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| mputation of missing genotypes

The Methods section of the paper describes how missing geestare inferred
through the use of a model of an individual’'s genotype veGtaronditional upon
a set of N known haplotyped?. A Hidden Markov Model (HMM) is used that

has the form

Pr(GiH) = > Pr(Gi|z",z® H)Pr(Z", 2P |H), (1)
VAR AS)
wherez" = {z .. zWVvandz® = {2, ..., z%\ are two sequences of

hidden states at the sites andef’ € {1,...,N}. Atagiven locus these hidden
states can be thought of as the pair of haplotypes in th& $leat are being copied
at that locus to form the genotype vecty.

Here Pr(Z", z¥|H) defines the prior probability on how the sequences of
hidden states7) andZ®, change along the sequence. We use a Markov Chain
model in which the switching rates depend upon an estimatbeofine-scale
recombination map across the genome based upon the HapMap PiData [1].

The initial state of the Markov chain is uniform on th& states
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The transition probabilities of the chain from site® [ + 1 are given by
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wherep, = 4N,.r; andr; is the per generation genetic distance between séed
[ + 1. We use the estimate &f, = 11,418 [1]. Overall, the prior distribution on

the hidden states can be written as

Pr(z", 2 |H) = Pr(z)), 2 |H) H Pr{Z . 2y = {24y 230} H)
o @)
The termPr(G,| 2", Z®, H) models how the observed genotypes will be
close to but not exactly the same as the haplotypes being@&ophis term mimics
the effects of mutation in the approximation to the popolagenetics model. We
assume that the mutations are independent across sitelsarde two alleles on
the haplotype being copied (independently) mutate to tteeirplementary alleles
with probability A =

0
2(6+N) "

Pr(G; |Z(1 HP?” Zl\ zz ), zl ), HPT Z<1>l )l) — Gy)
)
wherePr((HZi(lnl + Hfo>l) — Gy) is given by Table 1. Following [2], we use
o= (o)
This model can also be used to infer haplotypes across aregioterest and

to deal with uncertainty in the genotype data (to be desdrdtgewhere).

| mputation of completely missing SNPs

To carry out a test of association at a SNP which is completebpserved in both
the set of haplotypeH and the set of sampled datawe simulatel/ realisations
of this SNP in theV observed haplotypes in sét. This sample of SNPs is then
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Table 1: The probabilityPr((HZml + HZ@)l) — Gy) of mutating from the
il il
genotype derived by summing the alleles defined by the twqingpstates

(HZZ;;)I + szf)z) to the observed genotye;.

treated as a set of known sites in the Bednd can be conditioned upon to simulate
untyped variants in the set of dat& Frequentist or Bayesian test statistics can
then be calculated by averaging over the sample in the apptepvay.

Suppose we wish to simulate a SNP at an unobserved sitejdeditd be the
jth site of the haplotypes in the sét. We assume thak/;; is missing for all
i € {1,..., N}. To simulate this missing data we model the joint distribntof

the complete set of haplotypés That is,
PT(H) = P’T‘(H1>PT(HQ|H1) .. .P’T‘(HN|H1, ey HN—I)- (6)

Each of the conditional distributionBr(H;|-) is approximated by the Hidden

Markov model described in [2] to give
PT(H) ~ 7T(H1)7T(H2|H1) . W(HN‘Hl, ceey HN—I)- (7)

This is known as a “product of approximate conditionals” @¥Anodel. Given an
ordering of the haplotype ), .. ., H(y) the missing allele#/,y;, . .., Hy); are
simulated sequentially using these approximate conditidistributions. We use
this model to make the following approximation of the probgbthat H;); = k,
wherek € {0, 1}:

Pr(Hgy; = k[Hay \ Hays Hay, o H—1y) o< Pr(Hegy, Hgy; = k[Hoy, .., Hig—1))8)

i)j

~ w(Hey, Hiy = k[Hqy, ..., Hio1)-(9)



The simulation is initialised by probabilistically choogia haplotype to which
to apply the first mutation. From the model the probabilityaomutation to a
different allele on thdr + 1)th haplotype isg(r";w). Therefore, if we use, to

denote the probability of the first mutation occurring on the- 1)th haplotype

in the ordering then we have

)\1 1 r—1
p1:W7 pTZWH(l—)\j)Am 2<r <N, (10)

j=1
where); = 5% andW = 370 p;.

A draw from this probability distribution determines whiohthe haplotypes
carries the first mutation. If this is theth haplotype of the ordering then haplo-
typesHy; = Hp); = ... Hpuo1); = 0 @and H,,); = 1. Subsequent to this the
alleles are simulated using higher order approximate ¢mmdils as in (9). For

example,H,,.1); will be simulated from the distribution

1
Pr(Hmi1); = k) = EW(H(mH),H(mH)j =klHauy,...,Hm)) ke€{0,1}

(11)
where3 = 3, m(Hni1), Hiniyy = k[Hqy. - Hom)

We have found that the use of a relatively small set of randapidtype or-
derings (10-20) is sufficient to provide a stable set of tssuTlhis process can
be repeated// times to produce a sample of the variation that might exist at
given SNP in the set of haplotypés. We then condition on this sample to fur-
ther simulate the variation in the sét Currently, our implementation of this
approach requires the g@tto consist of haplotype data. When computing the re-
quired probabilities to carry out the simulation we takeatage of the standard

recursive calculations that exist for HMMs.

Single SNP disease association

In this section we provide a comprehensive account of thferdifit ways a test

of association at a SNP with known genotypes may be carrieéd Also, since



our methodology carries out tests of association at imp8teBs that are char-
acterised by a probability distribution on genotypes, westder how this uncer-

tainty can be taken into account when carrying out a test.cbompleteness and
comparability we present details for both Frequentist aagd3ian tests of associ-
ation. We focus here on the case where we have a binary plpand no other

covariates of interest, but our approach can be naturatlysamply extended to

handle continuous phenotypes and covariates.

Consider a SNP with two alleles coded 0 and 1. Suppose we lesygpes
at this SNP in a set oV individuals (V; cases andV, controls). We us&’; to
denote the binary disease phenotype of individuglases havé; = 1, controls
haveY; = 0). LetZ; € {0,1,2} denote the genotype of individuafor the given
coding of the two alleles at the SNP. The data at the SNP canrbenarised in

the following table

2 Jo|1]2

Cases | sg | 51 | s2

Controls| rg | 71 | 72

Frequentist Association Tests

The most widely used method of testing association at a SN¥ogsia model in
which the odds of disease change multiplicatively with dgpe. This model is

specified using a logistic regression framework:

L(0) = P(Y|Z, 1,7) le (1—pi)* (12)

where
etu""’YZi

0= (u,7) log

= Zi pi=——. 13
i L e w7 (13)

In this modely is the baseline log-odds of disease for the O genotypepeci-
fies the increase in log-odds due to each copy of the alleleccadandy; is the

probability that individual develops the disease. The odds ratios of disease for

5



individuals with genotypes 1 and 2 (relative to individuaish the O genotype)
aree” and(e”)? respectively. This model is multiplicative on the odds scahd
additive on the log-odds scale.

This is known as a prospective likelihood, but the natukadlihood for case-
control studies is the retrospective likelihood in whiclgsg/pes are modelled
conditional upon disease status. It has been shown [3] thahé absence of
missing data) the maximum likelihood estimators and asgtigtovariance ma-
trix of the log-odds ratios obtained from the retrospeclikelihood are the same
as those obtained from the prospective likelihood. Thisliespthat the usual
significance tests used in either framework will be equivbssymptotically and
very similar for large enough sample sizes. Intuitivelysthakes sense, as the
main parameters of interest that model the differences notype proportions
between cases and controls will not be significantly alténethe over-sampling
of cases that occurs in a case-control design. We do loséiiity #0 estimate the
prevalence of the disease, but that is never a primary focte@nalysis.

Estimates of the parameters of the model can be obtained kymsing the
likelihood. In general, iterative optimisation techniguere required. One such

technique is the Newton-Raphson method [4] which has theviolg updates

ot = 0t — HY(0HU (0 (14)
where
_ d(0) _ d¥(9)
Uo) =—g (0) = T (15)

In the above equation®) = log L(#), U(#) is known as the Score and(0) is

the Hessian. To test for association we can test the hygethes
HO:”y:O VS Hl’y#O (16)

using a Maximum Likelihood Ratio Test (MLRT) [4] of the form

\— Maxg, L(6)
'\/|aXH0U[1r1 L(ig)

where —2log\ ~ xjasN;, N, — oco.  (17)

An alternative test statistic is known as the Score Test,[3] &nd is based on

the distribution of the Score undéfy. Intuitively, if the MLE of the parameter of
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interest is far from (close to) the null then the Score witid¢o be far from (close

to) 0. More specifically, the test is based on the followingnagtotic result
U(6y) ~ N(0,1(6y)) whenHy is true (18)

where(6y) = —H(fy) is the Information matrix evaluated é§. This result

implies that the Score Statistic, defined as
S = U(HO)TIA(HO)U(@O) (19)

is asymptotically distributed ag? whered = dim(6) [5]. This test is convenient
in that it only requires evaluation of the likelihood undee thull hypothesis, not
maximisation of the log-likelihood, and thus is more congpiainally tractable
than the MLRT.

If the parameted is multivariate i.ed = (u,~) and the null is of the form
Hy : v = =, the score and information matrix should be evaluated aivthE
under the null i.e. al = ({1, vo) wheref: is the MLE of i with ~ fixed at~y.

For the model above it can be shown that

ve) = > (vi-p)(12)", (20)
HO) = => p(1—p)(12:)(12)". (21)

i=1

The MLE of u wheny = 0 is ji = log £* andp; = &t Vi. This implies

N. N
Uy = (0, WQ(sl +2sy) — Wl(ﬁ +2r,))T (22)
](6 ) B N1 Ns N S1+1r+ 2(82 + TQ) (23)
0 - .
(N)2 81+T1+2(82+T2) 81"—7“1—'—4(82"—7“2)

The Score Test Statistic = U] I~'U, where

U, = U(6), — %(31 +2sy) — %(rl o) (24)
Iv = [(90)77 - 1(90)7,1[71(90)#“[(90)“7 (25)

= S1+71r+ 4(82 + 7“2) — (81 +ry + 2(82 + TQ))Q/(Nl + N2) (26)



thus
N(Na(s1+ 283) — Ny(r1 + 213))

S = .
NlNQ(Sl -+ 1 -+ 4(82 -+ 7“2) — (81 -+ T -+ 2(82 -+ 7“2))2)

(27)

This test statistic is equivalent to the well known Cochfamitage Trend Test,
which is a popular statistic used to compare genotype frecjas between cases
and controls [8].

A dominant or recessive model can be fitted in the same way aéygihg the

coding of the genotype vectdf. For a dominant model the score test statistic

becomes
S: N(N2(81+82)—N1(T1+T2)) (28)
NlNQ(Sl +7‘1—|—82—|—T2 — (814—7‘1—'—82—'—7“2)2)'
For a recessive model the score test statistic becomes
N(Nyso — N
S ( 2592 17”2) (29)

B N1No(sg 419 — (89 +19)?)
Itis important to note that the above formulae assume a®peoiing where one
allele is coded 1 and the other 0 and that different resulislmeabtained in these
tests if the coding is switched.

A general 3-parameter model can also be considered witlothe f

log - Vo i I(Zi= 1)+ 91(Z, = 2) (30)

(2

wherel(Z; = z) is the indicator function of the genotypgg equallingz where
z € {1,2}. Under the null hypothesig = ¢ = 0 and a score test can be derived

as above, leading to the test statistic

S=Uv"'r'v (31)
where
N N T
U = <81 — Wl(sl + 7‘1), S9 — Wl(SQ + 7"2)) (32)
N(s;+711) —(s1+71)> —=N(sy+1r1)(sy+r
7 N1 N,y (s14+71) = (s1+71) (814 71)(s2 +72) (33)

3
N —N(s1+71)(s3+72)  N(so+72) — (82 +12)?



Dealing with missing or uncertain genotypes

When some of the genotypes at a SNP are missing or when thesenis uncer-
tainty (specified by a probability distribution) as to thereat genotype at a SNP,
there are three possible ways in which a test can be carriedThe simplest
strategy is to apply a threshold rule to the probability rdisition of each SNP.
For example, we might choose to use only those genotypedtichva maximum
posterior genotype call is greater than some valuerhis procedure is simple
and quick, and when there is considerable confidence in thetgee calls this
method will work well. The problem with this method occursemthere is con-
siderable uncertainty about the genotype calls, which reag to very little data
being used at a given SNP.

An alternative procedure would be to estimate the expeatedtgpe counts

at the SNP to produce the following table.

Z 0 1 2

Cases EYM|YO,9[30] IE"Y1»1|Yoy49[‘5‘1] EYM\Yoﬂ[SQ]

Controls EYM\Yoﬂ[TO] EYM\Yoﬁ[rl] EYMlyoﬁ[TQ]

This procedure makes use of all of the data at a SNP and, asheithreshold
rule described above, will work well when there is high cattaabout a SNP.
This method makes no allowance for the variability in theagpe counts, so it
does not completely account for the uncertainty in the ggres.

To fully account for the uncertainty in genotypes we needde well estab-
lished statistical theory for missing data problems. Sgppee wish to fit a model
at a given SNP in a case-control sample but we find that sonadl]a@f the geno-
types are missing at the SNP. Further suppose we have addition-missing
data in other individuals at the SNP and/or data at other SNB& same set of
individuals. We can patrtition this data structure into tvaonponents, observed
dataY, and missing dat&,, and we usé&’» = (Yo, Y)s) to denote the full data.

In this situation, the correct likelihood to consider is tieserved data likelihood



given by
I*(0;Yp) = log P(Yol0) = log/P(YO,YM|0)dYM (34)
which is the log of the full data likelihood integrated ovketmissing data [9]. A

score test can be computed for this likelihood through theutation of the score

and information matrix of the observed data likelihood

U*(0) d;f) (6) = —dc;(f ). (35)

It can be shown [10, 9] that
U0) = EviuposlU(0)] (36)
I'(0) = Evipo0ll(0)] = Vyivo,0[U(0)] (37)

whereU (¢) and! () are the full data score and information. In this case, theesco
statistic would then b&* = U*(0y)” (I*(6y))~U*(0y) whered, is the value of
the parameter vector specified by the null hypothesis.

These formulae show that where there is uncertainty in tha aga given
SNP, the correct likelihood-based procedure involvesgutie distribution of the
missing data conditional upon both the observed data anebibes of the model
parameters. This implies that we need to generate a famitiistfibutions for
the missing data indexed l#y however, score tests are based on evaluations of
the score and information under the null, so we only need tsider a single

distribution specified by the null hypothesis.

Bayesian Association Tests

In a Bayesian framework the Bayes Factor is the alternatitbe classical hy-
pothesis tests described above [11]. Given two possiblestadd; and M, the
Bayes Factor is defined as

_ P(D|M,) [ P(D|6y, My) P(6:|M,)dd),
~ P(D[My) [ P(DIf, Mo) P (6| Mo)dfo

BF (38)

whereD is used to denote the data ahdandd, are the parameters of the models

M, and M,. The Bayes Factor should be interpreted as the factor byhithee
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prior odds of association are changed in light of the dataddyce the posterior

odds of association,
Posterior Odds of AssociaticA BF' x Prior Odds of Association  (39)

It can be clearly seen that instead of maximising the likegih under the two
models the parameters are integrated out of the likelihaddawveighting given
by the prior distribution on the parameters. A main advaatafycalculating a
Bayes Factor as opposed to a classical test statistic igdhteapproach allows
the incorporation of other relevant information througk tise of the prior. For
example, in our setting we may have good reason to believathadditive odds
ratio of 1.3 is much more plausible for a disease variant gnamdds ratio of
50. We can incorporate this information into the prior digition to improve
the inference we obtain just from the use of the data alonaneSevidence is
already emerging in the literature that these tests canimave power than their
frequentist equivalents[12].

In our setting of testing for association at a given SNP, weds to denote
the model in which the SNP is associated with an additivecetia the log-odds
scale and/, to denote the 'null’ model of no association.

For both models we use a logistic regression model for treditikod

N
P(DI0) =[] pl (1 —p)"" (40)

where for modelV/; we have

Pi
br=(n7)  log— el VZi, (41)
and for modelV/, we have
bo=(u) log——=p. (42)
I —pi

We now need to specify the prior distributidt6, |M;) = P(u,y|M;). The
parametey: represents the baseline odds of disease. This parameldrewni-

fluenced by the numbers of cases and controls in the dataset.case-control
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design the numbers of cases in the sample have been elevafiedhlly, which
will have a large effect on likely values @f. For this reason we wish to use a
prior distribution that allows flexibility in the prior disbution onyx, so we use a
N(ay, 1) distribution. In practice we have usgd~ N(0, 1).

The parametey is the increase in log-odds of disease for every copy of the
risk allele ande” is the additive model odds ratio. We have some good prior
information about likely values of this parameter. For epémit is widely be-
lieved that the genetic variants underlying common dis@alidnave risk allele
odds-ratios in the range 1-2 with substantially more weaghthe values between
1-1.5. Note that this implies a protective allele oddseratithe range 0.5-1 with
substantially more weight on values between 0.67-1. Aftenesexperimentation
we settled on a flexible prior distribution of (a,, 3,) for ~. For example, Figure
1 shows a density plot far” from a sample of 1,000,000 draws from the prior
v ~ N(0,0.2).

Overall, the prior distribution on the parameters has thenfo

1 7(/1—(11)2 1 7(7—@2)2
P(6:|M)) x —e 21 —e P 43
(61| M) 3 5 (43)
For P(6y|My) = P(u|My) we use the same prior gnas in the model/;. That
IS,
1 _(#—(121)2
P(90|M0) X 6—6 281 (44)
1

It is well understood that the priors on the parameters ofntloelel can have a
non-negligible impact on the value of the Bayes Factor [1&heas the amount
of data gets large. In line with this we have found that usiifiggieent priors on

w1 for the two models can substantially change the Bayes Fadterhave little
strong prior information aboyt, and as noted above the case-control ratio will
have a large effect on the values that best fit the data. Feetreasons we use
a reasonably diffuse prior distribution on this paramehet ts the same for both
models. This acts to focus the comparison between the modédlse parameter

~, which is the main parameter of interest.
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Prior distribution on y

15 2.0

Density
1.0

0.5

0.0
|

0.5 1.0 15 2.0 25

Figure 1: Density plot of the empirical distribution ef from a sample of size

10° from the distributiony ~ N (0, 0.2)

To evaluate the marginal likelihood for the mod&|D| ;) we need to evaluate
the integral

| Plor )P0, (45)

We do this using a Laplace Approximation [13] in which the teosr distribu-
tion is approximated using a Gaussian distribution centredts mode. More

specifically, we use
. . d 1
log P(D|M;) = log P(D|6,, M) +log P(6,| M) + 5 log(2m) — 5 log |A| (46)

whered; is the value of), that maximises’(D|0;, M) P(61|M;), and is known
as themaximum a posteriori (MAP) estimate of);. Also, A is the negative Hes-
sian of P(D|6y, M) P(6,|M,) evaluated ab, andd is the dimension of,. We
use Newton-Raphson optimisation to figdbut if this fails to converge we use
a line-search method. Both approaches are numericallyiegfti¢or this low-

dimensional integral.
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In addition, we note that the evaluation of this marginatlikood will depend
upon the way the alleles at the SNP have been coded 0 and 1, tdraasdculate
the marginal likelihood for the additive model we averagerahe two possible
codings with equal weight.

For dominant and recessive models (denoted/asnd M respectively) the
required marginal likelihoods can be calculated in a sinfdahion. Essentially
the only difference is that the genotype vectors re-coded to indicate the dom-
inant or recessive nature of the SNP. The parameteow denotes the increase
in log-odds due to the dominant or recessive effect of tHealkele. In practice
we use aV (0, 0.5) prior for v to reflect our beliefs that we might expect a slightly
bigger genetic effect from a dominant or recessive models#ae. This results
in a prior distribution for the odds-ratie” as shown in Figure 2. As with the
additive model above we average the marginal likelihood t¢ive two possible

codings for the SNP.

Prior distribution on y

0.6 0.8
| |

Density
0.4

0.2

0.0
|

e‘/

Figure 2: Density plot of the empirical distribution ef from a sample of size

10° from the distributiony ~ N (0, 0.5)
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The general 3-parameter model (denoféd) is slightly more complicated
in that we require a prior distribution on the additional graeter. We use the

following model for the log-odds

log : b pt+yI(Z; = 1)+ 2¢71(Z; = 2) (47)

which has an additive genetic effect parametrisedylbgnd then an additional
recessive effect parametrised #yIn this model the additive model occurs when
¢ = 1. We use a Gaussian priav,(«s, 33) for ¢. In practice we use & (1, 1) for
¢ which results in a symmetric departure from the additive ehoahd we use the
same prior fory i.e. N(0,0.2) as we did above when we considered the additive
model. As with the other models above we average the mariijketihood over
the two possible codings for the SNP.

We have also implemented other priors that are more compnédly efficient[12].

For the general 3-parameter model if we use the formulation

in which each genotype is given its own log-odds parametn the likelihood

can be re-written as
P(DI04, My) = pg* (1 = po)"pi (1 — p1)" p3* (1 — p2)" (49)

wherep, = andp, = This has the form of an independent

et
Ttern ' P1 = Tier 1+ THed

Binomial Likelihood for each of the three penetrance patanse,, p; andp,. A
conjugate Beta prior for these parameters can then be usieti Veltilitates the

exact calculation of the integrals. That is if we let

P(0,M,) | [ Yo l(1 — py)o! 50
4‘ 4 6 77Z)g,7]g)pg ( pg) ( )
where(1sy, n,) = H2d then
2
B(sg + g, g + 1)
P(D|M,) = I I . 51
(DIM) 4=0 B(g, 1) G
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In a similar way the marginal likelihoods for dominant andagsive models using

this class of conjugate priors are

B(so + 10,70 +10) B(s1+ S2 + 1,71 + 12+ m1)

P(D‘M2) B ﬁ(%ﬂlo) 5(%#71)

(52)

and
B(so + s1 4 o, 0 + 11+ 10) B(S2 + 1,72+ 171)
ﬁ(w(h 770) ﬁ(wla 771)

respectively, where Betay, 7o) and Bet#y, ;) priors are used for the baseline

P(D[M;) = (53)

and dominant/recessive effect.

For the null modelV/, of no association we obtain a marginal likelihood of

5(804‘81 + S9 +77Z)0,7‘0+7“1 + 19 +7]0)
5(%,770)

where a Bet@)y, 1) is used for the baseline penetrance.

P(D[M,) = (54)

It is interesting to consider what the conjugate Beta prasrgpenetrance ac-
tually mean in terms of odds-ratios. It can be shown thBttu(a,b) prior on a
probability p is equivalent to a Generalised Logistic distribution on lbge-odds
log £ [14] with mean¥ ) (a) - (b) and varianc& ) (a)+ " (b) wherew ")
is the polygamma function. For example, a uniform distinutp ~ Beta(1,1),
results in a distribution for log-odds centred on 0O with aiaace of7?/3. This
implies that the prior on the difference in log-odds betwéerheterozygote geno-
type and the baseline homozygote genotype has mean 0 andaei? /3. This
is considerably more diffuse than th&0, 0.2) prior we use in the additive model
above. Using simulation from this prior we found that it @sponds to a prior
distribution on the risk-allele odds ratio with a mean of egimately 80, which
is rather larger than might be expected for common humarasése This sug-
gests that for the General, Dominant and Recessive modelkich Beta priors
are applicable it might be more reasonable to set the hygempeters, andb to
be greater than 1. This would bring the priors closer to the-cunjugate priors
we have suggested above.

To illustrate the sensitivity of Bayes Factors to the priesed on the parame-

ters we analysed the dataset used in [12] (see table) usthgsbts of conjugate
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2 | o | 1| 2

Cases | s =90 | sy =60 | 55 =20
Controls| 7o =50 | r; =70 | 7, = 50

and non-conjugate priors described above. Using our pwerget Bayes Factors
for the general 3-parameter model of 12,534 whereas theigatg priors resultin

a Bayes Factor of 8,000. [12] took the view that of the ordek,600 SNPs might
be associated with a given disease and are there of the drilef0®0,000 SNPs
in the human genome giving a prior odds of association of, 0@ So a Bayes
Factor of more than 10,000 is required in order for posteritats of association at
a SNP to be greater than 1. The use of our priors results intanpmsodds of 1.25

whereas the conjugate priors result in a posterior oddssoDj8. For the additive
genetic model we get a Bayes Factor of 29,996 which resulisposterior odds

of 3.

The Bayes Factors described above are based upon the “ptiospdike-
lihood but the natural likelihood for case-control studieghe “retrospective”
likelihood in which genotypes are modelled conditional mglisease status [3].
It will be relatively straightforward to develop Bayes Fart for a retrospective
likelihood for single-SNP association along the lines dégdl. The incorporation
of covariate information into this framework is an area thetds further work but
it seems clear that the prospective likelihood has thergisadvantage that co-
variates are more easily dealt with, while the developmé&B&ges Factors in the

retrospective likelihood setting may be more challenging.

Dealing with missing or uncertain genotypes

As with the frequentist association tests above missingnaetain genotypes
may be handled by thresholding or using expected genotywiesoThese meth-
ods will be accurate and equivalent when there is high ceytan the genotypes.
The Bayesian solution that correctly accounts for the uacdy is a little more

complicated. In the Bayesian framework we need to calcutadeginal likeli-
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hoods likeP(D|M,) in which the parameters of the model have been integrated
out over the prior. In a logistic regression setting thigral is more correctly

written as
P(D|M,) = P(Y|Z; M) = / P(Y|Z: 6, My)P(6,|M,)d6y.  (55)

If there is missing genotype data then we can partition theotype data into
an observed and missing componefit= {Zy, Z,;} and should calculate the

marginal likelihood for the observed data. That is,

P(Y|Zo; M) :/P(Y\ZO;Hl,Ml)P(Ol\Ml)del (56)

which can be written as

P(Y|Z0; M:) ://P(Y|ZO,ZM;«91,Ml)P(ZM|ZO;Ql,Ml)P(Hl\Ml)dZMdQI.
(57)
This is a rather complex integral to evaluate. If we make fh@eximation that
P(Zy|Zo; 01, M) does not depend upon the model or the model param@ters
then we can rearrange the order of integration and integtdtg to leave an inte-
gral of full data marginal likelihoods over the prior of théssing data conditional

on the observed data
P(Y‘Zo, Ml) = /P(Y‘Zo, Z]y[; Ml)P(Z]yHZo)dZM (58)

The accuracy of this approximation will depend upon thedigliof our assump-
tion thatP(Z,/|Zo; 61, M;) does not depend upon the model or the model param-
etersf;. In the setting of this paper the missing data are the misgamptypes

in the study, the observed data are the genotypes at theypeddBNPs together
with the known HapMap haplotypes and fine-scale recomlminatites and,; are

the disease model parameters. We think this is a reasorsdhlengtion since we
have observed that the missing genotypes are very acounai@lited conditional
upon the observed data using a prediction model that is artignt of disease

model parameters.
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In practice the integral in (58) is difficult to evaluate ettyso we use a Monte

Carlo approximation
S
P(Y|Zo: M) = Z P(Y|Zo, Z\); M) (59)

where theZ](C'} are a sample of siz& from the distributionP(Z,;|Zo). The ac-
curacy of this approximation depends to a large extent upewariability in the
distribution P(Z,,;|Zo) which as we mention above is generally low so we use
relatively few samples i.eS = 100.

Applying the above approximation to both the numerator &iedfenominator
of the Bayes Factor we get

P(D|M,) Y3, P(Y|Zo, Z}): My)

BF = = D,
P(D[M,) ZLP(Y|ZO,ZJ(\Z)§M0)

(60)

For our specifid//, of no association, the marginal likelihood does not depend o
the genotype data and is a constant. This means that the Bagts for the SNP

can be re-written as the mean of the Bayes Factors applidteteample of the

full data,
S0 P(Y|Zo, Z3); M)
BF = = e (61)
S5 P(Y]M)
s (i)
1 P(Y|Zo, Zy): M)
= = 62
52 PV (62)
1< -
- EZBFMleMO(ZJ(\j[))' (63)

1

(2

Combining Bayes Factor s across SNPs and models

In a similar way that we average Bayes Factors across rgafisaf a given SNP
to produce a Bayes Factor for that SNP we can also averages Bayg#ors across
SNPs to produce a Bayes Factor for a region. This method leas ©igygested
in a similar context as a way of summarizing information asra set of markers
[15]. The extra information needed is a prior on SNPs. Suppgshave a region

consisting of the set of” SNPs{S,, ..., Sy} and a priorP(S;) on each SNP.
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Then the Bayes Factor for the region is given by

ZiVL P(D‘MD Si)P(Si)

BFiegion = . 64
9o = S P (DIMy; 5, P(5) e
In our setting,P(D|My; S;) is a constant so this reduces to
w
BFregion = ZBF(Si)P(Si)a (65)

=1
which is a weighted sum of Bayes Factors across SNPs. Fon#dgsss in our
paper we use a uniform prior across SNPs when calculatingetien Bayes
Factors for our simulation study. In a similar way it is pd&ésito average across
different models at a given SNP by averaging the Bayes Faéboreach model

weighted by a prior on each model.
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