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ABSTRACT

Motivation: Inference about differential expression is a typical

objective when analyzing gene expression data. Recently, Bayesian

hierarchical models have become increasingly popular for this type

of problem. The two most common hierarchical models are the hierar-

chical Gamma–Gamma (GG) and Lognormal–Normal (LNN) models.

However, to facilitate inference, some unrealistic assumptions have

been made. One such assumption is that of a common coefficient of

variation across genes, which can adversely affect the resulting

inference.

Results: In this paper, we extend both the GG and LNN modeling

frameworks to allow for gene-specific variances and propose EM

basedalgorithms forparameterestimation.Theproposedmethodology

is evaluated on three experimental datasets: one cDNA microarray

experiment and twoAffymetrix spike-in experiments. The two extended

models significantly reduce the false positive rate while keeping a

high sensitivity when compared to the originals. Finally, using a simu-

lation study we show that the new frameworks are also more robust

to model misspecification.

Availability: The R code for implementing the proposed methodology

can be downloaded at http://www.stat.ubc.ca/~c.lo/FEBarrays

Contact: c.lo@stat.ubc.ca

Supplementary information:Thesupplementarymaterial is available

at http://www.stat.ubc.ca/~c.lo/FEBarrays/supp.pdf

1 INTRODUCTION

As a natural development following the success of genome sequen-

cing, DNA microarray technology has emerged for the sake of

exploring the functioning of genomes (Schena et al., 1995). By
exploiting the ability of a single-strand nucleic acid molecule to

hybridize to a complementary sequence, researchers can simulta-

neously measure the expression levels of thousands of genes within

a cell. A common task with microarray is to determine which genes

are differentially expressed under two different conditions.

In recent years, there has been a considerable amount of work on

the detection of differentially expressed genes. An early statistical

treatment can be found in Chen et al. (1997) A common approach is

to test a hypothesis for each gene using variants of t or F-statistics
and then try to correct for multiple testing (Tusher et al., 2001;
Efron et al., 2001; Dudoit et al., 2002). Due to the small number of

replicates, variation in gene expression can be poorly estimated.

Tusher et al. (2001) and Baldi and Long (2001) suggested using a

modified t statistic where the denominator has been regularized by

adding a small constant to the gene-specific variance estimate.

Similar to an empirical Bayes approach this results in shrinkage

of the empirical variance estimates towards a common estimate.

Lönnstedt and Speed (2002) proposed an empirical Bayes normal

mixture model for gene expression data, which was later extended

to the two condition case by Gottardo et al. (2003) and to more

general linear models by Smyth (2004) and Cui et al. (2005), though
Smyth (2004) and Cui et al. (2005) did not use mixture models but

simply empirical Bayes normal models for variance regularization.

In each case, the authors derived explicit gene-specific statistics

and did not consider the problem of estimating p the proportion

of differentially expressed genes. Newton et al. (2001) developed a

method for detecting changes in gene expression in a single two-

channel cDNA slide using a hierarchical gamma–gamma (GG)

model. Kendziorski et al. (2003) extended this to replicate chips

with multiple conditions, and provided the option of using a hier-

archical lognormal–normal (LNN) model. Both models are

implemented in an R package called EBarrays (Empirical Bayes

microarrays) and from now on we use the name EBarrays to refer to

the methodology. Both EBarrays model specifications rely on the

assumption of a constant coefficient of variation across genes. In

this paper, we extend both models by releasing this assumption and

introduce EM type algorithms for parameter estimation, thus

extending the work of Lönnstedt and Speed (2002) and Gottardo

et al. (2003) as well.
The structure of the paper is as follows. The extended forms of

the two EBarrays hierarchical models and the estimation procedures

are presented in Section 2. In Section 3, the performance of the

extended models is examined on three experimental datasets and

compared to five other baseline and commonly used methods.

Section 4 presents a simulation study to further compare our empiri-

cal Bayes approach to the other methods. Finally, in Section 5 we

discuss our results and possible extensions.

2 A BAYESIAN FRAMEWORK FOR
IDENTIFYING DIFFERENTIAL EXPRESSION

2.1 A hierarchical model for measured intensities

In a typical microarray experiment, two conditions are compared

for gene expression. Let us denote by Xgr and Ygr the intensities

of gene g from the rth replicate in the two conditions, respectively.�To whom correspondence should be addressed.
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Measurements between the two conditions are assumed to be inde-

pendent. The proposed model is an extension of the EBarrays

framework (Newton et al., 2001; Kendziorski et al., 2003). Exten-
sions to the original two types of model formulation are considered

in turn below.

GG. Here, a Gamma distribution is used to model the measured

intensities of a given gene. Explicitly, the probability density of

Xgr (resp. Ygr) with shape and rate parameters ag and �gx (resp. �gy) is
given by

pðx j ag‚�gxÞ ¼
1

GðagÞ
�aggxx

ag�1expð� x�gxÞ for x > 0: ð1Þ

To borrow strength across genes we assume an exchangeable

Gamma(a0, n) prior for the rate parameters, and a Lognormal(h, j)

prior for the shape parameters. The Gamma prior is used for

simplicity as it is conjugate to the sampling distribution (Newton

et al., 2001) while the Lognormal prior is suggested by a histogram

plot of the empirical shape parameters estimated by the method

of moments (see Supplementary material). The hyperparameters

a0, n, h and j are assumed unknown and will be estimated as

part of our approach.

The proposed model extends the EBarrays GG model by placing

a prior on the shape parameter. In the original GG model, the

shape parameter a was assumed to be constant and common to

all genes whereas now it is gene specific. However, strength is

borrowed across genes through the prior distribution. By ‘borrowing

strength’, we mean that information from all genes is used when

estimating ag, which comes from the hyperparmeters through

the prior.

LNN. The second formulation is an extension of the EBarrays

LNN framework. The intensities are assumed to be lognormally

distributed, i.e. the log-transformed intensities are from a normal

distribution, and we write log Xgr � N(mgx, t
�1
gx ) and log Ygr �

N(mgy, t
�1
gy ), respectively. A conjugate prior is imposed on the

mean mgx (resp. mgy) and precision tgx (resp. tgy). Explicitly, we

set mgx j tgx � N(m, kt�1
gx Þ and tgx � Gamma(a,b) respectively. In

the original LNN model, the precision t was assumed to be constant

and common to all genes. Our proposed formulation extends the

EBarrays model by releasing the assumption of a constant coeffi-

cient of variation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðt�1Þ � 1

p
, which is equivalent to the

assumption of a constant variance t�1 on the log scale. Note that

our proposed formulation is also the framework of Gottardo

et al. (2003). However, in this paper we use an EM based algorithm

to estimate the unknown parameters, including the proportion of

differentially expressed genes.

On assuming a prior on both mgx (resp. mgy) and tgx (resp. tgy)

common to all genes, strength is borrowed across genes through

both means and variances of the distributions when making infer-

ences. Again, we mean that information from all genes is used when

estimating both mgx (resp. mgy) and tgx (resp. tgy). In particular, this

is essential for variances—due to the small number of replicates

variance estimates can be very noisy. Similar ideas have been

used in Smyth (2004) and Cui et al. (2005), where the authors

concentrated on variance regularization.

2.2 A mixture model for differential expression

We use a mixture model to identify differentially expressed genes.

We assume that a priori �gx ¼ �gy (resp. mgx ¼ mgy) with probability

1 � p and �gx 6¼ �gy (resp. mgx 6¼ mgy) with probability p. For the
former case, the model specification is just as stated in Section 2.1,

while the latter case is modeled through setting the gene-specific

parameters common to both conditions.

Let us denote by zg the indicator variable equal to one if there is

real change in expression for gene g and zero otherwise. Then one

can define the posterior probability of change, Pr(zg ¼ 1 j xg,yg,p,c),
where xg ¼ (xg1, xg2, . . . , xgRx

)0 and yg ¼ (yg1, yg2, . . . , ygRy
)0 and c

denotes the vector of unknown hyperparameters. Applying the

Bayes rule, we obtain

ẑzg ¼ Prðzg ¼ 1 j xg‚yg‚p‚cÞ

¼
ppAðxg‚yg jcÞ

ppAðxg‚yg jcÞ þ ð1 � pÞp0ðxg‚yg jcÞ
‚

ð2Þ

where pA(xg, yg jc) and p0(xg,yg jc) denote the joint marginal

density of the measured intensities of gene g under both the alter-

native (differential expression) and null (no differential expression)

models respectively given c. The marginal density for the extended

LNN model can be computed explicitly and is given in Appendix.

For the extended GG model only �g can be integrated out, and the

corresponding ‘conditional’ marginal density is given in Appendix.

In the next section we describe an approximate estimation

procedure to deal with this difficulty.

2.3 Parameter estimation using the EM-algorithm

Here we start with the extended LNN model as the estimation

procedure is straightforward. The vector of unknown parameters

F ¼ (c0,p)0, where c ¼ (m, k,a,b)0, can be estimated by maximiz-

ing the integrated likelihood using the EM-algorithm (Dempster

et al., 1977). The estimation of p is important since it calibrates

the posterior probability of change for multiple testing, as seen in

(2). Such estimation is also part of some multiple testing procedure

such as Storey’s q-value (Storey, 2003). Estimation of the parameter

p can be difficult (Smyth, 2004; Bhowmich et al., 2006), and as

suggested by Newton et al. (2001) we place a Beta(2,2) prior over p,
which avoids numerical issues when p gets close to 0 or 1. Given the
large number of genes, the prior on p has essentially no effect on the
final estimation, and thus on the number of genes called differen-

tially expressed.

Treating the zg’s as missing data, the complete data log-likelihood

is given by

lcðF jx‚y‚zÞ ¼
X
g

½zg logpAðxg‚yg jcÞþ ð1� zgÞ logp0ðxg‚yg jcÞ

þ ð1þ zgÞ logpþð2� zgÞ log ð1� pÞ�: ð3Þ

During the E-step, the expectation is obtained by replacing zg by ẑzg
as given by (2) while the M-step consists of maximizing the con-

ditional expectation with respect to the parameter vector F ¼
(c0,p)0. At convergence, the estimated parameters can be substituted

into (2) to compute the posterior probability of change for

each gene.

Because the prior of the extended GG model is not conjugate to

the sampling distribution, only the marginal density conditional on
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ag is analytically available for each gene. We refer to it as the

conditional marginal density. To incorporate information about

the prior for the ag’s, we propose to estimate the hyperparameters

h and j beforehand through an empirical Bayes approach using

the method of moments (see Appendix for details), and add

log[p(ag jh, j)] to the log conditional density as a penalty term.

Again, treating the zg’s as missing data, the corresponding modified

complete data log-likelihood can be written as

~llcðF j x‚y‚zÞ ¼
X
g

�
zg log pAðxg‚yg jc‚agÞ

þ ð1 � zgÞ log p0ðxg‚yg jc‚agÞ
þ ð1þ zgÞ log ðpÞ þ ð2 � zgÞ log ð1 � pÞ

þ logpðag jh‚jÞ
�
‚

ð4Þ

where c ¼ (a0, n)
0. The vector of parameters to be estimated

becomes F ¼ (a1, a2, . . . , aG,c
0, p)0.

Similar to the extended LNNmodel, we can use the EM algorithm

to maximize the modified marginal likelihood. During the E-step to

obtain the conditional expectation of the modified complete data

log-likelihood zg in (4) is replaced by ẑzg as in (2). The M-step

consists of maximizing~llc given the current zg’s. Such maximization

can be difficult given the high-dimensionality of F and here we

suggest to exploit the conditional structure of the model during the

maximization step, namely that given c and p, the genes are

conditionally independent and each ag can be maximized over

separately. Let us split the unknown parameters into two groups,

namely,F1 ¼ (a1, a2, . . . , aG)
0 (gene-specific shape parameters) and

F2 ¼ (c0,p)0 (global parameters). Then the M-step would consist of

iteratively maximizing over F1 given F2 and F2 given F1. Here,

we decided to maximize over F1 only once during the first iteration

to reduce the computational burden, and then take EM-iterations

with respect to F2 only until convergence. It turns out that the

estimates obtained were very similar to the ones obtained when

maximizing over both F1 and F2, while significantly reducing

the computing time.

Details about the estimation of (h, j) and initialization of the EM

algorithm can be found in Appendix.

3 APPLICATION TO EXPERIMENTAL DATA

3.1 Data description

To illustrate our methodology we use three publicly available

microarray datasets: one cDNA experiment and two Affymetrix

spike-in experiments. All three have the advantage that in each

case the true state (differentially expressed or not) of all or some

of the genes is known.

The HIV-1 data. The expression levels of 4608 cellular RNA

transcripts were measured 1 h after infection with human immuno-

deficiency virus type 1 (HIV-1) using four replicates on four

different slides. 13 HIV-1 genes have been included in the set of

RNA transcripts to serve as positive controls, i.e. genes known in

advance to be differentially expressed. Meanwhile, 29 non-human

genes have also been included and act as negative controls, i.e.

genes known to be not differentially expressed. Another dataset

was obtained by repeating the four aforementioned experiments

but with an RNA preparation different from that for the first dataset.

For easy reference, in this paper we label the two datasets as

HIV-1A and HIV-1B, respectively. See van’t Wout et al. (2003)
for more details of the HIV-1 data. The data were lowess normalized

using a global lowess normalization step (Yang et al., 2002).
The HGU95A Spike-in data. This dataset was obtained from a

spike-in study by Affymetrix used to develop and validate the MAS

5.0 (Affymetrix Manual, 2001) platform. The concentrations of 14

spiked-in human gene groups in 14 groups of HGU95A GeneChip�
arrays were arranged in a Latin square design. The concentrations of

the 14 groups in the first array group are 0, 0.25, 0.5, 1, 2, 4, 8, 16,

32, 64, 128, 256, 512 and 1024 pM, respectively. Each subsequent

array group rotates the spike-in concentrations by one group such

that each human gene was spiked-in at a particular concentration

level on exactly one array group, and each concentration level came

with exactly one spiked-in gene group in each array group. There

are three technical replicates in each array group. The third array

group has been removed from the analysis as one of its replicates

was missing. We use a set of 16 spiked-in genes in our list in

recognition of the extras reported by Hsieh et al. (2003) and

Cope et al. (2004). Analysis is performed on each set of probe

summary indices computed using gcRMA (Wu et al., 2004),

RMA (Irizarry et al., 2003b), MAS 5 and dChip (Li and Wong,

2001), respectively.

The HGU133A Spike-in data. This dataset was obtained from

another spike-in study done with HGU133A arrays. A total of 42

spiked-in genes were organized in 14 groups, and the concentration

used were 0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256 and

512 pM. The arrangement of the spike-in concentrations was similar

to the Latin square design stated above. Again, there are three

technical replicates in each array group. For more information

see Irizarry et al. (2003a). In addition to the original 42, we

claim that another 20 genes should also be included in the spiked-

in gene list as they consistently show significant differential expres-

sion across the array groups in the exploratory data analysis. Similar

observations have been made by Sheffler et al. (2005). Moreover,

the probe sets of three genes contain probe sequences exactly

matching those for the spiked-ins. These probes should be

hybridized by the spike-ins as well. As a result, our expanded

spiked-in gene list contains 65 entries in total.

3.2 Results

We compare our proposed methods—extended GG (eGG) and

extended LNN (eLNN) models—to five other methods, namely,

EBarrays GG and LNN models, the popular Significance Analysis

of Microarrays (SAM) (Tusher et al., 2001), Linear Models for

Microarray data (LIMMA) (Smyth, 2004), and a fully Bayesian

approach named BRIDGE (Gottardo et al., 2006a). The results

have been organized in Tables 1–3.

In the analysis of the HIV-1 data, we obtain the number of genes

called differentially expressed (DE) for each method. Among those

genes called DE, we look at the number of true positives (TP), i.e.

genes known to be DE in advance, and the number of false positives

(FPs), i.e. genes known to be not DE. Gottardo et al. (2006b)
showed that one of the HIV genes, which was expected to be highly

differentially expressed had a very small estimated log ratio and

did not properly hybridize in the second experiment (HIV-1B).
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We removed the corresponding gene from the list of known

differentially expressed genes. Thus there are 13 genes known

to be DE in the first experiment and 12 in the second. To compare

the performance between the seven methods, we intend to control

the false discovery rate (FDR) at a fixed level of 0.1. The FDR

cutoffs can be selected using a direct posterior probability calcu-

lation as described in Newton et al. (2004). For the HIV-1A dataset,

when the FDR is controlled at 0.1, all methods can identify the

13 positive controls. Meanwhile, EBarrays LNN has made one

FP. Similar result is observed when the HIV-1B dataset is consid-

ered. All methods detect 11 out of the 12 positive controls but

both versions of EBarrays (GG and LNN) have made one FP.

Concluded from the HIV-1 datasets, along with LIMMA, SAM

and BRIDGE our proposed eGG and eLNN methods appear to

perform the best as they recognize the most positive controls and

do not get any FP.

For the HGU95A spike-in data, after removing the array

group with one missing replicate, we have a set of 13 array

groups. To evaluate the different methods we compare the first

array group to the other array groups, leading to 12 comparisons.

Since dChip may return negative probe summary indices, which

cannot be processed by the aforementioned methods, those genes

with negative summary indices were filtered out. This excluded 5.5

spike-ins on average. This time, since we know the actual status of

each gene, we can check the true FDR of each method against the

desired FDR. In addition, we look at the number of false negative

(FNs) as a power assessment.

Unlike the results on the HIV-1 data, SAM does not show a

competitive performance. A large number of FN (>11) have

been observed with SAM for both gcRMA and RMA summary

indices, considering that there are only 16 entries in our spiked-

in gene list. eLNN and LIMMA have the actual FDR closest to the

desired FDR in general, though they have a relatively large number

of FN cases regarding MAS 5 and dChip summary indices. The

actual FDRs for EBarrays GG and LNN methods are too high

compared to the other methods, and our proposed extended versions

have lowered the rates by a wide margin while keeping relatively

small FN rates.

The HGU133A spike-in data have a set of 14 array groups, and

therefore 13 comparisons have been made. A total of 14 out of 65

spiked-in genes on average have been filtered from the analysis with

dChip due to negative summary indices. The relative performance

of the six methods is similar to that for the HGU95A data. It is worth

mentioning that eGG is the only method that can sustain the FN

cases to a low number for all four types of probe summary indices,

though its FDR is higher than the desired one. SAM has consider-

ably more FN cases than the other methods for gcRMA and RMA,

while its FDR is close to the desired one. Similarly, eLNN and

LIMMA exhibit good FDR performance but with better FN rates.

Again, the FDRs for EBarrays GG and LNN methods are at quite a

high-level, while their extended versions (eGG and eLNN)

have significantly reduced the rates while keeping relatively

small FN rates.

Table 2. Analysis of differential expression with the HGU95A spike-in data

Method FN FDR

gcRMA

GG 2.42 0.22

LNN 1.83 0.22

eGG 1.58 0.28

eLNN 5.83 0.09

LIMMA 4.33 0

SAM 11.25 0.05

BRIDGE 3.6 0.06

RMA

GG 2.42 0.28

LNN 2.42 0.25

eGG 2.25 0.2

eLNN 3.25 0.15

LIMMA 3.08 0.08

SAM 12.58 0.23

BRIDGE 2.33 0.17

MAS5

GG 6.5 0.7

LNN 5.42 0.84

eGG 4.33 0.53

eLNN 7.08 0.26

LIMMA 5.58 0.27

SAM 5.83 0.27

BRIDGE 12.08 0

dChip

GG 3.25 0.7

LNN 3.58 0.74

eGG 2.83 0.43

eLNN 6.08 0.34

LIMMA 4.83 0.3

SAM 3 0.45

BRIDGE 4.00 0.34

The FDR is controlled at 0.1. The values of FN and FDR shown are the averages across

the 12 comparisons.

Table 1. Analysis of differential expression with the HIV-1 data

Method DE TP* FP*

HIV-1A

GG 24 13 0

LNN 18 13 1

eGG 13 13 0

eLNN 14 13 0

LIMMA 13 13 0

SAM 13 13 0

BRIDGE 14 13 0

HIV-1B

GG 18 11 1

LNN 18 11 1

eGG 12 11 0

eLNN 12 11 0

LIMMA 11 11 0

SAM 13 11 0

BRIDGE 11 11 0

The FDR is controlled at 0.1.
�The numbers of TP and FP are based on the controls, namely, the 13 (resp. 12 in the

second experiment) HIV-1 and the 29 non-human genes of which the states are known in

advance, only. They do not represent the true numbers of TP and FP in the entire data.

Flexible empirical Bayes models

331



4 SIMULATION STUDIES

4.1 Data generation

We now use a series of simulation to study the performance of our

empirical Bayes framework under different model specifications

compared to the original EBarrays framework and the methods

presented in Section 3.2. In order to do so, we generated data

from the following models: EBarrays GG (a ¼ 5, a0 ¼ 0.8, n ¼
15), EBarrays LNN (m ¼ 5, s2 ¼ 2, t�1 ¼ 0.25, s2 being the

variance parameter of the prior of mgx or mgy), extended GG (h ¼ 2,

j¼ 1, a0¼ 1, n¼ 20) and extended LNN (m¼ 5, k¼ 12, a¼ 2, b¼
0.5). The values of the parameters are set in the proximity of the

estimates from the HIV-1 data. We fixed the number of genes to

500, the number of replicates to three in each group and generated

100 datasets under each of the above models for two different values

of p ¼ {0.1,0.2}.

4.2 Results

The seven methods mentioned in Section 3.2 are applied to each

simulated dataset to make inference about differential expression.

Results are summarized graphically in two ways: a plot of the actual

FDR against the desired FDR, and a plot of the number of FP against

the number of FN. The curves show the average results across the

100 simulated datasets. For each dataset, results are collected by

setting the cutoffs for the posterior probabilities or p-values at

different points in turn in detecting differential expression.

As expected, the EBarrays GG and LNN models perform quite

poorly compared to the eGG and eLNNmodels when the variance is

Table 3. Analysis of differential expressionwith theHGU133A spike-in data

Method FN FDR

gcRMA

GG 5.85 0.2

LNN 5.92 0.2

eGG 6.46 0.23

eLNN 13.08 0.07

LIMMA 10.38 0.08

SAM 22.23 0.12

BRIDGE 6.01 0.11

RMA

GG 4.38 0.14

LNN 4.46 0.13

eGG 5.23 0.06

eLNN 6.69 0.09

LIMMA 6.15 0.03

SAM 17.15 0.1

BRIDGE 4.53 0.08

MAS5

GG 15.77 0.89

LNN 15.85 0.87

eGG 9.23 0.59

eLNN 15.77 0.23

LIMMA 13.85 0.31

SAM 13.77 0.28

BRIDGE 18.46 0.25

dChip

GG 9.31 0.48

LNN 9.69 0.58

eGG 6.69 0.44

eLNN 11.31 0.3

LIMMA 9.38 0.26

SAM 5.08 0.28

BRIDGE 6.92 0.51

The FDR is controlled at 0.1. The values of FN and FDR shown are the averages across

the 13 comparisons.

Fig. 1. Simulation results generated from the extended GG model.

Fig. 2. Simulation results generated from the extended LNN model.
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not constant and clearly under estimate the FDR (Figs 1 and 2). On

the other hand, the eGG and eLNN models are comparable to

EBarrays when the variance is constant, showing that strength bor-

rowing across genes is working well (Figs 3 and 4). Finally,

both GG and eGG (resp. LNN and eLNN) appear to perform rela-

tively well under LNN and eLNN (resp. GG and eGG) model

specifications respectively. This confirms previous simulation stud-

ies (Kendziorski et al., 2003).
Overall, SAM is not performing very well and tend to under

estimate the FDR by a large amount. Meanwhile, LIMMA and

BRIDGE consistently show good performance for data generated

from the four models, suggesting that they are good candidates for

identifying differential expression under a wide variety of settings.

5 DISCUSSION

We have extended the EBarrays empirical Bayes framework for

differential gene expression by releasing the constant coefficient of

variation assumption, and introducing two algorithms that can be

used for parameter estimation. Using both experimental and simu-

lated data we have shown that the extended framework clearly

improves the original framework. In addition, it appears that the

eLNN model performs better than the eGG one as shown with the

spike-in data, and that it is comparable to BRIDGE, a more com-

putational fully Bayesian approach. This is not the case for the

original EBarrays framework, where the GG model generally per-

forms better. This confirms previous findings of Gottardo et al.
(2006a) and suggests that EBarrays GG is more robust to the

model misspecification of a constant coefficient of variation com-

pared to the LNN formulation. However, when the EBarrays model

formulations are extended and the constant coefficient of variation

assumption is released, the LNN model seems more appropriate.

In spite of the complications accompanying the model enhance-

ments relative to the original EBarrays framework, the proposed

methodology remains to be highly competitive in terms of process-

ing time. In the analysis with the HGU133A data of >20 000 genes,
it takes about 5 min to complete the eGG or eLNN analysis of one

comparison between the two array groups each with three replicates

on the R platform.

In this paper, we have compared our approach with five alterna-

tives, but there are many other methods for detecting differentially

expressed genes with gene expression data. We chose these five

because they are either obvious baseline methods or widely used;

they are also representative of other methods. More comparisons

between statistical tests can be found in Cui and Churchill (2003).

Among explicit adjustments for multiple testing, we considered

only the FDR control method as it is interpretable under each

method.

For simplicity and ease of comparison, we assumed that we were

in a situation with only two conditions of interest. However, the

methodology could easily be extended to the multiple condition

case (Kendziorski et al., 2003) or more complex ANOVA type

designs (Cui and Churchill, 2003; Smyth, 2004).
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APPENDIX

Marginal densities of measured intensities

Under the extended GG model, the joint marginal densities

of measured intensities of a given gene g are developed without

integrating ag away, i.e. they are conditional on ag. Denote by

G(x; a,b) the Gamma density function with shape a and rate b.
The explicit forms of the conditional marginal densities are

given by

pAðxg‚Yg jc‚agÞ ¼
Z 1

0

Yn
l¼1

Gðxgl; ag‚�gxÞ Gð�gx;cÞd�gx

·
Z 1

0

Yn
i¼l

Gðygl; ag‚�gyÞ Gð�gy;cÞd�gy

¼
�
Gðnag þ a0Þ
GnðagÞGða0Þ

�2 n2a0 ð
Q

l xglyglÞ
ag�1

�
ðnþ

P
l xglÞðnþ

P
l yglÞ

�nagþa0

ð5Þ

and

p0ðxg‚yg jc‚agÞ ¼
Z 1

0

Yn
l¼1

Gðxgl; ag‚�gÞ
Yn
l¼1

Gðygl; ag‚�gÞ ·Gð�g; cÞd�g

¼ Gð2nag þ a0Þ
G2nðagÞGða0Þ

na0 ð
Q

l xglyglÞ
ag�1

ðnþ
P

l xgl þ
P

l yglÞ
2nagþa0

‚

ð6Þ

where c ¼ (a0, n)
0.

The joint marginal densities of measured intensities under

the extended LNN model are developed in a similar fashion,

this time by integrating mg and tg away. Denote by LN(x; a,b)
the Lognormal density function with mean and variance

parameters a and b, respectively, and by N(x; a,b) the normal

density function. The marginal densities are developed as

follows:

pAðxg‚yg jcÞ¼
Z 1

0

Z 1

�1

Y
l

LNðxgl; mgx‚t
�1
gx ÞNðmgx;m‚kt
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and
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where c ¼ (m, k,a,b)0.

Estimation of h and j for the prior of ag

As mentioned in Section 2.3, to make use of the modified complete

data log-likelihood (4) in the extended GG model we need to

provide estimates of the hyperparameters for the Lognormal(h, j)

prior of ag beforehand. Here we propose to use the method of

moments (MMs) to estimate h and j. First we would like to

come up with simple estimates of the ag’s. On noting that the

coefficient of variation is given by 1/
ffiffiffiffiffi
ag

p
for each gene, a robust

empirical estimate of ag may be provided by

~aag ¼
medðxg‚ygÞ

2

madðxg‚ygÞ
2
‚

where med and mad stand for median and median absolute

deviation, respectively. Note that a robust counterpart to mean

and SD is adopted since there are usually relatively few replicates.

With these crude estimates of ag’s, we can then obtain the estimates

of h and j:

ĥh ¼ medðf log ~aaggÞ and ĵj ¼ madðf log ~aaggÞ2: ð9Þ

Again, a robust version of MM is proposed here.

Initialization of the EM algorithm

We need to initialize the parameters to be estimated before the EM

type algorithm described in Section 2.3 can be applied. Similar to

the estimation for h and j above, robust MM estimates of (a, a0, n)
are obtained for the extended GG model. Similar measure is taken

for (m,a,b) if the data are modeled under the extended LNN frame-

work, while k is empirically chosen to be 30. After the crude estima-

tion step, updated estimates of the aforementioned parameters are

obtained on maximizing the corresponding marginal null log-

likelihood under either model formulation. This step is taken in

order to bring the initial estimates closer to the estimates returned

by the EM algorithm. Using these initial estimates together with p
set as 0.5, the most likely value under the Beta (2,2) prior, initial

estimates of zg’s are obtained, which are then used to update the

parameter estimates in the EM algorithm.
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