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DNA methylation is an important component of epigenetic modifications that influences the transcriptional machinery
and is aberrant in many human diseases. Several methods have been developed to map DNA methylation for either
limited regions or genome-wide. In particular, antibodies specific for methylated CpG have been successfully applied
in genome-wide studies. However, despite the relevance of the obtained results, the interpretation of antibody
enrichment is not trivial. Of greatest importance, the coupling of antibody-enriched methylated fragments with
microarrays generates DNA methylation estimates that are not linearly related to the true methylation level. Here,
we present an experimental and analytical methodology, MEDME (modeling experimental data with MeDIP enrichment),
to obtain enhanced estimates that better describe the true values of DNA methylation level throughout the genome. We
propose an experimental scenario for evaluating the true relationship in a high-throughput setting and a model-based
analysis to predict the absolute and relative DNA methylation levels. We successfully applied this model to evaluate
DNA methylation status of normal human melanocytes compared to a melanoma cell strain. Despite the low
resolution typical of methods based on immunoprecipitation, we show that model-derived estimates of DNA methylation
provide relatively high correlation with measured absolute and relative levels, as validated by bisulfite genomic DNA
sequencing. Importantly, the model-derived DNA methylation estimates simplify the interpretation of the results
both at single-loci and at chromosome-wide levels.

[Supplemental material is available online at www.genome.org. The microarray data from this study have been
submitted to Gene Expression Omnibus (GEO) under accession no. GSE12096. The MEDME R library, installation
instructions, and a PDF tutorial are available online at http://espresso.med.yale.edu/medme/.]

Epigenetics can be defined as the study of changes in the regu-
lation of gene activity and expression that are not driven by gene
sequence information. Epigenetic alterations are now well recog-
nized as highly relevant to many common human diseases (Es-
teller 2007; Jirtle and Skinner 2007). For this reason, a major
effort is dedicated to map epigenetic modifications throughout
the human genome.

The two main recognized processes in epigenetics are DNA-
packaging and DNA methylation. In the former, histones are
primarily responsible for the packaging of the DNA, which in
turn determines local accessibility to the transcriptional machin-
ery and subsequent gene activity. In particular, many post-
translational modifications of histones control this packaging
(Goldberg et al. 2007). In the second process, cytosines in CpG
dinucleotides are modified by the addition of a methyl group.

These subtle alterations are exceedingly influential in the control
of gene transcription (Goldberg et al. 2007).

DNA packaging and methylation are intricately connected
and highly interdependent (Goldberg et al. 2007). Nonetheless, a
complete evaluation of the former remains a challenge, as it re-
quires the evaluation of an extensive set of possible post-
translational histone modifications under a variety of condi-
tions. On the other hand, DNA methylation is extremely attrac-
tive for biomarker discovery due to its stability, as well as the
promise of inexpensive and simple diagnostic tests for its detec-
tion (Esteller 2003).

Thus far, several approaches are available to determine DNA
methylation level. Although bisulfite genomic DNA sequencing
is the gold standard for identifying the methylation status of
specific CpGs, it is not yet well suited for high-throughput analy-
sis (Esteller 2003). A recent publication reported bisulfite DNA
sequencing of the Arabidopsis genome (Cokus et al. 2008); how-
ever, the size of the sequenced genome (120 Mb) is far smaller
than those of the mouse and human. Other techniques based on
restriction enzymes, proteins that bind methylated CpG in vivo,
or antibodies are currently used for genome-wide quantitative
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analysis. In the first, a cocktail of methylation-sensitive and
-insensitive restriction enzymes is utilized to digest the DNA
(Schumacher et al. 2006). The advantage of this technique is that
the enrichment of methylated/unmethylated sequences is not
dependent on the density of CpG pairs. Nonetheless, the restric-
tion enzymes are only capable of recognizing a limited subset of
CpG sites, even when combined in a cocktail. In the second
technique, methylated DNA binding proteins are used to enrich
fragments of DNA (Ballestar et al. 2003). In the third approach,
antibodies directed against methylated CpGs (mCpG) are used to
enrich DNA in methylated sequences (methylated DNA immuno
precipitation, or MeDIP) (Weber et al. 2005). The primary advan-
tage of the binding protein and antibody-based techniques is the
independence of the enrichment from the sequence surrounding
the CpG sites, that is, regardless of whether the CpGs fall within
specific restriction endonuclease recognition sequences, they will
be recognized. The disadvantage is the incursion of noise in re-
gions with a low CpG density. For either methodology, the re-
sulting sets of enriched sequences are either directly sequenced or
hybridized to oligonucleotide microarrays.

MeDIP-based studies have shown that antibody enrichment
allows a quantitative determination of DNA methylation level
and is correlated with the amount of RNA polymerase II binding,
indicating either transcriptional activity or repression (Weber et
al. 2005, 2007). However, the analysis of DNA methylation levels
estimated by MeDIP enrichment suffers from several pitfalls that
have not been adequately addressed.

Of greatest concern is the incorrect assumption in current
MeDIP analysis which forces a linear relationship between the
MeDIP enrichment estimates and the true methylation levels.
Second, the locus-specific validations reported in Weber et al.
(2005) clearly indicate that the prediction of DNA methylation
level as a function of the antibody enrichment is nontrivial and
is exceedingly dependent on the overall CpG content of the cor-
responding region. Third, MeDIP enrichment is determined as a
log-ratio (logR) of the enriched and input fractions. This mea-
sure, which differs from the logR associated with gene expres-
sion, lacks an intuitive interpretation, as its dynamic range is
arbitrarily assigned to hypo- and hyper-methylated regions. Dis-
regarding these relevant observations severely affects the estima-
tion of both absolute and differential DNA methylation levels.
Similar fundamental issues have previously been investigated in
high-throughput gene-expression studies, resulting in the devel-
opment of methodologies for data analysis that more accurately
estimate the level of expression and the subsequent identifica-
tion of differentially expressed genes (Allison et al. 2006).

Here we show that MeDIP enrichment is a nonlinear func-
tion of the true methylation level and propose the combination
of an experimental and analytical methodology, MEDME (mod-
eling experimental data with MeDIP enrichment), to improve the
evaluation and interpretation of MeDIP derived DNA methyla-
tion estimates.

Results

Modeling the relationship between MeDIP enrichment
and true DNA-methylation level

Previously, studies have assumed that the MeDIP assay generates
an antibody enrichment, which increases linearly with the num-
ber of methylated CpGs (mCpGs). However, there is no conclu-

sive evidence for this assumption, as it was based on a limited set
of genomic loci, and disregards the effect of microarray hybrid-
ization (Weber et al. 2005). In order to definitively estimate this
relationship, we designed a high-throughput experiment where
the true methylation level is known.

In brief, we generated fully methylated DNA by treating un-
methylated DNA with CpG methyltransferase (for details and
validation, see Methods). In the resulting DNA sample, in which
every CpG is methylated, MeDIP enrichment is expected to be a
direct function of the density of CpGs on the genome. In order to
determine the relationship between the estimated and true
methylation level, probe-level MeDIP enrichment was then com-
pared to genomic CpG content.

After applying the MeDIP assay to the fully methylated
DNA, it was hybridized to tiling arrays containing probes for the
entire X chromosome. The input DNA, not enriched with MeDIP,
was labeled and hybridized to the same array as the control.
Subsequently, the log ratio of MeDIP to input (logR) is accurately
interpreted as a measure of enrichment. Typically, scoring of til-
ing array probes in ChIP-chip experiments is based on smoothing
the data by substituting the probe-level measure with the average
or weighted-average over a set of adjacent probes (Irizarry et al.
2008). Similarly, we defined the MeDIP enrichment for each
probe i as the weighted-average of probes in a 1 kbp window
centered at the probe i (for details, see Methods). There were two
important considerations in this definition. First, the size of the
window directly affects the determination of each probe’s CpG
count (i.e., the actual methylation level). Secondly, the distance
between CpGs can alter the probe intensity. As such, we decided
to underweight the signal from probes far from the one under
consideration. Ultimately, we paired linear weighting with the
1 kbp window size to determine the number of CpGs for each
probe (CpGw; for details, see Methods). In the experimental data
set, CpGw and mCpGw are equivalent, as every CpG is expected,
to be methylated.

We performed two independent microarray hybridizations
with the experimental data. In the first, the genuine relationship
between the enrichment level and the effective DNA methyla-
tion status was established. Figure 1A displays a density scatter-
plot of the first hybridization, showing the probe-level MeDIP
enrichment versus the log2 mCpGw. A clear sigmoidal trend can
be observed by evaluating the median values within a series of
bins over the entire range of methylation. As such we approxi-
mated this trend with a logistic model. The residuals for the
model based on the median values were symmetrically distribut-
ed around 0 (data not shown), and the goodness of fit confirmed
(deviance �2 P-value = 5 � 10�58). The scattering of observations
around the logistic curve, visible in Figure 1A, is attributed to
noise resulting from the combination of antibody enrichment
and microarray background. As discussed in Weber et al. (2007),
the mCpG-specific antibody is expected to show less stable bind-
ing of target sequences with low mCpG density. Thus, we antic-
ipated noisier enrichment measurements in regions with low
mCpG density and a considerable decrease in scattering as the
level of methylation increases. Two plateaus in the logistic func-
tion are evident in Figure 1A: the first corresponds to a log2 meth-
ylation level less than one and is attributed to background noise;
the second is associated with levels higher than five and is due to
antibody saturation. The accurate detection of less than two
mCpGw within a 1 kbp window is not expected, as this is ap-
proximately equivalent to finding four methylated CpGs in a
similar size region. Similarly, precisely estimating more than 32
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mCpGw is equivalent to clearly delineating over 64 mCpGs
within a 1 kbp region. In the experimental data, ∼15% of the
probes have less than two mCpGw in a 1 kbp window and 5.5%
have more than 16 mCpGw. Based on the data from the first
hybridization, we implemented a parametric model that allows
us to predict the number of mCpGws as a function of the MeDIP
enrichment. This value is termed the absolute methylation score
(AMS) (for details, see Methods).

Determination of model-derived absolute and relative
DNA methylation estimates

The data obtained from the second hybridization was employed
to test the consistency of the model on an independent experi-
ment. As such, the model parameters obtained from the data in
the first hybridization were subsequently used to predict the
probe-level absolute methylation (AMS) based on the MeDIP en-
richment in the second hybridization. The AMS was compared to
the expected methylation level (mCpGw) across the entire X
chromosome and is reported in Figure 1B. The correlation be-
tween probe-level AMS and mCpGw is quite good (Pearson cor-
relation coefficient = 0.60), while the correlation with the chro-
mosome-wide data smoothed by cubic splines is quite impressive
(Pearson correlation coefficient = 0.93). This result indicates that
the model can successfully estimate the number of mCpGs and
confirms that sets of adjacent probes are more informative than
individual ones (Irizarry et al. 2008).

When evaluating the methylation status resulting from bi-
sulfite genomic DNA sequencing, one usually considers both the
absolute and relative number of mCpGs as both provide relevant
and complementary information. It is possible to derive a relative
measure of methylation by normalizing AMS with respect to the
total number of CpGs represented by CpGw. This allows us to
obtain a relative measure of the methylation that is independent
of the CpG density of the corresponding region. This measure is
termed the relative methylation score (RMS) (for details, see
Methods). We show that the RMS is especially useful when com-
paring regions with different CpG densities. In the experimental
data set, where every single CpG is expected to be methylated,
the RMS is expected to be 1. The log2 RMS is in fact symmetrically

distributed around 0 (data not shown), as is the profile over chro-
mosome X determined by cubic spline smoothing (Fig. 1B).

These results reinforce the aforementioned goodness-of-fit
of the model. Subsequently, we evaluated its application to a real
data set, using the same microarray platform and protocol.

Application of the methodology to a real-life data set

In order to validate the methodology and to show the envisaged
advantages, it was applied to a real-life data set. MeDIP was used
to determine and compare the DNA methylation status of two
cell types: normal newborn melanocytes (NBMEL) and a mela-
noma cell strain (YUSAC2) (two hybridizations each). For the
same samples, genome-wide expression data are also available
with four replicates each, using NimbleGen expression arrays.
The weighted-average of MeDIP logR was determined, and the
model applied to determine both the AMS and RMS.

Promoter regions are known to be hypo-methylated in com-
parison with other genomic regions and relatively hyper-
methylated in tumor compared to healthy samples (Esteller
2007). Genomic regions differ greatly in terms of CpG content.
Hence, to address this bias it is convenient to normalize the
methylation level. The RMS is well suited for this purpose, and
clearly shows that promoters are generally hypo-methylated in
comparison to the other genomic regions (for their definition,
see Methods) (Fig. 2A,B). Moreover, it confirms that promoters
are generally hyper-methylated in melanoma (Fig. 2C). Notably,
when evaluating the MeDIP enrichment it is not possible to dis-
cern any promoter hypo-methylation (Fig. 2D,E). Only an in-
crease in the melanoma promoter enrichment can be observed,
without a measure of its magnitude (Fig. 2F).

Promoter DNA methylation is expected to determine tran-
scriptional repression of the downstream gene. Indeed, the aver-
age RMS of promoters shows a striking negative correlation with
the expression of the downstream genes (for an example of the
1035 transcripts available on the chromosome X for the NBMEL
sample, see Fig. 3). Of note, when repeating the same analysis
with the average MeDIP logR of the same promoters, the asso-
ciation between DNA methylation and gene expression is decid-
edly noisier (see small box in Fig. 3).

Figure 1. MeDIP logR is a logistic function of the log-methylation level. (A) The logistic model (blue line) describes the association between MeDIP
log2R and the log2 observed methylation level. Using fully methylated genomic DNA, we determined the methylation level based on the weighted count
of mCpG in a 1 kb window centered at each probe (mCpGw, using chromosome X tiling array). The red dots identify the median MeDIP logR within
each bin across the entire mCpGw dynamic range. (B) The absolute methylation score (AMS) and expected DNA methylation level across the X
chromosome. The model parameters estimated from the first hybridization have been applied to the MeDIP logR derived from the second hybridization
(black line) to determine the log2(AMS) (red line). Log2(mCpGw) corresponds to the expected methylation level (blue line). The log relative methylation
score (RMS) is drawn with the gold line. All the estimates are chromosome-wide smoothed by means of cubic splines.
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Gene-level validation

The absolute and relative methylation levels predicted by our
methodology have been compared with the absolute and relative
methylation levels determined by bisulfite genomic DNA se-
quencing for 14 loci on both NBMEL and YUSAC2 samples. This
comparison is complicated by two issues. First, the resolution of

bisulfite genomic DNA sequencing is significantly higher than
MeDIP, where the resolution is limited by the size of the frag-
ments required for immunoprecipitation. This results in a de-
crease in accuracy of methylation measurement, especially in
regions where the methylation level is highly variable. Second,
the AMS is expected to be linearly related to the real absolute
number of mCpG; however, the absolute levels are not expected
to be comparable. In fact, the size of the amplicons for bisulfite
sequencing is significantly smaller than the 1 kb region used to
determine the AMS. Moreover, AMS results from a weighted av-
erage of the methylated CpGs in a 1-kbp region as opposed to the
nonweighted estimate as measured in an exact loci.

Despite these complications, the AMS and RMS exhibit a
relatively high correlation with the real absolute and relative
number of CpGs (0.75 and 0.75, respectively, Fig. 4A,B; see
Supplementary Table 2 for the actual numbers). The probe-level
data available in the region around the amplicons is also reported
for two genes (ARMCX2 and ZIC3; Figure 4C,D) in agreement
with bisulfite genomic DNA sequencing for five clones (Fig. 4E,F).
For example, regarding ZIC3 relative DNA methylation level,
10% (NBMEL) and 75% (YUSAC2) 100*mCpG/CpG are predicted
in 1 kb, and 0% (NBMEL) and 67% (YUSAC2) are found in the
221-bp sequenced amplicon.

In order to verify that the model is applicable to a microar-
ray platform with a different design, the same samples were sub-
jected to MeDIP and the DNA was hybridized to a genome-wide
promoter tiling array manufactured by NimbleGen. Despite the
completely different design of the two microarray platforms, the
results were highly consistent (see as an example, ARMCX2 in
Supplemental Fig. 3).

Figure 3. Association of average NBMEL promoter RMS with gene ex-
pression level. For each RMS bin, the gene expression box-and-whisker
plot is reported (the box identifying the first, second, and third quartile of
the log2 average gene expression). The line represents the trend over the
median values. (Inset) Shows the same analysis with the MeDIP logR on
the X-axis.

Figure 2. Probe-level methylation in the different genomic regions. This figure shows the distribution of probe-level RMS in the different genomic
regions for NBMEL (A) and YUSAC2 (B). Comparison of promoter RMS for the two samples is reported in C. Distribution of MeDIP logR in the different
genomic regions for NBMEL (D) and YUSAC2 (E). Comparison of promoter MeDIP logR for the two samples is shown in F. All the distributions have been
normalized by the number of probes in each genomic region. Promoter regions identify probes within 1 kb upstream of the TSS; intergenic Upstream
identify probes within 1–4 kb upstream of the TSS.
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Discussion

MeDIP is currently one of the best methods available for genome-
wide enrichment of DNA methylated sequences (Weber et al.
2005, 2007). Despite its relatively poor resolution in comparison
to bisulfite DNA sequencing, the precipitation with methylated
cytosine specific-antibody is one of the few techniques that
allows unbiased evaluation of DNA methylation genome-wide.
Despite its popularity, we found pitfalls in the analysis of MeDIP
derived data that required further investigation.

DNA methylation measure based on MeDIP enrichment
eludes a clear interpretation, as one is not able to easily correlate
it with the actual methylation level. This limitation was evident
in the original publication of the developers of the MeDIP tech-
nique (Weber et al. 2005). In fact, despite the successful valida-
tion of their results, the antibody enrichment data were still not
easily associated with the absolute and relative methylation mea-
sures provided by bisulfite genomic DNA sequencing (Weber et
al. 2005). We have shown that the reason for this difficulty is
directly related to the nonlinear relationship between antibody
enrichment data and DNA methylation level. According to the
original publication (Weber et al. 2005) this relationship is ex-
pected to be linear. However, as illustrated in Figure 1A, it is
successfully modeled as a logistic function of the log of the num-
ber of mCpG.

Based on this model, our methodology provides estimates of
both absolute and relative methylation levels. We indicate how

these two estimates can be useful in the interpretation of the data
and in the correlation between promoter methylation and gene
expression patterns. Indeed, we recommend that both the abso-
lute and relative methylation estimates be considered for in-
depth analysis (as one would do after bisulfite DNA sequencing).
In particular, we show that the RMS is effective in comparing
genomic regions with different CpG density and in describing
the association of the promoter methylation with transcriptional
repression. Furthermore, the analysis in the context of cancer
biology confirmed the expected DNA hyper-methylation of
melanoma promoter regions with respect to normal cells. All the
reported findings were more clearly captured by the model de-
rived methylation estimates rather than with the MeDIP enrich-
ment.

There is currently increasing interest in using next-
generation sequencing-based approaches for epigenomic profil-
ing. In particular, MeDIP may be coupled with these sequencing
methods. New experiments will need to be performed to inves-
tigate whether the relationship between antibody enrichment
and methylation level that we described here remains valid. If so,
we expect this method to be helpful in the interpretation of
antibody enrichment measurements derived by next-generation
sequencing methods.

In conclusion, we have shown that it is possible to deter-
mine the true relationship between the antibody enrichment
and methylation level. Our methodology facilitates the interpre-
tation of the results by transforming the antibody enrichment

Figure 4. Validation with bisulfite genomic DNA sequencing. Promoter methylation status in 14 genes are determined by bisulfite sequencing and
compared with the AMS (A, Y-axis) and RMS (B, Y-axis) on both NBMEL and YUSAC2 samples. AMS and RMS refer here to the average for the probes
within the amplicon used for bisulfite genomic DNA sequencing. Weighted MeDIP logR (MeDIPw), absolute (AMS) and relative (RMS) measurement of
methylation level in ARMCX2 promoter (C) and ZIC3 promoter (D) are shown. Gray lines indicate the regions analyzed by bisulfite genomic DNA
sequencing. CpGr indicates the CpG ratio for each probe (for details, see Methods). Bisulfite sequencing of differentially methylated ARMCX2 promoter
(E) and ZIC3 promoter (F) are shown. Each line represents the sequence of a single clone. CpGs are represented as open dots (if unmethylated) or filled
dots (if methylated). The percentage of CpG methylation is indicated for each amplicon.

Pelizzola et al.

1656 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on November 11, 2008 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


data into a comprehensible absolute and/or relative range. Addi-
tionally, we have provided experimental evidence that our
methodology can be applied to a real-life data set derived using
the same protocol and array platform. Finally, we have shown
that the methodology is applicable to two microarray platforms
with different designs.

Methods

Cells
Normal human melanocytes were cultured from newborn fore-
skins (NBMEL) in basal medium (OptiMEM supplemented
with 5% fetal calf serum and penicillin/streptomycin) enriched
with the following ingredients required for proliferation: TPA (20
nM, 12-O-tetradecanoyl phorbol-13-acetate), IBMX (0.1 mM,
3-isobutyl-1-methyl xanthin), cholera toxin (2.5 nM), vanadate
(1 µm) and dbcAMP (0.1 mM, N6, 2�-O-dibutyryladenosine 3:5-
cyclic monophosphate), termed TICVA (Cheng et al. 2006).
Melanoma cells (YUSAC2) were established from metastatic
melanoma and were grown in the basal medium. The samples
were collected according to Health Insurance Portability and Ac-
countability Act (HIPAA) regulations with Human Investigative
Committee protocol. Genomic DNA was extracted using DNeasy
Blood & Tissue Kit (QIAGEN) according to the manufacturer’s
instructions.

Derivation of fully methylated DNA
A whole-genome amplification was applied for producing an un-
methylated copy of genomic DNA of normal human melano-
cytes (REPLI-g Mini Kit, QIAGEN). The amplified unmethylated
DNA was treated with CpG methyltransferase (M.SssI, NEB) to
add methyl-groups to all cytosine residues within CpG dinucleo-
tides, in order to obtain fully methylated genomic DNA. This has
been verified by bisulfite DNA sequencing for eight genomic loci.
We confirmed 0% mCpG in unmethylated genomic DNA and
90%–100% mCpG in fully methylated DNA (see Supplementary
Table 1).

Methylated DNA immunoprecipitation
MeDIP was adapted from a previous study (Weber et al. 2005).
Genomic DNA was sheared by sonication into 300–1200-bp frag-
ments, and methylated DNA was immunoprecipitated by incu-
bating 10 µg of sonicated genomic DNA for 12 h at 4°C with
20 µg of mouse monoclonal antibody against 5-methylcytidine
(Eurogentec). 50 µL of Dynabeads with M-280 sheep antibodies
to mouse IgG (Dynal Biotech) were added to the mix and incu-
bated at 4°C for 2 h. Elution was performed two times in 200 µL
of TE containing 1.0% and 0.67% SDS, respectively, and meth-
ylated DNA was then recovered by standard proteinase K/phenol-
chloroform procedure. DNA was also recovered from the un-
bound fractions. Real-time PCR was used to verify the amount of
enrichment for methylated HOXA5 promoter and unmethylated
ACTB promoter as well as H19 mono-allelic methylated imprint-
ing control region (H19ICR) (Tremblay et al. 1997) in each
DNA fraction. Three biological replicates for the enrichment of
each fraction showed high reproducibility employing DNA from
NBMEL (see Supplemental Fig. 1) and melanoma cells (data not
shown). The remaining DNA from eluted fractions and sonicated
input DNA were differentially labeled using fluorescent dyes
(Cy3/Cy5) and competitively hybridized to the genomic DNA
arrays. Primer sequences for real-time PCR are given in Supple-
mentary Table 3.

Design, probe annotation, and data processing of the array
for detection of chromosome-wide DNA methylation

Array design
The chromosome X tiling array is a custom microarray manufac-
tured by NimbleGen based on the Hg17 release of UCSC human
genome. It contains ∼380,000 probes with an average length of
60 nt spanning the whole chromosome each 110 bp.

Data processing
Within (Loess based) and between (Quantile based) normaliza-
tion methods available in the Limma Bioconductor/R library
(Ihaka and Gentleman 1996; Smyth and Speed 2003; Gentleman
et al. 2004; Smyth 2005) as standard methods for two-channel
microarrays are applied.

Array probe annotation
The position of the center of each probe on the array has been
compared to the Hg17 genomic positions of known RefSeqs
downloaded from UCSC human genome annotations. Seven dif-
ferent genomic regions are considered: intergenic, intergenic-
upstream, promoter, exon, intron, 5� UTR, and 3� UTR. Inter-
genic regions are defined as more than 4 kb upstream of the TSS
or downstream from the end of the transcript for each RefSeq ID.
Intergenic-upstream regions are defined as less than 4 kb but
more than 1 kb upstream of the TSS. Promoter regions are de-
fined as within 1 kb upstream of the TSS. Multiple annotation
of a probe in different regions and/or association with different
RefSeq IDs is allowed.

Design, probe annotation, and data processing of the arrays
for detection of genome-wide gene expression
NimbleGen genome-wide human expression arrays (2005-04-
20_Human_60mer_1in2) were used. A total of ∼400,000 probes
for ∼30,000 transcripts and ∼20,000 known genes are represented
on this array. NimbleGen provides design and probe annotation.

Within (Loess based) and between (Quantile based) normal-
ization methods available in the Limma Bioconductor/R library
as standard methods for two-channel microarrays are applied
(Ihaka and Gentleman 1996; Smyth and Speed 2003; Gentleman
et al. 2004; Smyth 2005).

MEDME algorithm
The following sections illustrate the details of the Modeling
Experimental Data with MeDIP Enrichment algorithm
(MEDME). The MEDME R library is also available online at http://
espresso.med.yale.edu/medme/. A PDF vignette is part of the
package, and illustrates the analysis on a subset of the data pre-
sented in this manuscript.

Weighting of MeDIP enrichment
For each probe i, the weighted average of antibody enrichment of
probes within a 1 kbp window centered at the center of i is de-
termined (MeDIPw). The weights, which are a linear function of
the distance of the probes from the center of i, equal one at the
center of i and zero at 500 bp upstream or downstream. The
window size was set at 1 kbp after careful consideration of the
fact that a weighted count is applied and that the range of the
fragment size is ∼300 bp–1200 bp (see next paragraph for further
discussion).
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Expected methylation level
The expected methylation level of the fully methylated sample is
directly related to the number of CpGs in the genome. To deter-
mine the total number of CpG associated with each probe it is
necessary to choose a window size. At the same time, in order to
take into account the effect of the relative position of CpG within
the considered window, it can be useful to adopt a weighting
scheme.

To determine the window size we evaluated the association
of MeDIP enrichment and the number of CpG in windows of
sizes ranging from 300 bp to 2000 bp. To determine the effect of
the CpG distance from the probe, we determined weighted
counts of the CpG for each window implementing different
weighting functions (none, linear, exponential, or logarithmic,
with weight one at the center of each probe and zero at window
size/2-bp upstream or downstream). The results indicate that the
MeDIP logR can be modeled as a logistic function of the meth-
ylation level (determined as the log2 of the total number of CpG)
and that the adoption of a CpG weighted-count (CpGw) deter-
mines a slightly decreased scattering especially with window size
greater than 800 bp (data not shown). Based on these results a
window of size 1 kbp was chosen and a linear weighting count of
CpG. These conditions provide both adequate model fit and co-
herence with the expected size of the fragments subjected to
immunoprecipitation (data not shown). In the case of the fully
methylated sample, CpGw and mCpGw are considered equiva-
lent. The choice of the optimal window size could be dependent
on the MeDIP protocol and microarray platform and design. For
this purpose, the available MEDME software allows the setting of
this parameter as well as of the weighting function (none, linear,
exponential, or logarithmic).

Determination of model parameters
The probe-level weighted MeDIP enrichment (MeDIPw) is asso-
ciated with the log2(mCpGw) count of mCpG, and a logistic
model is fit based on the set of median enrichments estimated
within bins spanning the range of methylation levels. Before the
determination of median value for each bin, the microarray con-
trol probes and probes with log2(mCpGw) less than zero are dis-
carded (∼9% of the array). The remaining probes are grouped
according to the log2(mCpGw) in bins, ranging from zero to six,
each of size 0.1. The median MeDIPw enrichment is then deter-
mined for the probes within each bin. A four-parameter logistic-
model is fit on the set of MeDIPw medians using the drc R library
(version 1.3), originally derived to provide models for sigmoidal
dose response curves:

median�MeDIPw�bini
= f�mCpGwbini

,�a,b,c,d�� + �

= b +
c − b

1 + expa∗(log�mCpGwbini� − logd�
+ �

Generation of estimates of the absolute and relative
DNA methylation level
Once the model parameters {a,b,c,d} are estimated, it is possible
to estimate the probe-level absolute methylation level AMSi (i.e.,
the weighted count of mCpG in a 1 kbp window for probe i)
based on the weighted MeDIP enrichment, MeDIPwi, via:

log2�AMSi� = f�MeDIPwi,�a,b,c,d�� = �da∗�c − MeDIPwi�

MeDIPwi − b �1�a

AMSi less than 1 and greater than 32 are forced to 1 and 32,
respectively based on the model plateaus visible in Figure 1A.
These represent background noise and saturation of the micro-

array derived antibody enrichment, respectively. These values
may be dependent on the MeDIP protocol and microarray plat-
form and design. Therefore, the MEDME software allows the set-
ting of these values based on the fitting of the model and on the
choice of the window-size parameter.

The relative measure of DNA methylation (RMS) is deter-
mined for each probe i by considering the set of probes within a
1 kbp window centered at the midpoint of i. The RMS for probe
i is obtained by dividing the average AMS in this set by the cor-
responding average number of CpGw.

See Supplemental Figure 2 for a summary of the methodology.

Bisulfite genomic DNA sequencing
Bisulfite genomic sequencing was performed as previously de-
scribed in Jacobsen et al. (2000). The regions sequenced and the
primers used are listed in Supplementary Table 3.

Determination of CpG ratio (CpGr)
The probe-level CpGr reported in Figure 4C,D was determined
according to Weber et al. (2007). Briefly, the GC content and
ratio of observed versus expected CpG dinucleotides was deter-
mined for each probe as the (no. of CpGs � 500 bp)/(no. of
Cs � no. of Gs).

Acknowledgments
We thank the Cell Culture Core facility of the Yale Skin Disease
Research Core Center supported by NIAMS grant 5 P30 AR
041942-12 (Dr. Robert Tigelaar, PI) for providing normal human
melanocytes and melanoma cells; Chris Hart for assisting in the
design of the X chromosome tiling array; Karen Lostritto, David
Elson, and the three reviewers for constructive criticism and
helpful suggestions. This work was supported by the Yale Spore
in Skin Cancer funded by the National Cancer Institute grant
number 1 P50 CA121974 (Halaban, PI). M.K. was supported by
the National Library of Medicine grant K22LM009255, and
A.M.M. by the National Cancer Institute grant K22CA123146-2.

References

Allison, D.B., Cui, X., Page, G.P., and Sabripour, M. 2006. Microarray
data analysis: From disarray to consolidation and consensus. Nat.
Rev. Genet. 7: 55–65.

Ballestar, E., Paz, M.F., Valle, L., Wei, S., Fraga, M.F., Espada, J.,
Cigudosa, J.C., Huang, T.H., and Esteller, M. 2003. Methyl-CpG
binding proteins identify novel sites of epigenetic inactivation in
human cancer. EMBO J. 22: 6335–6345.

Cheng, E., Trombetta, E.S., Kovacs, D., Beech, R.D., Ariyan, S.,
Reyes-Mugica, M., McNiff, J.M., Narayan, D., Kluger, H.M., Picardo,
M., et al. 2006. Rab33A: Characterization, expression, and
suppression by epigenetic modification. J. Invest. Dermatol.
126: 2257–2271.

Cokus, S.J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild,
C.D., Pradhan, S., Nelson, S.F., Pellegrini, M., and Jacobsen, S.E.
2008. Shotgun bisulphite sequencing of the Arabidopsis genome
reveals DNA methylation patterning. Nature 452: 215–219.

Esteller, M. 2003. Relevance of DNA methylation in the management
of cancer. Lancet Oncol. 4: 351–358.

Esteller, M. 2007. Cancer epigenomics: DNA methylomes and
histone-modification maps. Nat. Rev. Genet. 8: 286–298.

Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M.,
Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., et al. 2004.
Bioconductor: Open software development for computational
biology and bioinformatics. Genome Biol. 5: R80.

Goldberg, A.D., Allis, C.D., and Bernstein, E. 2007. Epigenetics: A
landscape takes shape. Cell 128: 635–638.

Ihaka, R. and Gentleman, R. 1996. R: A language for data analysis and
graphics. J. Comput. Graph. Stat. 3: 299–314.

Irizarry, R.A., Ladd-Acosta, C., Carvalho, B., Wu, H., Brandenburg, S.A.,
Wen, B., and Feinberg, A.P. 2008. Comprehensive high-throughput

Pelizzola et al.

1658 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on November 11, 2008 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


arrays for relative methylation (CHARM). Genome Res. 18: 780–790.
Jacobsen, S.E., Sakai, H., Finnegan, E.J., Cao, X., and Meyerowitz, E.M.

2000. Ectopic hypermethylation of flower-specific genes in
Arabidopsis. Curr. Biol. 10: 179–186.

Jirtle, R.L. and Skinner, M.K. 2007. Environmental epigenomics and
disease susceptibility. Nat. Rev. Genet. 8: 253–262.

Schumacher, A., Kapranov, P., Kaminsky, Z., Flanagan, J., Assadzadeh,
A., Yau, P., Virtanen, C., Winegarden, N., Cheng, J., Gingeras, T.,
et al. 2006. Microarray-based DNA methylation profiling:
Technology and applications. Nucleic Acids Res. 34: 528–542.

Smyth, G.K. 2005. Limma: Linear models for microarray data. In
Bioinformatics and computational biology solutions using R and bioconductor
(eds. R. Gentleman et al.), pp. 397–420. Springer, New York.

Smyth, G.K. and Speed, T.P. 2003. Normalization of cDNA microarray
data. Methods 31: 265–273.

Tremblay, K.D., Duran, K.L., and Bartolomei, M.S. 1997. A 5�

2-kilobase-pair region of the imprinted mouse H19 gene exhibits
exclusive paternal methylation throughout development. Mol. Cell.
Biol. 17: 4322–4329.

Weber, M., Davies, J.J., Wittig, D., Oakeley, E.J., Haase, M., Lam, W.L.,
and Schübeler, D. 2005. Chromosome-wide and promoter-specific
analyses identify sites of differential DNA methylation in normal
and transformed human cells. Nat. Genet. 37: 853–862.

Weber, M., Hellmann, I., Stadler, M.B., Ramos, L., Pääbo, S., Rebhan,
M., and Schübeler, D. 2007. Distribution, silencing potential and
evolutionary impact of promoter DNA methylation in the human
genome. Nat. Genet. 39: 457–466.

Received May 10, 2008; accepted in revised form July 10, 2008.

Modeling antibody-derived DNA methylation levels

Genome Research 1659
www.genome.org

 Cold Spring Harbor Laboratory Press on November 11, 2008 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com



