and the within-

studies correlation can be computed analytically using the genotype counts from 

the individual studies. The covariance (and hence the correlation) between the two 

logORs, can be derived by treating the observed counts in each 2×3 table 

representing a single study, as independent Poisson variables with E[Yi] = var[Yi] 

= Yi and the logORs as contrasts among the log counts. Then, using the delta-

method and simple calculations we can compute the variance (for details, see 

Appendix I): 

( )1 2 0 1cov , 1 1i i i iy y AA AA= +        (3.8) 

and the correlation: 
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( )12 0 1 1 21 1W i i i iAA AA s sρ = +      (3.9) 

The result is quite intuitive since the covariance is equal to the amount of variance 

attributed to the common (shared) baseline group. A similar formula has been 

used in meta-analysis of dose-response epidemiological data, without however 

giving the details of the derivation (Berrington & Cox, 2003; Greenland & 

Longnecker, 1992). In Appendix III, a Stata program for fitting the model of 

Equation 3.7 is presented using the ml command. Similar results can be obtained 

using the mvmeta command (White, 2008). 

 

3.2 The general multivariate model of meta-analysis for 

continuous outcomes 
 

In case we have a continuous outcome such as the data presented in Table 2, from 

each study we will be provided with the mean and standard deviation for the 

outcome per genotype. In general, if we denote by yij the outcome of a person j in 

study i (which is assumed to be distributed normally) and use dummy variables 

such as z1ij and z2ij for individuals carrying the AB and BB genotype respectively, 

we can formulate the linear model: 

0 1 1 2 2ij i ij ij
y z zα α β β= + + +       (3.10) 

If the data are in the form of Table 2, the observations are the studies and need to 

be weighted by the inverse of their variance. If however, we have access to 

individual patients’ data we can use them directly in the linear model. In this 

model, α0 is the overall mean associated with genotype AA which is considered 

the reference group and αi is the study-specific fixed effects needed to preserve 

stratification by study. The coefficients β1 and β2 are of main interest here, 

representing the average differences of individuals carrying the AB and BB 

genotypes from the AA genotype respectively. This model was considered also by 

Thakkinstian and coworkers (Thakkinstian et al, 2005), without however 

extending it to include random effects. A random effects extension of the model 

can be formulated introducing random coefficients β1i and β2i for the genotypes:   

( ) ( )0 1 1 1 2 2 2ij i i ij i ijy z zβ β β β β β= + + + + +     (3.11) 

The random coefficients are considered to be distributed normally with: 
2

1 1 1 2

2
2 2 1 2

0
~ ,

0

i

i

MVN
β τ ρτ τ
β ρτ τ τ

      
     
      

 

Adding a random intercept for studies would result in linear mixed model, 

however such an option is not widely accepted for meta-analysis (see section 4). 

Models similar to that of Equation (3.11) have been proposed for meta-analysis of 

continuous outcome data from clinical trials (where covariates z, would be the 

treatment arm) but according to the author’s knowledge have never been applied 
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in genetic association studies (Higgins et al, 2001). The particular model can be 

fitted in any statistical package capable of fitting random-coefficient (mixed) 

weighted regression models, such as SAS (using PROC MIXED), R (using lme) 

or Stata (using gllamm). In Appendix ΙΙΙ illustrative code in Stata is presented 

for fitting the particular model. 

  A slightly different approach can be followed however, modeling directly 

the pairwise differences of the outcomes arising from individuals carrying the two 

mutant genotypes (AB, BB) from the reference genotype (AA):  

1i ABi AAi
y y y= −  and  2i BBi AAi

y y y= −   

It is straightforward to show that the two differences are distributed normally with 

mean equal to the difference of the means and variance equal to the sum of the 

variances. Hence, it is obvious that the bivariate model presented in Equation 

(3.7) can be directly applied in order to perform bivariate modeling of the two 

differences. Similarly, the two quantities are correlated since they are both 

estimating a difference from a baseline (reference) category. By simple 

probability calculations and noting that the random variables yAAi, yABi and yABi are 

mutually independent, we get the covariance as follows: 

( ) ( )
( ) ( )
( ) ( )

1 2cov , cov ,

cov , cov ,

cov , cov ,

                   

                       

i i ABi AAi BBi AAi

ABi BBi ABi AAi

AAi BBi AAi AAi

y y y y y y

y y y y

y y y y

= − −

= −

− +

 

( )
2

var                   AAi
AAi

i

sd
y

AA
= =      (3.12) 

Similarly to the discrete outcome measures in Equation (3.9) the covariance is 

equal to the amount of variance attributed to the baseline group. 

 The fixed effect model in equation (3.10) is completely equivalent to the 

fixed effects analogue of the model of equation (3.7) for continuous outcomes. 

However, the random-effects counterparts are likely to yield different results in 

situations where there is a large between studies heterogeneity, since model 3.10 

calculates a common intercept (representing the baseline genotype AA) whereas 

model 3.7 calculates directly the pairwise differences (AB-AA, BB-AA).   

In conclusion, we have seen that either we have a discrete outcome arising 

from genetic association case-control studies or a continuous outcome derived 

from cross-sectional genetic association studies, the general model described in 

Equation (3.7) can be applied in order to draw simultaneously conclusions about 

the correlated outcomes. This model can be fitted in any statistical package 

capable of fitting random-effects weighted regression models with an arbitrary 

covariance matrix, such as SAS (using PROC MIXED or PROC NLMIXED), R 

(using lme) or Stata (using mvmeta). Stata code for fitting the model is 

presented in Appendix III. mvmeta  performs inferences based on either 
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Maximum Likelihood (ML) or Restricted Maximum Likelihood (REML), by 

direct maximization of the approximate likelihood using a Newton-Raphson 

algorithm (White, 2008). Additionally in the Appendix, a program for fitting the 

same model using the ml command is presented mainly for pedagogical reasons 

as well as for making clear the connections to the genetic-model free approach 

which is presented below. 

 

3.3 The genetic model-free approach  
 

The genetic model-free approach of Minelli and coworkers (Minelli et al, 2005b) 

is an extension of the general bivariate model using summary data. It consists of 

joint modeling of β2 and λ which is the ratio of β1 and β2. The marginal model is: 
2 2 2 2

1 1 12 1 22

2 2 2
2 2 12 1 2 2

~ ,
i i W i i

i W i i i

y s s s
MVN

y s s s

λ τ ρ λτλβ

β ρ λτ τ

  + +    
     

+ +       
  (3.13) 

It is obvious that it is a special case of model of Equation (3.7) with re-

parameterization of β1, β2, using λ= β1/β2. However, the model makes some 

additional assumptions since it imposes a single between-studies variance τ
2
, 

implying this way that βs share a common random component of variance, 

whereas λ is treated as a fixed-effects parameter. Minelli and coworkers in the 

respective publication (in the Appendix), considered also the general case of the 

bivariate model without explicitly defining the within-studies correlations. 

Furthermore, in their implementation of the general bivariate model, by 

acknowledging the fact that in case of small number of studies the between-

studies correlation is poorly estimated, they used a fixed value of ρB12=0.9. The 

particular model is more parsimonious compared to the general model of Equation 

(3.7) since it invokes only three freely estimated parameters (i.e. λ, β2, τ
2
) 

compared to five (i.e. β1, β2, 
2

1τ , 2

2τ , ρB12). 

Although the authors did not consider this possibility, the model that was 

initially destined to be used on summary data, can also be applied in a 

straightforward manner to continuous outcome data, using the approach described 

in the previous section. Besides the theoretical discussion on the merits of the 

model (based on the assumptions that it makes), a major drawback of this 

approach is that in order to be applied, specialized code has to be written. Minelli 

and coworkers programmed the model in Stata using the ml command but the 

software is not widely available. In Appendix III, a Stata program that uses the ml 

command is presented for fitting the particular model. Although the 

implementation is (probably) different from the one used by Minelli and 

coworkers the results are in agreement up to the third decimal place. Minelli and 

coworkers, report also results from a variant of their program (i.e. bounding λ 
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between 0 and 1), however this version was not implemented here. The methods 

presented in this section use summary data and a normal approximation. In the 

next section, models using the binary nature of the data are going to be presented. 

 

4. Multivariate meta-analysis using binary data 
 

Another approach for performing multivariate meta-analysis equivalent to the one 

proposed in section (3.1) is to use directly the binary nature of the data. Instead of 

calculating the logORs and assume that they are normally distributed, we can use 

directly the genotype counts and perform the analysis using logistic regression. 

Similar models have been proposed for years for performing univariate random 

effects meta-analysis in a multilevel framework using logistic regression 

(Thompson & Sharp, 1999; Turner et al, 2000). The models that are going to be 

presented below can be considered as extensions of the above models in case of a 

multivariate response. Under the same rationale, they can be also viewed as 

extensions of the general multivariate approach of (van Houwelingen et al, 1993), 

with the difference being the fact that the two logORs are calculated from a 

comparison against the same baseline category. 

 In the binary case, the data of Table 1 are re-arranged and the 3 genotypes 

are encoded as j (j= 0, 1, 2) whereas we use δij to denote the case or control status 

(case=0, control=1) of subjects having the j
th

 genotype in study i (i=1,2,…k). 

Then, we have two alternatives for modeling, either using the prospective or the 

retrospective likelihood. The former case, assumes a binomial sampling scheme 

where fixed numbers of cases and controls are sampled independently, whereas in 

the latter, which assumes a multinomial sampling scheme subjects are selected 

dependent on their disease status and then their exposure status is ascertained.  

 Using the prospective likelihood (the likelihood based on the probability 

of the disease given the exposure), the case/control status is the dependent 

variable and the genotypes are treated as covariates. Then, we denote πij = P(δij=1) 

the underlying risk (i.e. the probability of being a case) of a person having the j
th

 

genotype in the i
th

 study respectively. Since allele B is considered as the risk 

factor, a reasonable choice would be to consider the AA genotype as the reference 

category and create dummy variables such as z1i=1 if the genotype is AB and z2i 

=1 if the genotype is BB. This is the model described by Bagos and Nikolopoulos 

(Bagos & Nikolopoulos, 2007), which is formulated as: 

( ) ( )
( ) ( )0 1 1 1 2 2 2

logit logit 1|

               

ij ij

i i i i i

P j

z z

π δ

α α β β β β

 = = 
= + + + + +

   (4.1) 

In this model, the random terms are distributed as:  
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1

2

i

i

β

β
 
 
 

~

2

1 1 2

2

2 1 2

       0
,

0        
MVN

τ ρτ τ

ρτ τ τ

   
        

     (4.2) 

The dummy variables αi are indicators of the study-specific fixed-effects, whereas 

β1 and β2 obtained by fitting the model are the estimates of the logORs (AB vs. 

AA and BB vs. AA, respectively). Another similar approach is that of assuming 

beforehand an additive model across the genotypes (a co-dominant analysis). 

Following this rationale, the model would include as a predictor a variable z 

taking values 0, 1 and 2 (for AA, AB and BB genotypes respectively): 

( ) ( ) ( )0logit logit 1|
ij ij i i i

P j zπ δ α α β β = = = + + +    (4.3) 

This random-coefficient logistic regression model is the analogue of a univariate 

meta-analysis, and is thus more parsimonious. However, it will provide reliable 

results only in case of co-dominant inheritance. In the next section we will see 

that the general model of Equation (4.1) can be readily used to provide inferences 

for the genetic model without assuming it beforehand. 

 Alternatively, the model may be parameterized assuming a multinomial 

sampling scheme utilizing the retrospective likelihood (the likelihood based on 

the probability of genotypes given disease status). In this case, the genotypes are 

treated as dependent variables and the case/control status as the predictor in a 

multinomial (polytomous) logistic regression (McCullagh & Nelder, 1989): 

( ) ( )
( )

0

0

0

exp
| =  

exp

i j ij

ij ij j

i r ir

r

p P j
α α β δ

δ
α α β δ

=

+ +
=

+ +∑
    (4.4) 

By observing that the linear predictor in the above model becomes: 

0

1

log , 1, 2
ij

ij i j ij

i

p
U j

p
α α β δ

 
= = + + = 

 
    (4.5) 

it is easy to understand that β1 and β2 obtained by fitting the model are estimates 

of the logORs (i.e. AB vs. AA and BB vs. AA, respectively) in equivalence to the 

respective coefficients of the model in Equation (4.1). Obviously, β0=0 for 

identifiability since genotype j=0 (i.e. AA) is used as the reference category. 

Similar to the model based on prospective likelihood, the variables αi are 

indicators of the study-specific fixed-effects. If in the above model, we introduce 

a genotype-specific random coefficient (for genotypes j=1, 2) the linear predictor 

becomes (Skrondal & Rabe-Hesketh, 2003): 

0

1

log , 1, 2
ij

ij i j ij ij ij

i

p
U j

p
α α β δ β δ

 
= = + + + = 

 
   (4.6) 

and the model is completely specified as a random effects bivariate meta-analysis, 

with random terms distributed similarly as: 
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 
 
 

~

2
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2

2 1 2

       0
,

0        
MVN

τ ρτ τ

ρτ τ τ

   
        

     (4.7) 

The retrospective likelihood analogue of the model of Equation (4.3) would be an 

ordinal logistic regression model. Even though such models have been considered 

for meta-analysis of ordinal outcomes (Whitehead et al, 2001), according to the 

author’s knowledge they have never been applied in meta-analysis of genetic 

association studies. It has been shown (in a fixed-effects framework) that 

maximum likelihood estimates obtained (with the exception of the intercept, 

which nevertheless is being treated as a nuisance parameter) from the 

retrospective likelihood are the same as those obtained from the prospective 

likelihood (Chen, 2003; Prentice & Pyke, 1979); this observation gave rise to the 

widely used approach of fitting logistic regression models for adjusting for 

confounders in observational studies.  

 Minelli and coworkers compared the retrospective with the prospective 

likelihood approaches in a Bayesian framework, concluding also, that the results 

in most cases are comparable (Minelli et al, 2005a). However, the particular 

approach is different from the one presented here in several aspects. First of all, it 

is a Bayesian method implemented using the freely available package WinBUGS 

(Spiegelhalter et al, 2004). Secondly, the model of Minelli and coworkers is re-

parameterized involving λ, whereas the method presented here is developed 

following the general approach. In the next section, it will be made clear that 

equivalent estimates for the inheritance model (λ) could also be derived from the 

general model presented here. Another minor difference is the fact that in the 

models presented here, the study-specific effects are considered fixed parameters. 

Random study effects could also be added but in such case the complexity of the 

calculations is increased, without significant change in the accuracy of the 

estimates. It should be noted at this point, that usually the term “random effects” 

in meta-analyses refers to random treatment effects (here, treatment is the 

genotype) and even though methods for both random treatment and random study 

effects have been proposed, their use is limited and questionable; see also 

(Higgins et al, 2001; Turner et al, 2000) as well as the discussion in (Thompson et 

al, 1997; van Houwelingen & Senn, 1999).  

 The models presented here can be easily fitted in Stata using gllamm, in 

SAS using PROC NLMIXED, in R using glmmPQL, or utilizing specialized 

software for multi-level modeling such as Mlwin (Rasbash et al, 1998). These 

models are expected to perform better compared to the models presented in the 

previous section in case the normality assumption for logORs does not hold. 

Furthermore, a major advantage of these models is that can be directly used for 

pooled meta-analyses performed under large collaborative efforts. This is the 

reason why these models are usually termed Individual Patients Data (IPD) 

12

Statistical Applications in Genetics and Molecular Biology, Vol. 7 [2008], Iss. 1, Art. 31

http://www.bepress.com/sagmb/vol7/iss1/art31



methods (Turner et al, 2000). The disadvantage is that are significantly slower 

than the methods based on summary data (however, they are faster compared to 

their Bayesian counterparts). In Appendix III, Stata programs for fitting the two 

models developed in this section are presented. The models were fitted using the 

gllamm module for Stata (Rabe-Hesketh et al, 2002; Rabe-Hesketh et al, 2005). 

gllamm uses numerical integration by adaptive quadrature in order to integrate 

out the latent variables and obtain the marginal log-likelihood. Afterwards, the 

log-likelihood is maximized by Newton-Raphson using numerical first and second 

derivatives. 

 

5. Inferences concerning the genetic model of 

inheritance  
 

Let’s now return to the bivariate model of meta-analysis described in section 3 or 

to the binary data methods of section 4. It would be advantageous to have general 

tests to assess the genetic model of inheritance without having to resort to the re-

parameterization of Minelli and coworkers. Having such tests available, we will 

be able to make inferences concerning the genetic model using general purpose 

software. We will see here, that estimates of the genetic model of inheritance can 

be derived along with their confidence intervals and that these estimates in most 

cases coincide with the estimates provided by the genetic model free approach. 

Once the model is fitted, comparison of the two estimates ( )1 2
ˆ ˆ,β β  could 

provide evidence for the underlying genetic model. If both estimates are 

significantly different than zero and equal one to each other, a dominant model 

would be suggested, whereas if 2 1
ˆ ˆβ β>  a a co-dominant model will be more 

plausible. Of course, if 1
ˆ 0β = and 2

ˆ 0β >  the recessive model would be the only 

choice (Sasieni, 1997). Thakkinstian and coworkers, considered these 

possibilities, but they did not provide formal tests in their univariate framework 

(Thakkinstian et al, 2005). As a matter of fact, formal statistical tests can only be 

provided in a multivariate framework. The most plausible test would be that of the 

equality of the two coefficients (i.e. 1 2
ˆ ˆβ β= ). This could lead to the formulation of 

the following null hypothesis: 

0 1 2: 0, : 0
a

H d H dβ β= − = ≠      (5.1) 

The sample difference is normally distributed with mean 1 2
ˆ ˆ ˆd β β= − , whereas its 

variance could be calculated from: 

( ) ( ) ( ) ( )1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆvar var var 2cov ,β β β β β β− = + −    (5.2) 

Thus, under H0 the following statistic will be normally distributed: 

13

Bagos: Methods for Meta-Analysis of Genetic Association Studies

Published by The Berkeley Electronic Press, 2008



( ) ( )
( )1 2

1 2

ˆ ˆ ˆ
~ 0,1

ˆ ˆ ˆvarvar

d
N

d

β β

β β

−
=

−
     (5.3) 

and a 95% approximate confidence interval for the difference would be computed 

according to:  

 ( ) ( )ˆ ˆ ˆ ˆ1.96 var , 1.96 vard d d d− +      (5.4) 

Instead of testing the equality of the two coefficients, another approach would be 

to test their ratio, a null hypothesis which is typically formulated as: 

1
0

2

: 0, : 0
a

H H
β

λ λ
β

= = ≠       (5.5) 

This is exactly the test statistic reported in the genetic model-free approach of 

Minelli, and it is perhaps more easily understood since it models simultaneously 

the magnitude and the significance of the two coefficients as well as their relative 

size. Technically, we are interested in making inferences concerning the ratio of 

two correlated normally distributed variables. This is a problem widely studied 

since the sixties (Hinkley, 1969; Marsaglia, 1965), but it is under research up to 

now (Marsaglia, 2006; Pham-Gia et al, 2006). It is interesting to note that in the 

initial publication Marsaglia (Marsaglia, 1965), was motivated by the need to 

calculate the distribution of the ratio of two regression coefficients. The ratio of 

two uncorrelated standard normal variables is distributed according to the Cauchy 

distribution; however the situation is complicated in case of non-zero means or in 

case of correlation. A simpler approach for calculating the variance of λ̂  under 

the null hypothesis could be used if we define a function f(β1, β2) = β1/β2 and 

expand it using a bivariate 1
st
 order Taylor approximation around the means: 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2

1 2 1 2 1 1 2 2

1 2

ˆ ˆ ˆ ˆ, ,
ˆ ˆ ˆ ˆ ˆ, ,

f f
f f

β β β β
β β β β β β β β

β β

∂ ∂
= + − + −

∂ ∂
 

Then, by using the delta method and after replacing the population values with the 

sample ones, the variance will be (the details are presented in Appendix II): 

 ( ) ( ) ( ) ( )
2

1 2 1
1

1 22 4 3

2 2 2

ˆ ˆ ˆvar var ˆ
ˆ ˆ ˆvar 2cov ,

ˆ ˆ ˆ

β β β β
λ β β

β β β
= + −    (5.6) 

Finally, under H0 we will have λ=0 and thus the following statistic will be 

normally distributed:  

( )
( )

ˆ
0,1

ˆvar

z N
λ

λ
= ∼       (5.7) 

Consequently, a 95% confidence interval can be calculated, using: 
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( ) ( )ˆ ˆ ˆ ˆ1.96 var , 1.96 varλ λ λ λ− +      (5.8) 

It is interesting to notice at this point, that such problems (i.e. testing the 

difference of two coefficients) are usually encountered in econometrics, where a 

large literature is developed during the last decades. It can easily be shown that 

the previously developed test for d is a special case of the so called Wald test for 

“linear hypotheses” or linear restrictions (Judge et al, 1985). Similarly, the test for 

λ is an extension suitable for the so-called test for “non-linear hypotheses” (or 

non-linear restrictions). In any case, if we define a function R returning a q ×1 

vector r given by R(b) = r, then, the variance of R(b) - r will be equal to GVG′   

 ( )var R b r =GVG′−         (5.9) 

where V is the estimated variance-covariance matrix and G is the derivative 

matrix of R(b) with respect to the vector of coefficients b (Green, 2008). In case 

of d, if we define: ( ) 1 2
ˆ ˆR b β β= − , with r=0, we will have: 

 
( ) [ ]1 1

R b
G =

b

∂
= −

∂
, with:

1

1
G

 
′ =  − 

 

Thus: 

 ( ) ( ) ( )1 2 1 2
ˆ ˆ ˆ ˆvar var 2cov ,GVG β β β β′ = + −     (5.10) 

In the second case (i.e. λ), if we define a function R such as: 

 ( ) 1

2

ˆ

ˆ
R b

β
β

= , with r=0,  

then, the derivative matrix will be: 

 
( ) 2

2 1 2
ˆ ˆ ˆ1

R b
G =

b
β β β

∂
 = − ∂

, with:
2

2

1 2

ˆ1

ˆ ˆ
G

β

β β

 
′ =  

−  
 

and finally, we will have:  

 
( ) ( ) ( )

2

1 2 1
1

1 22 4 3

2 2 2

ˆ ˆ ˆvar var ˆ
ˆ ˆ2cov ,

ˆ ˆ ˆ
GVG

β β β β
β β

β β β
′ = + −    (5.11) 

Details of the particular derivations are presented in Appendix II. The particular 

tests are implemented in the testnl and nlcom (test and lincom for the 

linear hypotheses, respectively) commands in Stata and in delta.method and 

deltamethod functions in R using the general formula for the delta method 

(5.9); however, using Equations 5.2 and 5.6 they can easily be calculated in every 

statistical package. As we will see in the next section, applying the last tests, 

results in nearly identical estimates and 95% confidence intervals for λ̂  when 

compared to the estimates provided by the genetic model-free approach. 
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6. Application in published meta-analyses 
 

In this section we present results obtained by using the methods proposed in 

previous sections in several already published meta-analyses of genetic 

association studies. We chose to include in the analysis, three published meta-

analyses of case-control studies (binary outcome) that were also used as working 

examples by Minelli and coworkers (Minelli et al, 2005a; Minelli et al, 2005b), in 

order to be able to directly compare the results. These were:  

• The meta-analysis of Hani and coworkers (Hani et al, 1998) concerning 

the association of  Inwardly rectifying K+ channel (KIR 6.2) E23K 

polymorphism with  Type II Diabetes Mellitus, which included 4 studies 

with 521 cases and 367 controls.  

• The meta-analysis of Kato and coworkers (Kato et al, 1999) concerning 

the association of  Angiotensinogen (AGT) M235T polymorphism with 

Essential Hypertension (EH), which included 7 studies with 1336 cases 

and 1225 controls.  

• The meta-analysis of Wheeler and coworkers (Wheeler et al, 2004) 

concerning the association of  Paraoxonase (PON1) Q192R polymorphism 

with Myocardial Infarction (MI), which included 19 studies with 5725 

cases and 8072 controls. 

Two other meta-analyses of studies involving a continuous outcome were also re-

analyzed: 

• The meta-analysis of Sayed-Tabatabaei and coworkers (Sayed-Tabatabaei 

et al, 2003) concerning the association of  Angiotensin-converting enzyme 

gene I/D polymorphism with carotid artery wall thickness, which included 

23 studies with 7795 participants.  

• The individual patients’ data meta-analysis of Boekholdt and coworkers 

(Boekholdt et al, 2005) concerning the relation of Cholesteryl Ester 

Transfer Protein TaqIB polymorphism with serum HDL-C levels, which 

included 10 studies with 13667 participants.  

The results are summarized in Table 3, where the methods proposed in this work 

were used in comparison to the genetic model free methods of Minelli and 

coworkers as well as the commonly used univariate summary data methods. For 

reasons of brevity, fixed effects multivariate methods are not presented.  

In the meta-analysis of Hani and coworkers (Hani et al, 1998), which is 

the one with the smaller number of included studies and individuals, Bayesian 

methods produce wider confidence intervals including unity for both ORs, 

reflecting both the uncertainty implied by the prior distribution on the parameters 

and the imprecision in estimating the residual heterogeneity. All other methods 

considered, yielded nearly identical point estimates and 95% CIs. The estimate of 

the genetic model (λ) is nearly identical in all cases ranging from 0.24 to 0.27, 
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suggesting a closer to recessive model of inheritance. In the meta-analysis 

concerning the relationship between the M235T AGT polymorphism and 

Essential hypertension (Kato et al, 1999) all methods agree that there is no 

significant risk associated with the heterozygous genotype, pointing indirectly to a 

recessive model of inheritance. The methods using the retrospective likelihood 

produce slightly increases estimates for ORBB compared to those using the 

prospective likelihood, as well as, to methods using summary data. In all cases 

multivariate methods produce wider confidence intervals compared to univariate 

ones. The estimates of λ range from 0.11 to 0.25 in all case, suggesting that a 

recessive model is more likely. Finally, in the meta-analysis concerning the 

association of Paraoxonase (PON1) Q192R polymorphism with Myocardial 

Infarction (Wheeler et al, 2004), which included 19 studies, all methods yielded 

nearly identical estimates. The estimates of λ range from 0.53 to 0.69 suggesting 

that a co-dominant model is more likely. 

The results obtained by re-analyzing the data of two meta-analyses of 

continuous outcome data are presented in Table 4. In the individual patients’ data 

meta-analysis of Boekholdt and coworkers (Boekholdt et al, 2005) concerning the 

relation of Cholesteryl Ester Transfer Protein TaqIB polymorphism with serum 

HDL-Cholesterol levels, all methods produce nearly identical results indicative of 

absence of heterogeneity. Once again, the confidence intervals produced by the 

multivariate methods are slightly wider compared to the ones produced by 

univariate methods. The estimates of λ (0.35-0.36) suggest that a co-dominant 

model is more likely. Similar results were obtained using the mixed model of 

Equation (3.11). In the meta-analysis of Sayed-Tabatabaei and coworkers (Sayed-

Tabatabaei et al, 2003) concerning the association of  Angiotensin-converting 

enzyme gene I/D polymorphism with carotid artery wall thickness, the significant 

heterogeneity resulted in different estimates arising from fixed effects methods 

compared to random effects. Multivariate methods, once again produce wider 

confidence intervals for the mean difference. λ is estimated equal to 0.60 

suggesting that a co-dominant model is more likely. In this meta-analysis the 

mixed model presented in Equation (3.11) produces different results compared to 

the bivariate model of Equation (3.7). The fixed effects analogues of both models 

yielded however identical results (data not shown). The reason for this 

discrepancy should be attributed to the large between studies variability, since this 

analysis includes studies performed on low-risk (15 studies) as well as high-risk 

populations (8 studies). Whereas the mean AWT of persons carrying the QQ (i.e. 

AA) genotype in the low risk populations is 7.2×10
-1

 mm, the respective value in 

high risk populations is 9.2 ×10
-1

 mm suggesting a significant heterogeneity. 

Furthermore, it seems that there is a kind of interaction between the type of 

population (high- or low-risk) with the genotype effects. Including in the mixed 

model the type of the population (low/high) as a predictor, the results were 
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unaffected but the estimate for the risk variable was highly significant. By 

analyzing separately the two group of studies, the bivariate ML model yielded 

insignificant results for both genotypes (for AB: 0.0494 with 95% CI: -0.04801, 

0.1471 and for BB: 0.0954 with 95% CI: -0.0244, 0.2152) concerning the 15 

studies of low-risk populations, whereas the same model yielded highly 

significant results for the 8 studies of high-risk populations (for AB: 0.4258, with 

95% CI: 0.1122, 0.7393  and for BB: 0.6872  with 95% CI: 0.2841, 1.090). The 

mixed model for the same analyses produces somewhat different results since in 

the low-risk populations yields significant findings (for AB: 0.1952, with 95% CI: 

0.0763, 0.3141 and for BB: 0.2485 with 95% CI: 0.1373, 0.3597) whereas for the 

high-risk populations the significance as well as the magnitude of the estimates 

are larger (for AB: 0.5059, with 95% CI: 0.2619, 0.7501 and for BB: 1.020 with 

95% CI: 0.5265, 1.5136). In this meta-analysis, the underlying risk of the 

population seems to be an important source of heterogeneity that should be taken 

into account. Furthermore, it seems that this variability is extended in the genetic-

model since the estimates of λ, appear to move towards the co-dominant 

inheritance (i.e. λ=0.5) when considering the low risk populations.  

 

7. Discussion 
 

Methods for multivariate meta-analysis have been proposed for years either based 

on summary (van Houwelingen et al, 2002) or on individual patients’ data (van 

Houwelingen et al, 1993). It has been for long argued that multiple outcomes from 

the same study should be analyzed this way in order to account for the within 

studies correlations. Even though it is widely recognized that data arising from 

genetic association studies in the form of ORs derived from genotype contrasts 

are inherently correlated, no detailed adaptation of the multivariate methodology 

has been presented in the past. Most importantly, the vast majority of meta-

analysis of genetic association studies is performed using univariate techniques 

(Attia et al, 2003; Ioannidis & Trikalinos, 2005; Ioannidis et al, 2003). In this 

work, the general bivariate model for random-effects meta-analysis was modified 

in order to be applied to genetic association studies.  

Methods based on aggregate (summary) data as well as methods based on 

the binary nature of the data were considered. Concerning aggregate data, the 

model was defined with the same formulation for both discrete and continuous 

outcomes and analytical expressions for the covariance of the two jointly modeled 

outcomes were derived. The methods presented here based on summary data, 

resemble closely the general multivariate methods proposed by Berkey and 

coworkers (Berkey et al, 1998), and van Houwelingen  and coworkers (van 

Houwelingen et al, 2002). However, the major difference is that in these methods, 

the within studies correlation should have been made available from the original 

18

Statistical Applications in Genetics and Molecular Biology, Vol. 7 [2008], Iss. 1, Art. 31

http://www.bepress.com/sagmb/vol7/iss1/art31



articles, whereas in genetic association studies it can be derived from the 

published genotype counts as we described. Trikalinos and Olkin  (Trikalinos & 

Olkin, 2008), recently proposed a similar framework for multivariate meta-

analysis of data arising from clinical trials where the outcomes are mutually 

exclusive and gave formulae for calculating the within studies correlation. 

Although very similar, the particular method was not extended to genetic 

association studies. The issue of within studies correlation in bivariate meta-

analysis has been under extensive examination recently (Riley et al, 2007a; Riley 

et al, 2007b) and lately Riley and coworkers developed a very interesting method 

which does not distinguish between and within studies correlation (Riley et al, 

2008). This model could be used in general applications when the within studies 

correlation is unknown, but as discussed already, this is not the case concerning 

genetic association studies where the correlation can be computed analytically. 

Using the binary nature of the data, both prospective and retrospective 

likelihood based methods were proposed. These models are extensions of the 

general method of multivariate meta-analysis proposed by van Houwelingen and 

coworkers (van Houwelingen et al, 1993). However, with the presented approach, 

the two elements of the bivariate response are calculated compared to the same 

reference group. Similarly, the methods could be viewed as extensions of the 

univariate multilevel methods for random effects meta-analysis (Higgins et al, 

2001; Thompson & Sharp, 1999; Turner et al, 2000). As we already mentioned, 

these models are expected to perform better compared to the models based on 

summary data when the normality assumption for logORs is invalid. Furthermore, 

a major advantage of these models is that can be directly used for pooled meta-

analyses performed under large collaborative efforts. This is the reason why these 

models are usually termed Individual Patients Data (IPD) methods (Turner et al, 

2000). A disadvantage is that these models are significantly slower than the 

models based on summary data. 

In all of the presented models, formal tests for assessing the genetic model 

of inheritance were developed based on standard normal theory. In this respect, 

the general model was compared to a recently proposed, genetic model-free 

bivariate approach, and it was clearly shown that estimates provided by these two 

approaches are similar. It is argued that the slight differences between the 

estimates produced by the general framework described here and the genetic 

model-free approaches are not attributable solely to the different parameterization 

of the genetic model-free approach but also to the extra assumptions made. As 

already mentioned, the genetic model-free approach makes some additional 

assumptions, since it imposes a single between studies variance τ
2
, implying this 

way that βs are sharing a common random component of variance, whereas λ is 

treated as a fixed-effects parameter. Minelli and coworkers in the respective 

publication, considered also the general case of the bivariate model, but in their 
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implementation, they acknowledged the fact that in case of small number of 

studies, the between studies correlation is poorly estimated and thus they used a 

fixed value of 0.9. These assumptions made by Minelli and coworkers, could be 

responsible for the slight difference in the estimates produced in some cases by 

both model. 

Another advantage of the proposed methods is the fact that they can be 

readily extended to studies of loci having more than two alleles such as the 

apolipoprotein E alleles (Song et al, 2004). Assuming n alleles, the possible 

genotypes (combinations of 2 with replacement) would be equal to n(n+1)/2. In 

such a situation, the multiple genotypes can simply be incorporated into the 

multivariate models presented in sections 3 and 4. The only limitation is that 

methods using the binary nature of the data (section 4) are very time-consuming 

in such an application. However, the summary-data methods of section 3 

converge in less than a minute in a standard PC providing an attractive approach 

for analysing such data. Analysis of the data concerning the association of 

Apolipoprotein E (ApoE) alleles with Coronary Heart Disease (Wilson et al, 

1996), where the three alleles of ApoE, resulting in 6 possible genotypes modeled 

simultaneously was performed, providing very encouraging results (data not 

shown). 

 Other multivariate methods have also been proposed for meta-analysis of 

genetic association studies, however in a different context from the one discussed 

here. In the Mendelian Randomization approach, bivariate modeling has been 

proposed in order to account for the multiple pairwise correlations between 

phenotype-genotype and genotype-disease associations, in order to finally 

decipher the association between phenotype and disease (Minelli et al, 2004; 

Thompson et al, 2005). Under this model, one element of the bivariate response is 

the logOR for the association of a contrast of genotypes (i.e. AB+BB vs. AA) 

with the disease, whereas the other is an estimate of the genotype-phenotype 

association for the same contrast of genotypes (i.e. the mean difference between 

plasma levels of a metabolite in persons carrying AB+BB and AA genotypes). 

Under this perspective, the methodology is applicable only in few situations 

(when the intermediate phenotype is known and data are available) and provides 

no information for the genetic model of inheritance.  

 Salanti and coworkers  described a multivariate Bayesian method for 

meta-analysis adjusting for deviations from HWE (Salanti et al, 2006). They used 

the retrospective likelihood and parameterized the model assuming a priori a 

genetic model of inheritance (dominant, recessive etc). Similar to the other 

Bayesian methods, this approach cannot be widely used by primary researchers, 

whereas the a priori assumption concerning the inheritance model may be 

problematic and the authors suggested that their model could be modified 

according to the method of Minelli and coworkers. Very recently, Thompson and 
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coworkers extended the Bayesian genetic model free method to incorporate 

deviations from HWE (Thompson et al, 2008).  Salanti and Higgins developed 

another special-purpose multivariate method with which meta-analysis can be 

performed when data from some of the included studies are reported as merged 

genotypes (Salanti & Higgins, 2008). 

 

8. Conclusions 

 
In this work, general multivariate methods for meta-analysis of genetic 

association studies based on aggregate (summary) data as well as methods based 

on the binary nature of the data were considered. Concerning aggregate data, the 

model was defined with the same formulation for both discrete and continuous 

outcomes and analytical expressions for the covariance of the two jointly modeled 

outcomes were derived for both cases. Similar models were presented in a linear 

mixed model formulation that allows also the use of individual patients’ data in 

case of continuous outcome. Using the binary nature of the data, both prospective 

and retrospective likelihood based methods were considered. The general methods 

presented here were compared against some advanced methods for multivariate 

meta-analysis (i.e. the genetic model free approach) and the theoretical differences 

and similarities were highlighted. In all models considered here under the general 

framework, estimates for the genetic model of inheritance can be derived using 

standard normal theory. The methods developed here as well as the tests, are 

easily implemented in all major statistical packages, escaping the need of self 

written software. The methods were applied in several already published meta-

analyses of genetic association studies (with both discrete and continuous 

outcomes) and the results are compared against the widely used univariate 

approaches as well as against the genetic model free approaches. Illustrative 

examples of code in Stata are given in the Appendix. It is anticipated that the 

methods developed in this work will be widely applied in the meta-analysis of 

genetic association studies. 
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Table 3. Results obtained from re-analyzing the data of the three published meta-analyses concerning dichotomous outcomes. The results 

obtained by using traditional summary data methods as well the various multivariate methods described in the text, are presented. Multivariate 

fixed effects methods are not presented for reasons of brevity. In all cases, the two Odds Rations (ORs) for homozygous and heterozygous for 

the mutant allele individuals, the estimate of the genetic model of inheritance (λ) and the respective 95% confidence intervals are listed. FE: 

fixed effects; RE: random effects, ML: Maximum Likelihood; REML: Restricted Maximum Likelihood; MM-DL: Method of moments of 

Dersimonian and Laird. 

 Meta-analysis 

 

KIR 6.2 E23K and Type II Diabetes Mellitus 

(Hani et al, 1998) 

AGT M235T and Essential Hypertension 

(Kato et al, 1999) 

PON1 Q192R and Myocardial Infarction 

(Wheeler et al, 2004) 

Method 

ORBB 

(95% C.I.) 

ORAB 

(95% C.I.) 
λ 

(95% C.I.) 

ORBB 

(95% C.I.) 

ORAB 

(95% C.I.) 
λ 

(95% C.I.) 

ORBB 

(95% C.I.) 

ORAB 

(95% C.I.) 
λ 

(95% C.I.) 

Univariate methods          

Summary methods  

(FE) 

2.21 

(1.43, 3.40) 

1.22 

(0.90, 1.64) 
- 

1.58 

(1.06, 2.35) 

1.16 

(0.77, 1.76) 
- 

1.15 

(1.01, 1.31) 

1.09 

(1.01, 1.17) 
- 

Summary methods  

(RE, MM-DL) 

2.21 

(1.43, 3.40) 

1.24 

(0.85, 1.80) 
- 

1.58 

(1.06, 2.35) 

1.16 

(0.77, 1.76) 
- 

1.14 

(0.99, 1.32) 

1.10 

(0.99, 1.23) 
- 

Summary methods 

 (RE, ML) 

2.21 

(1.43, 3.40) 

1.23 

(0.88, 1.72) 
- 

1.58 

(1.06, 2.35) 

1.16 

(0.77, 1.76) 
- 

1.15 

(1.00, 1.31) 

1.10 

(1.00, 1.21) 
- 

Summary methods  

(RE, REML) 

2.21 

(1.43, 3.40) 

1.24 

(0.84, 1.81) 
- 

1.58 

(1.06, 2.35) 

1.16 

(0.77, 1.76) 
- 

1.15 

(1.00, 1.31) 

1.10 

(0.99, 1.21) 
- 

multivariate methods          

Bivariate regression 

(ML) 

2.16 

(1.40, 3.33) 

1.23  

(0.87, 1.73) 

0.27 

(-0.15, 0.69) 

1.77  

(1.10, 2.86) 

1.09 

(0.69, 1.74) 

0.16  

(-0.56, 0.88) 

1.15 

(1.00, 1.31) 

1.09 

(1.00, 1,20) 

0.65 

(-0.17, 1.47) 

Bivariate regression  

(REML) 

2.17 

(1.41, 3.35) 

1.24 

(0.84, 1.83) 

0.27 

(-0.21, 0.76) 

1.78 

(1.09, 2.91) 

1.09 

(0.69,1.75) 

0.15 

(-0.57, 0.88) 

1.14 

(1.00, 1.32) 

1.09 

(0.99, 1.20) 

0.66 

(-0.20, 1.53) 

Logistic regression  

(ML-prospective) 

2.15 

(1.40, 3.30) 

1.22 

(0.91, 1.63) 

0.25 

(-0.10, 0.61) 

1.72 

(1.13, 2.62) 

1.06 

(0.67, 1.66) 

0.11 

(-0.67, 0.88) 

1.14 

(1.00, 1.29) 

1.09 

(1.01, 1.19) 

0.69 

(-0.25, 1.62) 

Multinomial logistic  

regression (ML-

retrospective) 

2.15 

(1.40, 3.30) 

1.21 

(0.91, 1.63) 

0.25 

(-0.10, 0.61) 

1.87 

(1.16, 3.02) 

1.17 

(0.76, 1.78) 

0.25 

(-0.32, 0.81) 

1.15 

(1.02, 1.30) 

1.09 

(1.01, 1.17) 

0.59 

(-0.03, 1.20) 

Model-free approach  

(ML-unbounded λ) 

2.14 

(1.39, 3.29) 

1.21 

(0.90, 1.63) 

0.25 

(-0.11, 0.61) 

1.64 

(0.99, 2.72) 

1.00 

(0.66, 1.53) 

0.01 

(-0.83, 0.85) 

1.17 

(1.04, 1.33) 

1.08 

(1.00, 1.17) 

0.53 

(-0.03, 1.13) 

Model-free approach  

(ML-bounded λ) 

2.14 

(1.43, 3.29) 

1.21 

(1.08, 1.63) 

0.25 

(0.00, 0.69) 

1.64 

(1.15, 3.05) 

1.00 

(1.00, 1.62) 

0.01 

(0.00, 0.52) 

1.17 

(1.04, 1.33) 

1.08 

(1.01, 1.17) 

0.53 

(0.09, 1.00) 

Bayesian model-free 

approach (prospective) 

2.01 

(0.97, 4.09) 

1.16 

(0.99, 1.77) 

0.24 

(0.00, 0.81) 

1.81 

(1.05, 3.66) 

1.08 

(1.00, 1.74) 

0.16 

(0.00, 0.54) 

1.15 

(1.01, 1.33) 

1.08 

(1.00, 1.21) 

0.63 

(0.03, 0.99) 

Bayesian model-free 

approach (retrospective) 

2.03 

(0.96, 3.96) 

1.16 

(0.99, 1.80) 

0.24 

(0.00, 0.79) 

1.83 

(1.06, 3.60) 

1.09 

(1.00, 1.71) 

0.17 

(0.00, 0.54) 

1.15 

(1.02, 1.34) 

1.08 

(1.00, 1.21) 

0.62 

(0.03; 0.99) 
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Table 4. Results obtained from re-analyzing the data of the two published meta-analyses concerning continuous outcomes. The results obtained 

by using traditional summary data methods as well the various multivariate methods described in the text, are presented. Multivariate fixed 

effects methods are not presented for reasons of brevity. The average differences (β) for homozygous and heterozygous for the mutant allele 

individuals, the estimate of the genetic model of inheritance (λ) and the respective 95% confidence intervals are listed. FE: fixed effects; RE: 

random effects, ML: Maximum Likelihood; REML: Restricted Maximum Likelihood; MM-DL: Method of moments of Dersimonian and 

Laird. 
 

 Meta-analysis 

 

CETP TaqIB polymorphism and serum HDL-C levels  

(mmol/L) 

(Boekholdt et al, 2005) 

ACE I/D polymorphism and carotid artery wall thickness 

(x10-1 mm) 

(Sayed-Tabatabaei et al, 2003) 

Method 

βBB 

(95% C.I.) 

βAB 

(95% C.I.) 

λ 

(95% C.I.) 

βBB 

(95% C.I.) 

βAB 

(95% C.I.) 

λ 

(95% C.I.) 

Univariate methods       

Summary methods  

(FE) 

0.1118 

(0.0980, 0.1255) 

0.0397 

(0.0297, .0497) 
- 

0.1136 

  (0.0351,0.1915) 

0.0672 

 (0.000, 0.133) 
- 

Summary methods  

(RE, MM-DL) 

0.1118 

(0.0980, 0.1255) 

0.0397 

(0.0297, .0497) 
- 

0.2080 

(0.0738, 0.3423) 

0.1015 

(0.0085, 0.1945) 
- 

Summary methods 

 (RE, ML) 

0.1118 

  (0.0980, 0.1255) 

0.0397 

(0.0297, 0.0497) 
- 

0.1905 

(0.0696, 0.3114) 

0.0918 

(0.0072, 0.1763) 
- 

Summary methods  

(RE, REML) 

0.1118 

(0.0980, 0.1255) 

0.0399 

(0.0297, 0.0499) 
- 

0.1968 

(0.0714, 0.3223) 

0.0947 

(0.0077, 0.1816) 
- 

multivariate methods       

Bivariate regression 

(ML) 

0.1107 

(0.0964, 0.1250) 

0.0397 

(0.0288, 0.0506) 

0.36 

(0.26, 0.45) 

0.2001 

(0.0549, 0.3452) 

0.1192 

(0.0059, 0.2325) 

0.60 

(0.22, 0.97) 

Bivariate regression  

(REML) 

0.1112 

(0.0960, 0.1265) 

0.0394 

(0.0281, 0.0508) 

0.35 

(0.25, 0.46) 

0.2099 

(0.0614, 0.3584) 

0.1269 

(0.0114, 0.2425) 

0.60 

(0.24, 0.97) 

Random coefficient model  

(ML) 

0.1151 

(0.1002, 0.1299) 

0.0378 

(0.0236, 0.0521) 

0.33 

(0.20, 0.45) 

0.4704 

(0.2149, 0.7258) 

0.2210 

(0.0733, 0.3687) 

0.47 

(0.22, 0.72) 

Model-free approach  

(ML-unbounded λ) 

0.1103 

(0.0967, 0.1241) 

0.0397 

(0.0298, 0.0497) 

0.36  

(0.28, 0.44) 

0.1999 

(0.0548, 0.3451) 

0.1191 

(0.0056, 0.2325) 

0.60 

(0.22, 0.97) 
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Appendix I 
 

Below, is the proof for the covariance of Equation 3.8. The covariance (and hence 

the correlation) between the two logORs, can be derived by treating the observed 

counts in each 2×3 table representing a single study, as independent Poisson 

variables with E[Yi] = var[Yi] = Yi and the logORs as contrasts among the log 

counts. Then, using the delta-method we can compute the variance by: 

 ( ) ( )
[ ]( )
[ ]( )

2

var var
f E Y

f Y Y
E Y

 ∂
≈      ∂ 

 

Thus: 

( ) ( )
[ ]( )
[ ]( )

( )
2 2

2 2

log log
var log var

1 1 1

=

                     =

                     

i i

i i i

ii

i
i i

i i i i

E Y Y
Y Y Y

YE Y

Y
Y Y

Y Y Y Y

 ∂ ∂ 
≈         ∂∂   

   ∂
= =   ∂   

 

For calculating the covariance ( )1 2cov ,i iy y , we also make use of the following 

identities: 

( ) ( ) ( )
( ) ( )

1) cov , cov , cov ,

cov , cov ,

 

                                          +

aX bY cW dV ac X W ad X V

bc Y W bd Y V

+ + = +

+
 

2) ( ) ( )cov , vari i iY Y Y= , and 

3) ( )cov , 0,
i j

Y Y i j= ∀ ≠  

 

Finally, we have: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1 2 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0

cov , cov log log , log log

cov log , log cov log , log

cov log , log

                   

                       

i i i i i i i i i i

i i i i i i i i

i i i i

y y AB AA AA AB BB AA AA BB

AB AA BB AA AB AA AA BB

AA AB BB AA

= − −  

= −      

−    ( ) ( )
( ) ( ) ( ) ( )

1 0 1 0

1 0 1 0 1 0 1 0

cov log , log

cov log , log cov log , log                   

i i i i

i i i i i i i i

AA AB AA BB

AB AA BB AA AA AB AA BB

+   

= +      

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 0 1 0

1 0 1 0

cov log log , log log

cov log log , log log

                   

                       

i i i i

i i i i

AB AA BB AA

AA AB AA BB

= − −  

+ − −  
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 0

0 1 0 0

1 1 1 0

cov log , log cov log , log

cov log , log cov log , log

cov log , log cov log , log

                   

                       

                       

i i i i

i i i i

i i i i

AB BB AB AA

AA BB AA AA

AA AA AA BB

= −      

− +      

+ −   

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

0 1 0 0

0 0 1 1

0 1

cov log , log cov log , log

cov log , log cov log , log

var log var log

                       

                   

                   

              

i i i i

i i i i

i i

AB AA AB BB

AA AA AA AA

AA AA

 

− +      

= +      

= +      

0 1

1 1
     

i iAA AA
= +

 

 

Appendix II 
 

To calculate the variance of λ̂ , we have to define it as a function  f(β1, β2) = β1/β2 

and expand it using a bivariate 1
st
 order Taylor approximation around the means 

( )1 2
ˆ ˆ,β β  : 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2

1 2 1 2 1 1 2 2

1 2

ˆ ˆ ˆ ˆ, ,
ˆ ˆ ˆ ˆ ˆ, ,

f f
f f

β β β β
β β β β β β β β

β β

∂ ∂
= + − + −

∂ ∂
 

Then, using the delta method we will have: 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1 2

1 2 1 2

1 1 2 2

1 2

1 2 1 2

1 1 2 2

1 2

ˆvar , var ,

ˆ ˆ ˆ ˆ, ,
ˆ ˆvar

ˆ ˆ ˆ ˆ, ,
ˆ ˆvar var

                          =

                          =

           

f f

f f

f f

β β β β

β β β β
β β β β

β β

β β β β
β β β β

β β

 ≈    

 ∂ ∂
 − + −
 ∂ ∂
 

   ∂ ∂
   − + −
   ∂ ∂
   

( ) ( ) ( ) ( )1 2 1 2

1 1 2 2

1 2

ˆ ˆ ˆ ˆ, ,
ˆ ˆ2cov ,                    

f fβ β β β
β β β β

β β

 ∂ ∂
 + − −
 ∂ ∂
 

 

Thus: 
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( )
( )

( )
( )

( )

( )
( ) ( )

2 2

1 2 1 2

1 2 1 2

1 2

1 2 1 2

1 2

1 2

ˆ ˆ ˆ ˆ, ,
var , var var

ˆ ˆ ˆ ˆ, ,
2cov ,                          

f f
f

f f

β β β β
β β β β

β β

β β β β
β β

β β

   ∂ ∂
   ≈ +      ∂ ∂
   

∂ ∂
+
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and after replacing the population values with the sample ones, the variance will 

be: 

 ( ) ( ) ( ) ( ) ( )
2

1
1 1 1

2 1 2 1 22 4 3 3

2 2 2 2

ˆvar ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆvar var cov , cov ,

ˆ ˆ ˆ ˆ

β β β β
λ β β β β β

β β β β
= + − −  

 

( ) ( ) ( )
2

1 2 1
1

1 22 4 3

2 2 2

ˆ ˆ ˆvar var ˆ
ˆ ˆ2cov ,

ˆ ˆ ˆ
           

β β β β
β β

β β β
= + −     

It can easily be shown that the test for d is a special case of the so called Wald test 

for “linear hypotheses” or linear restrictions (Judge et al, 1985). Similarly, the test 

for λ is an extension suitable for the so-called test for “non-linear hypotheses” (or 

non-linear restrictions). In any case, if we define a function R returning a q ×1 

vector r given by R(b) = r, then, the variance of R(b) - r will be equal to GVG′   
 ( )var R b r =GVG′−          

where G, is the derivative matrix of R(b) with respect to b. From the estimated 

model we will have: 

  
1

2

ˆ

ˆ
b

β

β

 
=  
  

 and  
( ) ( )
( ) ( )

1 1 2

1 2 2

ˆ ˆ ˆvar cov ,

ˆ ˆ ˆcov , var
V

β β β

β β β

 
 =
 
  

 

In case of d, if we define: ( ) 1 2
ˆ ˆR b β β= − , with r=0, we will have: 

 

( ) ( ) ( )

( ) ( )
[ ]

1 2

1 2

1 2

ˆ ˆ

ˆ ˆ

1 1
ˆ ˆ

R b R b R b
G

b

   =

β β

β β

β β

 ∂ ∂ ∂
= =  

∂ ∂ ∂ 

 ∂ ∂
 = − −
 ∂ ∂
 

 with:
1

1
G

 
′ =  − 

 

Thus: 

 [ ]
( ) ( )
( ) ( )

1 1 2

1 2 2

ˆ ˆ ˆvar cov , 1
1 1

1ˆ ˆ ˆcov , var
GVG

β β β

β β β

 
  ′ = −    −   
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( ) ( ) ( ) ( )1 1 2 1 2 2

1ˆ ˆ ˆ ˆ ˆ ˆvar cov , cov , var
1

          β β β β β β
  = − −    − 

 

( ) ( ) ( )1 2 1 2
ˆ ˆ ˆ ˆvar var 2cov ,          β β β β= + −      

In the second case (λ), if we define a function R such as: 

 ( ) 1

2

ˆ

ˆ
R b

β
β

= , with r=0, 

then, the derivative matrix will be: 

 

( ) ( ) ( )
1 2
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2 2 1

2

1 2 2 2
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∂ ∂          = −  ∂ ∂   
 

 with:
2

1

2

2

1

ˆ

ˆ

ˆ

G
β

β
β

 
 
 ′ =
 
− 
  

 

and finally, we will have:  

( ) ( )
( ) ( )

1 1 2 21

2

2 2 11 2 2
2

2

1
ˆ ˆ ˆ ˆvar cov ,ˆ1

ˆ ˆ ˆˆ ˆ ˆcov , var
ˆ

GVG
β β β ββ

β β ββ β β
β

 
      ′ = −        −  
  

 

( ) ( )

( ) ( )

1
1

1 2 2

2 21

2

2 2 1 2
1

2 2

2 2

ˆvar ˆ
ˆ ˆcov ,

ˆ ˆˆ1

ˆ ˆ ˆ ˆcov , ˆ
ˆvar

ˆ ˆ

          

β β
β β

β ββ
β β β β β

β
β β

 
 −
  

= −   
  
 −
  

 

( ) ( ) ( ) ( )1 1 2
1 1 1

1 2 22 2 2

2 2 2 2 2 2

ˆ ˆ ˆvar cov ,ˆ ˆ ˆ1 ˆ ˆ ˆcov , var
ˆ ˆ ˆ ˆ ˆ ˆ

          
β β ββ β β

β β β
β β β β β β

   
   

= − − −   
      
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2

1
1 1 1

2 1 2 1 22 4 3 3

2 2 2 2

ˆvar ˆ ˆ ˆ
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β β β β
β β β β β

β β β β
= + − −  

( ) ( ) ( )
2

1 2 1
1

1 22 4 3

2 2 2
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β β β β
β β
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