
BIOINFORMATICS ORIGINAL PAPER Vol. 24 no. 20 2008, pages 2344–2349
doi:10.1093/bioinformatics/btn402

Gene expression

An HMM approach to genome-wide identification of differential
histone modification sites from ChIP-seq data
Han Xu1,2, Chia-Lin Wei3, Feng Lin2,∗ and Wing-Kin Sung1,4,∗
1Computational & Mathematical Biology Group, Genome Institute of Singapore, 138672 Singapore, 2School of
Computer Engineering, Nanyang Technological University, 637553 Singapore, 3Genome Technology & Biology
Group, Genome Institute of Singapore, 138672 Singapore and 4School of Computing, National University of
Singapore, 117543 Singapore

Received on April 9, 2008; revised on July 13, 2008; accepted on July 28, 2008

Advance Access publication July 29, 2008

Associate Editor: Trey Ideker

ABSTRACT

Motivation: Epigenetic modifications are one of the critical factors
to regulate gene expression and genome function. Among different
epigenetic modifications, the differential histone modification sites
(DHMSs) are of great interest to study the dynamic nature of
epigenetic and gene expression regulations among various cell
types, stages or environmental responses. To capture the histone
modifications at whole genome scale, ChIP-seq technology is
becoming a robust and comprehensive approach. Thus the DHMSs
are potentially identifiable by comparing two ChIP-seq libraries.
However, little has been addressed on this issue in literature.
Results: Aiming at identifying DHMSs, we propose an approach
called ChIPDiff for the genome-wide comparison of histone
modification sites identified by ChIP-seq. Based on the observations
of ChIP fragment counts, the proposed approach employs a
hidden Markov model (HMM) to infer the states of histone
modification changes at each genomic location. We evaluated the
performance of ChIPDiff by comparing the H3K27me3 modification
sites between mouse embryonic stem cell (ESC) and neural
progenitor cell (NPC). We demonstrated that the H3K27me3 DHMSs
identified by our approach are of high sensitivity, specificity and
technical reproducibility. ChIPDiff was further applied to uncover the
differential H3K4me3 and H3K36me3 sites between different cell
states. Interesting biological discoveries were achieved from such
comparison in our study.
Availability: http://cmb.gis.a-star.edu.sg/ChIPSeq/tools.htm
Contact: asflin@ntu.edu.sg; sungk@gis.a-star.edu.sg
Supplementary information: Supplementary methods and data are
available at Bioinformatics online.

1 INTRODUCTION
Eukaryotic DNA is packaged into a chromatin structure consisting
of repeating nucleosomes by wrapping DNA around histones.
The histones are subject to a large number of post-translational
modifications such as methylation, acetylation, phosphorylation
and ubiquitination. The histone modifications are implicated in
influencing gene expression and genome function. Considerable
evidence suggests that several histone methylation types play crucial
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roles in biological processes (Martin and Zhang, 2005). A well-
known example is the repression of development regulators by
tri-methylation of histone H3 lysine 27 (H3K27me3, or K27)
in mammalian embryonic stem cell (ESC) to maintain stemness
and cell puripotency (Bernstein et al., 2006; Boyer et al., 2006).
Some epigenetic stem cell signature of K27 is also found to be
cancer specific (Widschwendter et al., 2007). Moreover, the tri-
and di-methylation of H3 lysine 9, are implicated in silencing the
tumor suppressor genes in cancer cells (McGarvey et al., 2006). In
the light of this, the specific genomic locations with differential
intensity of histone modifications, which are called differential
histone modification sites (DHMSs) in this article, are of great
interest in the comparative study among various cell types, stages
or environmental response.

The histone modification signals can be captured by chromatin
immunoprecipitation (ChIP), in which an antibody is used to
enrich DNA fragments from modification sites. Several ChIP-
based techniques, including ChIP-chip, ChIP-PET and ChIP-SAGE,
have been developed in the past decade for the study of histone
modification or transcription factor binding in large genomic regions
(Impey et al., 2004; Kim and Ren, 2006; Wei et al., 2006). With the
recent advances of ultrahigh-throughput sequencing technologies
such as Illumina/Solexa sequencing, ChIP-seq is becoming one of
the main approaches for its high coverage, high resolution and low
cost, as demonstrated in several published work (Barski et al., 2007;
Johnson et al., 2007; Mardis, 2007). The basic idea of ChIP-seq is
to read the sequence of one end of a ChIP-enriched DNA fragment,
followed by mapping the short read called tag to the genome
assembly in order to find the genomic location of the fragment.
Millions of tags sequenced from a ChIP library are mapped and
form a genome-wide profile in which ChIP fragment counts are
overrepresented in histone modification sites or transcription factor
binding sites.

Inspired by the success of ChIP-seq in identifying histone
modification sites in a single library, we asked if the DHMSs could
be identified by computationally comparing two ChIP-seq libraries
generated from different cell types or experimental conditions.
Mikkelsen et al. (2007) mapped the H3K4me3 (K4) and K27
sites in mouse ESC, neural progenitor cell (NPC) and embryonic
fibroblast (MEF) and compared the occurrence of modification
sites in promoter regions across three cell types. A limitation of
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their study is that the modification sites are compared qualitatively
but not quantitatively. An example demonstrating this limitation
is the regulation of Klf4 by K4, which is known to be positively
correlated to gene expression. The Klf4 promoter was flagged as
‘with K4’ in both ESC and NPC by qualitative analysis, hence it
could not explain the up-regulation of Klf4 in ESC. On the other
hand, quantitative comparison indicated the intensity of K4 in Klf4
promoter is more than 5-fold higher in ESC than in NPC, consistent
with the observation of expression change.

To the best of our knowledge, little has been published in literature
on the quantitative comparison of two ChIP-seq libraries in genome
wide. Triggered by the idea from microarray analysis (Quackenbush,
2002), a simple solution to this problem is to partition the genome
into bins and to compute the fold-change of the number of ChIP
fragments in each bin. However, fold-change approach is sensitive
to the technical variation caused by random sampling of ChIP
fragments. In this article, we propose an approach called ChIPDiff
to improve the fold-change approach by taking into account the
correlation between consecutive bins. We modeled the correlation
in a hidden Markov model (HMM) (Rabiner, 1989), in which
the transmission probabilities were automatically trained in an
unsupervised manner, followed by the inference of the states of
histone modification changes using the trained HMM parameters.

To evaluate the performance of ChIPDiff, we first compared the
K27 libraries between ESC and NPC based on Mikkelsen et al.’s
dataset. We identified 4722 K27 DHMS regions in genome wide.
Three lines of evidence showed that the performance is satisfactory:
(a) sensitivity: in highly conserved non-coding elements (HCNEs)
studied by Bernstein et al. (2006), 80% of DHMSs inferred from
gene expression were identified by ChIPDiff; (b) specificity: based
on comparison between non-cell-specific controls, we approximated
a false positive rate of 0.19% for the identified DHMS regions;
(c) reproducibility: checking the intersection of the results on two
independent subsets, we showed that 57.4% of the DHMSs were
technically reproducible, conditional on the sequencing depth of
3–4 million tags. The evaluation also demonstrated that our method
outperforms fold-change approach and qualitative analysis in all the
three aspects.

We further applied ChIPDiff to H3K4me3 (K4) and H3K36me3
(K36) for the discovery of DHMSs on these two types of histone
modifications and studied their potential biological roles in stem
cell differentiation. Several interesting biological discoveries were
achieved in the study.

2 METHOD

2.1 Determining putative histone modification sites
Given two ChIP-seq libraries, L1 and L2, the first step for identifying DHMSs
is to determine the putative sites that involve histone modifications either in
L1 or L2. This section details this step.

Tags in the raw data generated from a ChIP-seq experiment were mapped
onto the genome to obtain their positions and orientations. Due to the PCR
process in ChIP-seq experiments, multiple tags may be derived from a single
ChIP fragment. To remove the redundancy, tags mapped to the same position
with the same orientation were treated as a single copy. Note that in ChIP-seq
protocol a tag is retrieved by sequencing one end of the ChIP fragment, of
which the median length is around 200 bp (Barski et al., 2007; Robertson
et al., 2007). Hence, we approximated the center of corresponding ChIP
fragment by shifting the tag position by 100 bp towards its orientation.

The whole genome was partitioned into 1 kb bins and the number of centers
of ChIP fragments were counted in each bin.

After the above preprocessing procedures, a profile of ChIP fragment
counts was generated. Considering a genome with m bins, the profiles
of L1 and L2 are represented as X1 ={x1,1,x1,2,...,x1,m} and X2 =
{x2,1,x2,2,...,x2,m}, respectively, where xi,j is the fragment count at the
j-th bin in Li. To depict the combined enrichment of fragments in each bin,
we defined a score F normalized against the sequencing depth:

F(i)= x1,i

n1
+ x2,i

n2
, i=1,2,...,m

where n1 and n2 are the total number of sequenced fragments in L1 and L2,
i.e. n1 =∑

i
x1,i, n2 =∑

i
x2,i.

Mikkelsen et al. (2007) and Robertson et al. (2007) pointed out that not
all the bins can be interrogated in the tag mapping procedure, mainly due to
the existence of repeat region. Let η denote the fraction of ‘valid’ bins in the
genome, the expectation of the score F at a ‘valid’ bin is

∑
i F(i)/(m×η),

which equals to 2/(m×η). (Mikkelsen et al., 2007) estimated η≈0.7 for
mouse genome. If a bin has an F-score >2/(m×η), we flagged it as a putative
histone modification site. Consecutive modification sites within 1 kb apart
from each other were merged into histone modification regions.

2.2 Quantitative comparison of modification intensity
by fold-change

For the convenience of denotation and description, the methods in the rest
of the article will be introduced based on the putative modification regions
defined in Section 2.1. Considering a region that consists of k bins, we use
the notation x1,i, x2,i for the ChIP fragment counts in L1 and L2, respectively,
at the i-th bin in that region (i = 1,2, ...,k).

Histone modifications exhibit a variety of kinetics and stoichiometries
(Gan et al., 2007). For a ChIP-seq experiment, we define the modification
intensity at the i-th bin in library Lj to be the probability of an arbitrary
ChIP fragment captured from the i-th bin in the ChIP process, denoted pj,i.
Since the extraction and sequencing of ChIP fragments is a random sampling
process, the posterior probability of observing xj,i fragments at the i-th bin in
library Lj , conditional on the intensity pj,i, approximately follows a binomial
distribution:

Pr(xj,i |pj,i)=
(

nj

xj,i

)
p

xj,i
j,i (1−pj,i)

nj−xj,i (1)

We further assume that the prior probability of pj,i follow a beta distribution:

Pr(pj,i) = 1

B
(
α,β

) pα−1
j,i (1−pj,i)

β−1 (2)

where B(α,β) is the β-function. Note that β-distribution is the conjugate prior
of binomial (Raiffa and Schaifer, 2000), hence the conditional probability
Pr(pj,i |xj,i) also follows a β-distribution, with the expectation E(pj,i |xj,i) =
(α+xj,i)/(α+β+nj). In our application, the parameters α and β are set to
be 1 and m, respectively, where m is the total number of bins in the genome.
(see the Supplementary Methods for details).

We define a DHMS as a bin in which the ratio of intensities between L1

and L2 is larger than τ (L1-enriched DHMS) or smaller than 1/τ (L2-enriched
DHMS), where τ is a predetermined threshold, and τ ≥1.0. A simple solution
for identifying DHMSs is to estimate the fold-change of expected intensity
(preferably in term of log-ratio) from the ChIP fragment counts, as follow:

log

[
E(p1,i |x1,i)

E(p2,i |x2,i)

]
= log

[
(α + x1,i)(α +β +n2)

(α + x2,i)(α +β +n1)

]
(3)

An example of the log-ratio estimation based on (3) is shown in Figure 1a.
A drawback of the fold-change approach is that it is prone to the

technical variation caused by random sampling. Figure 1b shows an RI-plot
(Quackenbush, 2002) to depict the variation of the log-ratio dependent on
the intensity. When the intensity is relatively small, the variation of log-ratio
becomes too high, which may result in considerable false positives.
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Fig. 1. (a) An example of the log-ratio estimation of H3K27me3 intensity
between mouse ESC and NPC. Bin size set to be 1k; displayed genomic
region range from chr14:117 100 000 to 117 130 000; data retrieved from
Mikkelsen et al.’s (2007) dataset; (b) An RI-plot for chromosome 19 in
K27 data.

2.3 An HMM-based approach for identifying DHMSs
Histone modifications usually occur in continuous regions that span a few
to hundreds or even thousands of nucleosides. Hence, one may expect
strong correlation between consecutive bins in the measurements of intensity
changes. This argument is supported by our observations from ChIP-
seq profile. As an example, the log-ratio profile in Figure 1a has an
autocorrelation of 0.84. In ChIP-chip data analysis, Li et al. (2005) have
designed an HMM to model the correlation of signals between consecutive
probes and successfully applied it for the identification of p53 binding site,
suggesting the potential ability of HMM for identifying DHMSs in our study.
Here, we propose a HMM-based approach called ChIPDiff to solve the
problem.

We denote si to be the state of histone modification change at the i-th bin
(i = 1,2, ...,k). Based on the definition of DHMS in Section 2.2, the state si

takes one of the following three values:

• α0: non-differential site, if 1/τ ≤p1,i/p2,i ≤τ ;

• α1 :L1-enriched DHMS, if p1,i/p2,i >τ ;

• α2 :L2-enriched DHMS, if p1,i/p2,i <1/τ .

We modeled the inter-bin correlation as a first-order Markov chain such
that Pr(si |s0,s1, ...,si−1) = Pr(si |si−1), where S0 is the start state before the
first bin in the region. A HMM was implemented to infer the posterior
probability distribution of the states from the observations of fragment
counts. The HMM is characterized by three features: the prior probability of
the start state S0, the emission probability Pr(x1,i,x2,i |si) and the transmission
probability Pr(si |si−1).

The initial state S0 is fixed to take the value α0 since we assume the region
starts from the genomic locations where histone modification is depleted in
both libraries.

We derived the emission probability Pr(x1,i,x2,i |si) by integrating p1,i and
p2,i over all possible values constrained by Si:

Pr(x1,i,x2,i |si)=

∫∫
si

Pr(x1,i |p1,i)Pr(x2,i |p2,i)Pr(p1,i)Pr(p2,i)dp1,idp2,i

∫∫
si

Pr(p1,i)Pr(p2,i)dp1,idp2,i
(4)

Readers may refer to the Supplementary Methods for the detailed derivation.
In Equation (4), Pr(xj,i |pj,i) follows binomial distribution defined in (1) and
Pr(pj,i) follows β-distribution defined in (2).

The transmission probability table was trained using the Baum–Welch
algorithm (Baum et al., 1970), which takes expectation maximization
(EM) steps to iteratively estimate the parameters of the HMM from
hidden states in an unsupervised manner. In the training process, the
transmission parameters were initialized to be uniform and the start state
S0 and the emission probabilities were fixed as described above. Since
the transmission probability table is identical in the whole genome, it was
trained by cumulating the transmission frequencies in all the putative histone
modification regions.

In the last step of ChIPDiff, the probability distributions of the states
in each bin were inferred using forward–backward algorithm. Bins with
posterior probability larger than a confidence threshold ρ(0 < ρ < 1) for
si = α1 or Si = α2 were identified as DHMSs. Consecutive DHMSs with no
gap between them were merged into DHMS regions.

The most computationally expensive step in ChIPDiff is the training of
the transmission probability table. Two strategies were employed to reduce
the computational cost: (a) the integrals for emission probabilities were
numerically computed and were compiled into a lookup table, prior to the
training of the HMM; (b) we allowed the transmission probability table to
be trained based on a subset randomly selected from the putative histone
modification regions.

3 RESULTS
We applied ChIPDiff to Mikkelsen et al.’s dataset publicly available
at http://www.broad.mit.edu/seq_platform/chip/. The performance
of ChIPDiff was evaluated by comparing the H3K27me3 (K27)
libraries between mouse ESC and NPC. We further applied ChIPDiff
to H3K4me3 (K4) and H3K36me3 (K36) data for the discovery
on DHMSs and studied their potential biological roles in stem cell
differentiation.

3.1 Evaluation on H3K27me3 data
H3K27me3 was selected for the evaluation since its DHMSs in
HCNEs have been implicated in literature (Bernstein et al., 2006).
Moreover, K27 preferentially marks gene region and functions as a
repressor, which facilitated our indirect validation using expression
data. We compared the K27 ESC library and NPC library with
ChIPDiff, in which the fold-change threshold τ was set to be 3.0
and the confidence threshold ρ was set to be 0.95. The HMM was
trained with 10 000 randomly selected histone modification regions.
A total of 26 230 bins were identified to be DHMSs, corresponding
to 4722 continuous regions. Among them, 3833 (81.2%) regions are
ESC enriched and 889 (18.8%) are NPC enriched, implying a global
trend of K27 depletion upon cell differentiation.

We first assessed the capability of ChIPDiff in identifying the
biologically significant DHMSs, i.e. sensitivity. Bernstein et al.
(2006) have shown that K27 is enriched in HCNEs in ESC,
repressing a number of development regulators to maintain the
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stemness of the cell. These histone marks are depleted in diverse
differentiated cells. From HCNEs, we selected 223 genes of which
the expressions were studied by (Mikkelsen et al., 2007). Since K27
functions as a gene repressor, we reasoned that some of those HCNE
genes marked by K27 will be up-regulated in NPC and DHMSs
should be identified at these genes. As expected, a subset containing
30 genes were determined to be up-regulated with the criterion of
more than 4-fold. Among them, 24 (80%) are marked by DHMSs
identified by ChIPDiff in promoter region ±1 kb from transcription
start site (TSS). In contrast, only 37 (19.2%) out of the 193 genes
that are not up-regulated in NPC are marked by DHMSs.

To test the specificity of ChIPDiff result, we need to estimate
the fraction of falsely identified DHMS regions that are not cell
specific. For this purpose, we partitioned each library into two
technical replicates: LESC,rep1 and LESC,rep2 for ESC, LNPC,rep1
and LNPC,rep2 for NPC. The replicates consist of tags retrieved from
different lanes in ChIP-seq experiments, with similar sequencing
depth (see Supplementary Table 4 for the assignment of lanes to
replicates). We generated two new libraries by merging the tags in
LESC,rep1 and LNPC,rep1, LESC,rep2 and LNPC,rep2, respectively.
Since the replicates are of similar sequencing depth, the difference
between these two libraries should not be cell specific and only
reflect the technical variations in the experiments. Comparing these
non-cell-specific controls, nine differential regions were identified
by ChIPDiff. Hence, we approximated a false positive rate of
0.19% (9/4722) for the DHMS regions identified in cell-specific
comparison.

We also tested the reproducibility by conducting two independent
passes of cell-specific comparison: LESC,rep1 versus LNPC,rep1 and
LESC,rep2 versus LNPC,rep2. To measure the reproducibility, we
defined a score as the ratio of the number of DHMSs identified
in both passes, to the average number of DHMSs in individual
pass. As the result, we obtained a reproducibility score of 57.4%
for ChIPDiff. Note that the reproducibility is conditional on the
sequencing depth of the replicates, which ranges from 3 to 4 million
tags in our assessment (Supplementary Table 4).

To compare the performance among different methods, we
repeated the sensitivity, specificity and reproducibility tests for
fold-change and qualitative method. In qualitative method, K27
modification sites were identified for ESC and NPC individually
using the binning approach proposed by (Mikkelsen et al., 2007),
and bins marked as K27 site in only one cell type were identified to
be DHMSs. Consecutive DHMSs were merged into DHMS regions
as well. For a fair comparison, the thresholds were adjusted to
allow similar number of DHMS regions to be identified for all three
methods (The numbers are not identical because the thresholds take
discrete values). The evaluation results are summarized in Table 1.
ChIPDiff outperformed the other two methods in all three aspects.
Fold-change approach and qualitative method had much higher false
positive rates, indicating these methods are sensitive to technical
variation and experimental bias.

3.2 Application to H3K4me3 and H3K36me3 data
We extended our study to trimethylations on K4 and K36. Both
histone modification types positively regulate gene expression but
in different manner. Guenther et al. (2007) revealed K4 marks the
active promoters where the transcription of the genes is initiated,
while K36 occupies the gene region as a hallmark of elongation.

Table 1. Comparison of the performance of ChIPDiff, fold-change approach
and qualitative method, based on H3K27me3 data

ChIPDiff fold-change qualitative method

No. of DHMS regions in
cell-specific comparison

4722 4,958 4,790

FPR estimated from
non-cell-specific control (%)

0.19 10.8 52.3

Detection rate on HCNE
DHMSs (%)

80.0 63.3 73.3

Reproducibility score (%) 57.4 23.4 43.8

FPR refers to false positive rate.

Table 2. A summary of DHMSs identified from H3K4me3 and H3K36me3
libraries

H3K4me3 H3K36me3

ESC
enriched

NPC
enriched

ESC
enriched

NPC
enriched

No. of DHMS
bins

32 384 3742 15 111 16 719

No. of DHMS
regions

12 976 1768 1158 1228

No. of RefSeq
genes marked

3877 211 747 417

Our previous study (Zhao et al., 2007) also showed that K4, together
with K27, establishes distinct genomic domains of active and
inactive chromatin structures in human ESC. Thus, it attracted our
interest to study the DHMSs of these histone modifications between
ESC and NPC. Moreover, K4 sites usually appear in punctated
pattern sharply around TSS in ChIP-seq profile, while K36 sites
appear in a much broader pattern, providing a comprehensive test-
bed for evaluating the adaptability of our approach to diverse histone
modification types.

We processed the libraries with the same ChIPDiff configurations
as mentioned in Section 3.1. The results are summarized in Table 2.
Consecutive bins identified as DHMSs were merged into regions.
Strikingly, the number of ESC-enriched K4 DHMSs is much larger
than NPC-enriched ones. Considering such imbalance was also
observed for K27, we hypothesized it may be associated with the
bivalent chromatin structure marked by K4 and K27 (Bernstein et al.,
2006). In further analysis, we found 1961 (51.2%), out of 3833
ESC-enriched K27 DHMS regions overlap with ESC-enriched K4
DHMSs. In contrast, K36 and K27 seemed to be mutually exclusive:
only 8 (0.21%) of these 3833 regions overlap with ESC-enriched
K36 DHMSs.

To study the correlation between DHMSs and gene expression,
we annotated the RefSeq genes with DHMS regions and expression
data published by Mikkelsen et al. (2007). RefSeq genes were
retrieved from UCSC database (Pruitt et al., 2005). To remove the
redundancy, the longest ORF was selected for gene annotation if
multiple transcripts are mapped to the same gene, which resulted
in 18 795 unique genes in total. As shown in Figure 2, K4 and
K36 co-regulate the gene expression with strong significance.
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in ESC
only K4 Enriched 

in ESC
None

only K4 enriched 
in NPC

only K36 enriched 
in NPC

K4&K36 enriched 
in NPC

Fig. 2. Combinatorial effect of H3K4me3 and H3K36me3 on gene expression between ESC and NPC. Up/down-regulations were determined by the criterion
of 4-fold change.

This observation is consistent with the conclusion by Guenther
et al. (2007). Among 1,085 genes up-regulated in ESC, 791 (72.9%)
are associated with ESC-enriched K4 or K36 DHMSs, suggesting
that the gene expression is potentially predictable from DHMSs.
Notably, two key transcription factors in ESC, Nanog and Oct4, are
marked by DHMSs of both K4 and K36, implying the critical roles
played by these histone modification marks in ESC by interfering
the transcription regulatory network.

4 DISCUSSION AND FUTURE WORK
In this article, we developed an HMM-based approach called
ChIPDiff for the genome-wide quantitative comparisons of histone
modifications derived by sequencing approach. Using stem cell as a
model system, we applied ChIPDiff to identify the DHMSs between
ESC and NPC. We showed that ChIPDiff is able to render robust
and technically reproducible results though evaluation with K27
data. We further applied ChIPDiff to K4 and K36 data and achieved
several interesting biological discoveries. The experimental results
indicate that ChIPDiff is a useful tool for the comparative study
of histone modifications between cell types or different biological
treatments.

Nevertheless, there are several limitations. First, the bin size was
set to be 1 kb in ChIPDiff, of which the resolution is relatively
low when considering the nucleosome size of 200 bp (including
the linker). The resolution, however, is limited due the sequencing
depth: if we reduce the bin size, there would not be enough fragment
counts to be included in a bin for a reliable prediction. Second,
the specificity, sensitivity and repeatability of our approach were
evaluated based on technical replicates or a limited list of DHMSs
inferred from biological knowledge and gene expression. There
might be an argument on whether these data provide a ‘golden’
standard for the evaluation. In fact, such a ‘golden’ standard is very
difficult to define for most biological data. Third, we used the total
number of ChIP fragments for the normalization against sequencing
depth. This normalization procedure is subject to the noise level of
ChIP experiment. As an alternative, qPCR measurements (Ding and
Cantor, 2004) on a few ‘control’ sites may provide a better way for

normalization. And finally, in the preprocessing step, multiple tags
retrieved from different fragments and mapped to the same genomic
location were counted only once, which may result in error in
quantitative measurement. We look forward to deeper investigations
on these problems.

Except for histone modification, ChIP-seq has been widely used in
the research on transcription factor binding, chromatin accessibility
and nucleosome locations. It would be interesting to evaluate the
possibility of expanding the applications of ChIPDiff to these
genomic features. Unlike histone modifications, transcription factors
bind to a specific genomic location with a very sharp ChIP-
seq pattern, hence the correlation between consecutive bins is
relatively weaker. We are studying new mathematical model for
the quantitative comparison of transcription factor binding in future
work.

Conflict of Interest: none declared.
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