
A new multipoint method for genome-wide

association studies via imputation of

genotypes : Supplementary Methods

Jonathan Marchini, Bryan Howie, Simon Myers, Gil McVean, Peter Donnelly

Imputation of missing genotypes

The Methods section of the paper describes how missing genotypes are inferred

through the use of a model of an individual’s genotype vectorGi conditional upon

a set ofN known haplotypesH. A Hidden Markov Model (HMM) is used that

has the form

Pr(Gi|H) =
∑

Z
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i ,Z
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i
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iL } are two sequences of

hidden states at theL sites andZ(j)
il ∈ {1, . . . , N}. At a given locus these hidden

states can be thought of as the pair of haplotypes in the setH that are being copied

at that locus to form the genotype vectorGi.

HerePr(Z(1)
i , Z

(2)
i |H) defines the prior probability on how the sequences of

hidden states,Z(1) andZ(2), change along the sequence. We use a Markov Chain

model in which the switching rates depend upon an estimate ofthe fine-scale

recombination map across the genome based upon the HapMap Phase II Data [1].

The initial state of the Markov chain is uniform on theN2 states

Pr(Z
(1)
i1 , Z

(2)
i1 |H) =

1

N2
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The transition probabilities of the chain from sitel to l + 1 are given by
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whereρl = 4Nerl andrl is the per generation genetic distance between sitesl and

l + 1. We use the estimate ofNe = 11, 418 [1]. Overall, the prior distribution on

the hidden states can be written as

Pr(Z
(1)
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(2)
i |H) = Pr(Z
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The termPr(Gi|Z
(1)
i , Z

(2)
i , H) models how the observed genotypes will be

close to but not exactly the same as the haplotypes being copied. This term mimics

the effects of mutation in the approximation to the population genetics model. We

assume that the mutations are independent across sites and that the two alleles on

the haplotype being copied (independently) mutate to theircomplementary alleles

with probabilityλ = θ
2(θ+N)

.
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wherePr((H
Z

(1)
il
l
+ H

Z
(2)
il
l
) → Gil) is given by Table 1. Following [2], we use

θ =
(

∑N−1
i=1

1
i

)−1

.

This model can also be used to infer haplotypes across a region of interest and

to deal with uncertainty in the genotype data (to be described elsewhere).

Imputation of completely missing SNPs

To carry out a test of association at a SNP which is completelyunobserved in both

the set of haplotypesH and the set of sampled dataG we simulateM realisations

of this SNP in theN observed haplotypes in setH. This sample of SNPs is then
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Table 1: The probabilityPr((H
Z

(1)
il
l
+ H

Z
(2)
il
l
) → Gil) of mutating from the

genotype derived by summing the alleles defined by the two copying states

(H
Z

(1)
il
l
+H

Z
(2)
il
l
) to the observed genotypeGil.

treated as a set of known sites in the setH and can be conditioned upon to simulate

untyped variants in the set of dataG. Frequentist or Bayesian test statistics can

then be calculated by averaging over the sample in the appropriate way.

Suppose we wish to simulate a SNP at an unobserved site; let this site be the

jth site of the haplotypes in the setH. We assume thatHij is missing for all

i ∈ {1, . . . , N}. To simulate this missing data we model the joint distribution of

the complete set of haplotypesH. That is,

Pr(H) = Pr(H1)Pr(H2|H1) . . . P r(HN |H1, . . . , HN−1). (6)

Each of the conditional distributionsPr(Hi|·) is approximated by the Hidden

Markov model described in [2] to give

Pr(H) ≈ π(H1)π(H2|H1) . . . π(HN |H1, . . . , HN−1). (7)

This is known as a “product of approximate conditionals” (PAC) model. Given an

ordering of the haplotypesH(1), . . . , H(N) the missing allelesH(1)j , . . . , H(N)j are

simulated sequentially using these approximate conditional distributions. We use

this model to make the following approximation of the probability that H(i)j = k,

wherek ∈ {0, 1}:

Pr(H(i)j = k|H(i) \ H(i)j ; H(1), . . . , H(i−1)) ∝ Pr(H(i), H(i)j = k|H(1), . . . , H(i−1))(8)

≈ π(H(i), H(i)j = k|H(1), . . . , H(i−1)). (9)
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The simulation is initialised by probabilistically choosing a haplotype to which

to apply the first mutation. From the model the probability ofa mutation to a

different allele on the(r + 1)th haplotype is θ
2(r+θ)

. Therefore, if we usepr to

denote the probability of the first mutation occurring on the(r + 1)th haplotype

in the ordering then we have

p1 =
λ1

W
, pr =

1

W

r−1
∏

j=1

(1 − λj)λr, 2 ≤ r < N, (10)

whereλj = θ
2(r+θ)

andW =
∑N−1

j=1 pj.

A draw from this probability distribution determines whichof the haplotypes

carries the first mutation. If this is themth haplotype of the ordering then haplo-

typesH(1)j = H(2)j = . . .H(m−1)j = 0 andH(m)j = 1. Subsequent to this the

alleles are simulated using higher order approximate conditionals as in (9). For

example,H(m+1)j will be simulated from the distribution

Pr(H(m+1)j = k) =
1

B
π(H(m+1), H(m+1)j = k|H(1), . . . , H(m)) k ∈ {0, 1}

(11)

whereB =
∑1

k=0 π(H(m+1), H(m+)j = k|H(1), . . . , H(m))

We have found that the use of a relatively small set of random haplotype or-

derings (10-20) is sufficient to provide a stable set of results. This process can

be repeatedM times to produce a sample of the variation that might exist ata

given SNP in the set of haplotypesH. We then condition on this sample to fur-

ther simulate the variation in the setG. Currently, our implementation of this

approach requires the setG to consist of haplotype data. When computing the re-

quired probabilities to carry out the simulation we take advantage of the standard

recursive calculations that exist for HMMs.

Single SNP disease association

In this section we provide a comprehensive account of the different ways a test

of association at a SNP with known genotypes may be carried out. Also, since
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our methodology carries out tests of association at imputedSNPs that are char-

acterised by a probability distribution on genotypes, we consider how this uncer-

tainty can be taken into account when carrying out a test. Forcompleteness and

comparability we present details for both Frequentist and Bayesian tests of associ-

ation. We focus here on the case where we have a binary phenotype and no other

covariates of interest, but our approach can be naturally and simply extended to

handle continuous phenotypes and covariates.

Consider a SNP with two alleles coded 0 and 1. Suppose we have genotypes

at this SNP in a set ofN individuals (N1 cases andN2 controls). We useYi to

denote the binary disease phenotype of individuali (cases haveYi = 1, controls

haveYi = 0). LetZi ∈ {0, 1, 2} denote the genotype of individuali for the given

coding of the two alleles at the SNP. The data at the SNP can be summarised in

the following table

Z 0 1 2

Cases s0 s1 s2

Controls r0 r1 r2

Frequentist Association Tests

The most widely used method of testing association at a SNP employs a model in

which the odds of disease change multiplicatively with genotype. This model is

specified using a logistic regression framework:

L(θ) = P (Y |Z, µ, γ) =
N
∏

i=1

pYi

i (1 − pi)
1−Yi (12)

where

θ = (µ, γ) log
pi

1 − pi
= µ+ γZi pi =

eµ+γZi

1 + eµ+γZi
. (13)

In this modelµ is the baseline log-odds of disease for the 0 genotypes,γ speci-

fies the increase in log-odds due to each copy of the allele coded 1 andpi is the

probability that individuali develops the disease. The odds ratios of disease for

5



individuals with genotypes 1 and 2 (relative to individualswith the 0 genotype)

areeγ and(eγ)2 respectively. This model is multiplicative on the odds scale and

additive on the log-odds scale.

This is known as a prospective likelihood, but the natural likelihood for case-

control studies is the retrospective likelihood in which genotypes are modelled

conditional upon disease status. It has been shown [3] that (in the absence of

missing data) the maximum likelihood estimators and asymptotic covariance ma-

trix of the log-odds ratios obtained from the retrospectivelikelihood are the same

as those obtained from the prospective likelihood. This implies that the usual

significance tests used in either framework will be equivalent asymptotically and

very similar for large enough sample sizes. Intuitively this makes sense, as the

main parameters of interest that model the differences in genotype proportions

between cases and controls will not be significantly alteredby the over-sampling

of cases that occurs in a case-control design. We do lose the ability to estimate the

prevalence of the disease, but that is never a primary focus of the analysis.

Estimates of the parameters of the model can be obtained by maximising the

likelihood. In general, iterative optimisation techniques are required. One such

technique is the Newton-Raphson method [4] which has the following updates

θt+1 = θt −H−1(θt)U(θt) (14)

where

U(θ) =
d(θ)

dθ
H(θ) =

d2(θ)

dθ2
. (15)

In the above equations(θ) = logL(θ), U(θ) is known as the Score andH(θ) is

the Hessian. To test for association we can test the hypothesis

H0 : γ = 0 vs H1 : γ 6= 0 (16)

using a Maximum Likelihood Ratio Test (MLRT) [4] of the form

λ =
MaxH0L(θ)

MaxH0∪H1L(θ)
where − 2 log λ ∼ χ2

1 asN1, N2 → ∞. (17)

An alternative test statistic is known as the Score Test [5, 6, 7] and is based on

the distribution of the Score underH0. Intuitively, if the MLE of the parameter of
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interest is far from (close to) the null then the Score will tend to be far from (close

to) 0. More specifically, the test is based on the following asymptotic result

U(θ0) ∼ N(0, I(θ0)) whenH0 is true, (18)

whereI(θ0) = −H(θ0) is the Information matrix evaluated atθ0. This result

implies that the Score Statistic, defined as

S = U(θ0)
T I−1(θ0)U(θ0) (19)

is asymptotically distributed asχ2
d whered = dim(θ) [5]. This test is convenient

in that it only requires evaluation of the likelihood under the null hypothesis, not

maximisation of the log-likelihood, and thus is more computationally tractable

than the MLRT.

If the parameterθ is multivariate i.eθ = (µ, γ) and the null is of the form

H0 : γ = γ0, the score and information matrix should be evaluated at theMLE

under the null i.e. atθ = (µ̂, γ0) whereµ̂ is the MLE ofµ with γ fixed atγ0.

For the model above it can be shown that

U(θ) =

N
∑

i=1

(Yi − pi)(1Zi)
T , (20)

H(θ) = −

N
∑

i=1

pi(1 − pi)(1Zi)(1Zi)
T . (21)

The MLE ofµ whenγ = 0 is µ̂ = log N1

N2
andpi = N1

N
∀i. This implies

U(θ0) = (0,
N2

N
(s1 + 2s2) −

N1

N
(r1 + 2r2))

T (22)

I(θ0) =
N1N2

(N)2





N s1 + r1 + 2(s2 + r2)

s1 + r1 + 2(s2 + r2) s1 + r1 + 4(s2 + r2)



 . (23)

The Score Test Statistic isS = UT
γ I

−1Uγ where

Uγ = U(θ0)γ =
N2

N
(s1 + 2s2) −

N1

N
(r1 + 2r2) (24)

Iγ = I(θ0)γγ − I(θ0)γµI
−1(θ0)µµI(θ0)µγ (25)

= s1 + r1 + 4(s2 + r2) − (s1 + r1 + 2(s2 + r2))
2/(N1 +N2) (26)
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thus

S =
N(N2(s1 + 2s2) −N1(r1 + 2r2))

N1N2(s1 + r1 + 4(s2 + r2) − (s1 + r1 + 2(s2 + r2))2)
. (27)

This test statistic is equivalent to the well known Cochran-Armitage Trend Test,

which is a popular statistic used to compare genotype frequencies between cases

and controls [8].

A dominant or recessive model can be fitted in the same way by changing the

coding of the genotype vectorZ. For a dominant model the score test statistic

becomes

S =
N(N2(s1 + s2) −N1(r1 + r2))

N1N2(s1 + r1 + s2 + r2 − (s1 + r1 + s2 + r2)2)
. (28)

For a recessive model the score test statistic becomes

S =
N(N2s2 −N1r2)

N1N2(s2 + r2 − (s2 + r2)2)
. (29)

It is important to note that the above formulae assume a specific coding where one

allele is coded 1 and the other 0 and that different results may be obtained in these

tests if the coding is switched.

A general 3-parameter model can also be considered with the form

log
pi

1 − pi
= µ+ γI(Zi = 1) + φI(Zi = 2) (30)

whereI(Zi = z) is the indicator function of the genotypeZi equallingz where

z ∈ {1, 2}. Under the null hypothesisγ = φ = 0 and a score test can be derived

as above, leading to the test statistic

S = UT I−1U (31)

where

U =
(

s1 −
N1

N
(s1 + r1), s2 −

N1

N
(s2 + r2)

)T

(32)

I =
N1N2

N3





N(s1 + r1) − (s1 + r1)
2 −N(s1 + r1)(s2 + r2)

−N(s1 + r1)(s2 + r2) N(s2 + r2) − (s2 + r2)
2



(33)
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Dealing with missing or uncertain genotypes

When some of the genotypes at a SNP are missing or when there issome uncer-

tainty (specified by a probability distribution) as to the correct genotype at a SNP,

there are three possible ways in which a test can be carried out. The simplest

strategy is to apply a threshold rule to the probability distribution of each SNP.

For example, we might choose to use only those genotypes for which a maximum

posterior genotype call is greater than some valueα. This procedure is simple

and quick, and when there is considerable confidence in the genotype calls this

method will work well. The problem with this method occurs when there is con-

siderable uncertainty about the genotype calls, which may lead to very little data

being used at a given SNP.

An alternative procedure would be to estimate the expected genotype counts

at the SNP to produce the following table.

Z 0 1 2

Cases EYM |YO,θ[s0] EYM |YO,θ[s1] EYM |YO,θ[s2]

Controls EYM |YO,θ[r0] EYM |YO,θ[r1] EYM |YO,θ[r2]

This procedure makes use of all of the data at a SNP and, as withthe threshold

rule described above, will work well when there is high certainty about a SNP.

This method makes no allowance for the variability in the genotype counts, so it

does not completely account for the uncertainty in the genotypes.

To fully account for the uncertainty in genotypes we need to use well estab-

lished statistical theory for missing data problems. Suppose we wish to fit a model

at a given SNP in a case-control sample but we find that some (orall) of the geno-

types are missing at the SNP. Further suppose we have additional non-missing

data in other individuals at the SNP and/or data at other SNPsin the same set of

individuals. We can partition this data structure into two components, observed

dataYO and missing dataYM , and we useYF = (YO, YM) to denote the full data.

In this situation, the correct likelihood to consider is theobserved data likelihood
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given by

l∗(θ;YO) = logP (YO|θ) = log

∫

P (YO, YM |θ)dYM (34)

which is the log of the full data likelihood integrated over the missing data [9]. A

score test can be computed for this likelihood through the calculation of the score

and information matrix of the observed data likelihood

U∗(θ) =
d∗(θ)

dθ
I∗(θ) = −

d2∗(θ)

dθ2
. (35)

It can be shown [10, 9] that

U∗(θ) = EYM |YO,θ[U(θ)] (36)

I∗(θ) = EYM |YO,θ[I(θ)] − VYM |YO,θ[U(θ)] (37)

whereU(θ) andI(θ) are the full data score and information. In this case, the score

statistic would then beS∗ = U∗(θ0)
T (I∗(θ0))

−1U∗(θ0) whereθ0 is the value of

the parameter vector specified by the null hypothesis.

These formulae show that where there is uncertainty in the data at a given

SNP, the correct likelihood-based procedure involves using the distribution of the

missing data conditional upon both the observed data and thevalues of the model

parameters. This implies that we need to generate a family ofdistributions for

the missing data indexed byθ; however, score tests are based on evaluations of

the score and information under the null, so we only need to consider a single

distribution specified by the null hypothesis.

Bayesian Association Tests

In a Bayesian framework the Bayes Factor is the alternative to the classical hy-

pothesis tests described above [11]. Given two possible modelsM1 andM0 the

Bayes Factor is defined as

BF =
P (D|M1)

P (D|M0)
=

∫

P (D|θ1,M1)P (θ1|M1)dθ1
∫

P (D|θ0,M0)P (θ0|M0)dθ0
(38)

whereD is used to denote the data andθ1 andθ0 are the parameters of the models

M1 andM0. The Bayes Factor should be interpreted as the factor by which the
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prior odds of association are changed in light of the data to produce the posterior

odds of association,

Posterior Odds of Association= BF × Prior Odds of Association. (39)

It can be clearly seen that instead of maximising the likelihood under the two

models the parameters are integrated out of the likelihood with a weighting given

by the prior distribution on the parameters. A main advantage of calculating a

Bayes Factor as opposed to a classical test statistic is thatthe approach allows

the incorporation of other relevant information through the use of the prior. For

example, in our setting we may have good reason to believe that an additive odds

ratio of 1.3 is much more plausible for a disease variant thanan odds ratio of

50. We can incorporate this information into the prior distribution to improve

the inference we obtain just from the use of the data alone. Some evidence is

already emerging in the literature that these tests can havemore power than their

frequentist equivalents[12].

In our setting of testing for association at a given SNP, we useM1 to denote

the model in which the SNP is associated with an additive effect on the log-odds

scale andM0 to denote the ’null’ model of no association.

For both models we use a logistic regression model for the likelihood

P (D|θ) =

N
∏

i=1

pYi

i (1 − pi)
1−Yi (40)

where for modelM1 we have

θ1 = (µ, γ) log
pi

1 − pi
= µ+ γZi, (41)

and for modelM0 we have

θ0 = (µ) log
pi

1 − pi
= µ. (42)

We now need to specify the prior distributionP (θ1|M1) = P (µ, γ|M1). The

parameterµ represents the baseline odds of disease. This parameter will be in-

fluenced by the numbers of cases and controls in the dataset. In a case-control
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design the numbers of cases in the sample have been elevated artificially, which

will have a large effect on likely values ofµ. For this reason we wish to use a

prior distribution that allows flexibility in the prior distribution onµ, so we use a

N(α1, β1) distribution. In practice we have usedµ ∼ N(0, 1).

The parameterγ is the increase in log-odds of disease for every copy of the

risk allele andeγ is the additive model odds ratio. We have some good prior

information about likely values of this parameter. For example, it is widely be-

lieved that the genetic variants underlying common diseasewill have risk allele

odds-ratios in the range 1-2 with substantially more weighton the values between

1-1.5. Note that this implies a protective allele odds-ratio in the range 0.5-1 with

substantially more weight on values between 0.67-1. After some experimentation

we settled on a flexible prior distribution ofN(α2, β2) for γ. For example, Figure

1 shows a density plot foreγ from a sample of 1,000,000 draws from the prior

γ ∼ N(0, 0.2).

Overall, the prior distribution on the parameters has the form

P (θ1|M1) ∝
1

β1
e
−

(µ−α1)2

2β2
1

1

β2
e
−

(γ−α2)2

2β2
2 . (43)

ForP (θ0|M0) = P (µ|M0) we use the same prior onµ as in the modelM1. That

is,

P (θ0|M0) ∝
1

β1
e
−

(µ−α1)2

2β2
1 . (44)

It is well understood that the priors on the parameters of themodel can have a

non-negligible impact on the value of the Bayes Factor [11] even as the amount

of data gets large. In line with this we have found that using different priors on

µ for the two models can substantially change the Bayes Factor. We have little

strong prior information aboutµ, and as noted above the case-control ratio will

have a large effect on the values that best fit the data. For these reasons we use

a reasonably diffuse prior distribution on this parameter that is the same for both

models. This acts to focus the comparison between the modelson the parameter

γ, which is the main parameter of interest.
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Figure 1: Density plot of the empirical distribution ofeγ from a sample of size

106 from the distributionγ ∼ N(0, 0.2)

To evaluate the marginal likelihood for the modelP (D|M1) we need to evaluate

the integral
∫

P (D|θ1,M1)P (θ1|M1)dθ1. (45)

We do this using a Laplace Approximation [13] in which the posterior distribu-

tion is approximated using a Gaussian distribution centredon its mode. More

specifically, we use

logP (D|M1) ≈ logP (D|θ̂1,M1) + logP (θ̂1|M1) +
d

2
log(2π)−

1

2
log |A| (46)

whereθ̂1 is the value ofθ1 that maximisesP (D|θ1,M1)P (θ1|M1), and is known

as themaximum a posteriori (MAP) estimate ofθ1. Also,A is the negative Hes-

sian ofP (D|θ1,M1)P (θ1|M1) evaluated at̂θ1 andd is the dimension ofθ1. We

use Newton-Raphson optimisation to find̂θ1 but if this fails to converge we use

a line-search method. Both approaches are numerically efficient for this low-

dimensional integral.

13



In addition, we note that the evaluation of this marginal likelihood will depend

upon the way the alleles at the SNP have been coded 0 and 1. Thus, to calculate

the marginal likelihood for the additive model we average over the two possible

codings with equal weight.

For dominant and recessive models (denoted asM2 andM3 respectively) the

required marginal likelihoods can be calculated in a similar fashion. Essentially

the only difference is that the genotype vectorZ is re-coded to indicate the dom-

inant or recessive nature of the SNP. The parameterγ now denotes the increase

in log-odds due to the dominant or recessive effect of the risk allele. In practice

we use aN(0, 0.5) prior for γ to reflect our beliefs that we might expect a slightly

bigger genetic effect from a dominant or recessive model of disease. This results

in a prior distribution for the odds-ratioeγ as shown in Figure 2. As with the

additive model above we average the marginal likelihood over the two possible

codings for the SNP.

0 1 2 3 4 5
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6
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D
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Figure 2: Density plot of the empirical distribution ofeγ from a sample of size

106 from the distributionγ ∼ N(0, 0.5)
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The general 3-parameter model (denotedM4) is slightly more complicated

in that we require a prior distribution on the additional parameter. We use the

following model for the log-odds

log
pi

1 − pi
= µ+ γI(Zi = 1) + 2φγI(Zi = 2) (47)

which has an additive genetic effect parametrised byγ and then an additional

recessive effect parametrised byφ. In this model the additive model occurs when

φ = 1. We use a Gaussian prior,N(α3, β3) for φ. In practice we use aN(1, 1) for

φ which results in a symmetric departure from the additive model, and we use the

same prior forγ i.e. N(0, 0.2) as we did above when we considered the additive

model. As with the other models above we average the marginallikelihood over

the two possible codings for the SNP.

We have also implemented other priors that are more computationally efficient[12].

For the general 3-parameter model if we use the formulation

log
pi

1 − pi
= µI(Zi = 0) + γI(Zi = 1) + φI(Zi = 2) (48)

in which each genotype is given its own log-odds parameter then the likelihood

can be re-written as

P (D|θ4,M4) = ps00 (1 − p0)
r0ps11 (1 − p1)

r1ps22 (1 − p2)
r2 (49)

wherep0 = eµ

1+eµ , p1 = eγ

1+eγ andp2 = eφ

1+eφ . This has the form of an independent

Binomial Likelihood for each of the three penetrance parametersp0, p1 andp2. A

conjugate Beta prior for these parameters can then be used which facilitates the

exact calculation of the integrals. That is if we let

P (θ4|M4) =

2
∏

g=0

1

β(ψg, ηg)
pψg−1
g (1 − pg)

ηg−1 (50)

whereβ(ψg, ηg) = Γ(ψg)Γ(ηg)
Γ(ψg+ηg)

then

P (D|M4) =
2

∏

g=0

β(sg + ψg, rg + ηg)

β(ψg, ηg)
. (51)
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In a similar way the marginal likelihoods for dominant and recessive models using

this class of conjugate priors are

P (D|M2) =
β(s0 + ψ0, r0 + η0)

β(ψ0, η0)

β(s1 + s2 + ψ1, r1 + r2 + η1)

β(ψ1, η1)
(52)

and

P (D|M3) =
β(s0 + s1 + ψ0, r0 + r1 + η0)

β(ψ0, η0)

β(s2 + ψ1, r2 + η1)

β(ψ1, η1)
(53)

respectively, where Beta(ψ0, η0) and Beta(ψ1, η1) priors are used for the baseline

and dominant/recessive effect.

For the null modelM0 of no association we obtain a marginal likelihood of

P (D|M0) =
β(s0 + s1 + s2 + ψ0, r0 + r1 + r2 + η0)

β(ψ0, η0)
(54)

where a Beta(ψ0, η0) is used for the baseline penetrance.

It is interesting to consider what the conjugate Beta priorson penetrance ac-

tually mean in terms of odds-ratios. It can be shown that aBeta(a, b) prior on a

probabilityp is equivalent to a Generalised Logistic distribution on thelog-odds

log p

1−p
[14] with meanΨ(0)(a)−Ψ(0)(b) and varianceΨ(1)(a)+Ψ(1)(b) whereΨ(r)

is the polygamma function. For example, a uniform distribution, p ∼ Beta(1, 1),

results in a distribution for log-odds centred on 0 with a variance ofπ2/3. This

implies that the prior on the difference in log-odds betweenthe heterozygote geno-

type and the baseline homozygote genotype has mean 0 and variance2π2/3. This

is considerably more diffuse than theN(0, 0.2) prior we use in the additive model

above. Using simulation from this prior we found that it corresponds to a prior

distribution on the risk-allele odds ratio with a mean of approximately 80, which

is rather larger than might be expected for common human diseases. This sug-

gests that for the General, Dominant and Recessive models inwhich Beta priors

are applicable it might be more reasonable to set the hyper-parametersa andb to

be greater than 1. This would bring the priors closer to the non-conjugate priors

we have suggested above.

To illustrate the sensitivity of Bayes Factors to the priorsused on the parame-

ters we analysed the dataset used in [12] (see table) using both sets of conjugate
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Z 0 1 2

Cases s0 = 90 s1 = 60 s2 = 20

Controls r0 = 50 r1 = 70 r2 = 50

and non-conjugate priors described above. Using our priorswe get Bayes Factors

for the general 3-parameter model of 12,534 whereas the conjugate priors result in

a Bayes Factor of 8,000. [12] took the view that of the order of1,000 SNPs might

be associated with a given disease and are there of the order of 10,000,000 SNPs

in the human genome giving a prior odds of association of 1/10,000. So a Bayes

Factor of more than 10,000 is required in order for posteriorodds of association at

a SNP to be greater than 1. The use of our priors results in a posterior odds of 1.25

whereas the conjugate priors result in a posterior odds of just 0.8. For the additive

genetic model we get a Bayes Factor of 29,996 which results ina posterior odds

of 3.

The Bayes Factors described above are based upon the “prospective” like-

lihood but the natural likelihood for case-control studiesis the “retrospective”

likelihood in which genotypes are modelled conditional upon disease status [3].

It will be relatively straightforward to develop Bayes Factors for a retrospective

likelihood for single-SNP association along the lines described. The incorporation

of covariate information into this framework is an area thatneeds further work but

it seems clear that the prospective likelihood has the distinct advantage that co-

variates are more easily dealt with, while the development of Bayes Factors in the

retrospective likelihood setting may be more challenging.

Dealing with missing or uncertain genotypes

As with the frequentist association tests above missing or uncertain genotypes

may be handled by thresholding or using expected genotype counts. These meth-

ods will be accurate and equivalent when there is high certainty in the genotypes.

The Bayesian solution that correctly accounts for the uncertainty is a little more

complicated. In the Bayesian framework we need to calculatemarginal likeli-
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hoods likeP (D|M1) in which the parameters of the model have been integrated

out over the prior. In a logistic regression setting this integral is more correctly

written as

P (D|M1) = P (Y |Z;M1) =

∫

P (Y |Z; θ1,M1)P (θ1|M1)dθ1. (55)

If there is missing genotype data then we can partition the genotype data into

an observed and missing component,Z = {ZO, ZM} and should calculate the

marginal likelihood for the observed data. That is,

P (Y |ZO;M1) =

∫

P (Y |ZO; θ1,M1)P (θ1|M1)dθ1 (56)

which can be written as

P (Y |ZO;M1) =

∫ ∫

P (Y |ZO, ZM ; θ1,M1)P (ZM |ZO; θ1,M1)P (θ1|M1)dZMdθ1.

(57)

This is a rather complex integral to evaluate. If we make the approximation that

P (ZM |ZO; θ1,M1) does not depend upon the model or the model parametersθ1

then we can rearrange the order of integration and integrateoutθ1 to leave an inte-

gral of full data marginal likelihoods over the prior of the missing data conditional

on the observed data

P (Y |ZO;M1) =

∫

P (Y |ZO, ZM ;M1)P (ZM |ZO)dZM . (58)

The accuracy of this approximation will depend upon the validity of our assump-

tion thatP (ZM |ZO; θ1,M1) does not depend upon the model or the model param-

etersθ1. In the setting of this paper the missing data are the missinggenotypes

in the study, the observed data are the genotypes at the genotyped SNPs together

with the known HapMap haplotypes and fine-scale recombination rates andθ1 are

the disease model parameters. We think this is a reasonable assumption since we

have observed that the missing genotypes are very accurately imputed conditional

upon the observed data using a prediction model that is independent of disease

model parameters.
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In practice the integral in (58) is difficult to evaluate exactly so we use a Monte

Carlo approximation

P (Y |ZO;M1) =
1

S

S
∑

i=1

P (Y |ZO, Z
(i)
M ;M1) (59)

where theZ(i)
M are a sample of sizeS from the distributionP (ZM |ZO). The ac-

curacy of this approximation depends to a large extent upon the variability in the

distributionP (ZM |ZO) which as we mention above is generally low so we use

relatively few samples i.e.S = 100.

Applying the above approximation to both the numerator and the denominator

of the Bayes Factor we get

BF =
P (D|M1)

P (D|M0)
=

∑S

i=1 P (Y |ZO, Z
(i)
M ;M1)

∑S

i=1 P (Y |ZO, Z
(i)
M ;M0)

. (60)

For our specificM0 of no association, the marginal likelihood does not depend on

the genotype data and is a constant. This means that the BayesFactor for the SNP

can be re-written as the mean of the Bayes Factors applied to the sample of the

full data,

BF =

∑S

i=1 P (Y |ZO, Z
(i)
M ;M1)

∑S

i=1 P (Y |M0)
(61)

=
1

S

S
∑

i=1

P (Y |ZO, Z
(i)
M ;M1)

P (Y |M0)
(62)

=
1

S

S
∑

i=1

BFM1vsM0(Z
(i)
M ). (63)

Combining Bayes Factors across SNPs and models

In a similar way that we average Bayes Factors across realisations of a given SNP

to produce a Bayes Factor for that SNP we can also average Bayes Factors across

SNPs to produce a Bayes Factor for a region. This method has been suggested

in a similar context as a way of summarizing information across a set of markers

[15]. The extra information needed is a prior on SNPs. Suppose we have a region

consisting of the set ofW SNPs{S1, . . . , SW} and a priorP (Si) on each SNP.
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Then the Bayes Factor for the region is given by

BFregion =

∑W

i=1 P (D|M1;Si)P (Si)
∑W

i=1 P (D|M0;Si)P (Si)
. (64)

In our setting,P (D|M0;Si) is a constant so this reduces to

BFregion =

W
∑

i=1

BF (Si)P (Si), (65)

which is a weighted sum of Bayes Factors across SNPs. For the analysis in our

paper we use a uniform prior across SNPs when calculating theregion Bayes

Factors for our simulation study. In a similar way it is possible to average across

different models at a given SNP by averaging the Bayes Factors for each model

weighted by a prior on each model.
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