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ABSTRACT

Motivation: With the increasing availability of cancer microarray

data sets there is a growing need for integrative computational

methods that evaluate multiple independent microarray data sets

investigating a common theme or disorder. Meta-analysis tech-

niques are designed to overcome the low sample size typical to

microarray experiments and yield more valid and informative results

than each experiment separately.

Results: We propose a new meta-analysis technique that aims at

finding a set of classifying genes, whose expression level may be

used to answering the classification question in hand. Specifically,

we apply our method to two independent lung cancer microarray

data sets and identify a joint core subset of genes which putatively

play an important role in tumor genesis of the lung. The robustness

of the identified joint core set is demonstrated on a third unseen

lung cancer data set, where it leads to successful classification

using very few top-ranked genes. Identifying such a set of genes is

of significant importance when searching for biologically meaningful

biomarkers.

Contact: ruppin@post.tau.ac.il

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Microarray technology has provided researchers with the

ability to measure the expression levels of thousands of genes

simultaneously. The development of high-throughput screening

techniques has been used with great success for molecular

profiling in diverse biological systems, including cancer

research (Dopazo et al., 2001). Supervised machine learning

approaches for the analysis of gene expression profiling have

proven to be a powerful tool in the prediction of cancer

diagnosis (Golub et al., 1999; Nguyen and Rocke, 2002),

prognosis (van’t Veer et al., 2002) and treatment outcome

(Shipp et al., 2002). Since most of the genes are not informative

for the prediction task, feature selection methods, also known

as gene selection, are applied prior to prediction. Such gene

selection techniques aim to identify a small subset of genes that

can best serve to correctly predict the class membership

of unseen samples (e.g. normal versus cancerous tissues).

A common step in gene selection methods is to rank the

genes according to some importance measure and then select

the genes with the highest score for further analysis

(Golub et al., 1999; Guyon et al., 2002). By excluding irrelevant

genes it is hoped that prediction accuracy is enhanced and

cancer-related genes are highlighted.

However, several microarray studies addressing similar

prediction tasks report different sets of predictive genes

(Ein-Dor et al., 2006; Lossos et al., 2004). For example, two

prominent studies have aimed to predict development of

distant metastases within 5 years, van’t Veer et al. (2002) and

Wang et al. (2005). Both studies came up with successful

predictive gene sets (70 and 76 genes, respectively), yet with

only three common overlapping genes. These findings raise the

obvious question: What is the reason for this discordance

between independent experiments? The trivial answer

attributes this lack of agreement to biological differences

among samples of different studies (e.g. age, disease stage),

heterogeneous microarray platforms (spotted cDNA arrays

versus synthesized oligonucleotide arrays), differences in

equipment and protocols for obtaining gene expression

measurements (e.g. washing, scanning, image analysis) and

differences in the analysis methods (Kuo et al., 2002;

Warnat et al., 2005).

Recently, Ein-Dor et al. (2005) argued that even if the

differences mentioned earlier are eliminated, the discrepancies

between studies remain. They limited themselves to a single

data set (van’t Veer et al., 2002) and showed that random

divisions of the data into training and test sets yield unstable

ranked gene lists and consequently, different predictive genes

sets are produced. Michiels et al. (2005), by reanalyzing data

from seven published studies that attempted to predict

prognosis of cancer patients, observed that within each data

set there are many optimal predictive gene sets which are

strongly dependent on the subset of samples chosen for

training. These findings indicate that low reproducibility

occurs even within a microarray data set (and not only

among multiple data sets) and thus the disparity between

data sets is not surprising.

For those interested primarily in high accuracy predictive

results it is acceptable to have several different predictors.

Yet, from a biological perspective, the inconsistency,*To whom correspondence should be addressed.

� The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 1599



or instability, of predictive gene sets may lead to disturbing

interpretation difficulties. Moreover, the lack of transferability

of these predictors (i.e. when one predictor generated by one

study suffers from a marked decrease in its performance

when tested on data of another study), as reported by

Ein-Dor et al. (2006), implies a lack of reliability in terms of

robustness, undermining the generalization power of the

predictor in hand.
The reason for this instability phenomenon, according to

Somorjai et al. (2003) is the combination of the ‘curse of data

set sparsity’ (the limited number of samples) with the ‘curse of

dimensionality’ (the number of genes is very large). Microarray

data sets are sensitive to both ‘curses’ since a typical microarray

experiment include thousands of genes but only limited

number of samples. Ein-Dor et al. (2006) assessed that several

thousands of patients are required, for the data set of van’t

Veer, to obtain an overlap of 50% between two predictive gene

sets. Unfortunately, obtaining such a large number of samples

is currently prohibitive due to limited tissue availability and

financial constraints.
A more readily way to increase sample size is to integrate

microarray data sets obtained from different studies addressing

the same biological question. Several transformation methods

have been proposed to translate gene expression measurements

from different studies into a common scale and thus allow

the unification of these studies (Jiang et al., 2004; Warnat et al.,

2005). Nevertheless, there is no consensus or clear guidelines as

to the best way to perform such a data transformation.

An alternative approach for integrating gene expression values

into one large data set is to combine the analysis results

of different studies that address similar goals. In principle,

the utilization of such meta-analysis methods can lead to

the identification of reproducible biomarkers, eliminating

study-specific biases. Such a comparison can reduce false

positives (i.e. genes that are differentially expressed but do not

underlie the observed phenomenon) and lead to more valid and

more reliable results. Following this line, previous studies have

applied meta-analysis methods to the analysis of cancer

microarray data. These methods aimed at both identifying

robust signatures of differentially expressed genes in a single

cancer type (Choi et al., 2003; Rhodes et al., 2002) and

finding commonly expressed gene signatures in different types

of cancer, across multiple data sets (Rhodes and

Chinnaiyan, 2005).
This study presents a meta-analysis of two publicly available

cancer microarray data sets of normal and cancerous

lung tissues (Beer et al., 2002; Bhattacharjee et al., 2001).

The analysis identifies a robust predictive gene set by jointly

analyzing the two data sets and produces a transferable

accurate classifier. From a methodological perspective, we
propose a new predictor-based approach to overcome the

instability of ranked gene lists. Based on these stable lists

we demonstrate that the subset of genes identified by our

meta-analysis method is superior in terms of transferability

to a third unseen data set (Garber et al., 2001), compared

with the outcome of analyzing each data set separately.

The end result is hence a predictive gene set which is able to

better distinguish normal from cancerous lung tissues.

2 METHODS

2.1 Overview and definitions

A common task in gene expression analysis usually involves the

selection of relevant genes for sample classification. Since most of the

genes are not related to the classification problem, gene selection

methods are used to rank the genes according to their importance to the

biological question underlying the experiment and generate ranked

genes lists. The genes eventually selected for classification are small

subsets of the genes at the top of the ranked gene lists which we refer to

as predictive gene sets. It has been previously shown (Ein-Dor et al.,

2005) that the ranked gene lists are unstable and strongly depend on the

training samples from which they were produced. We refer to the latter

as the instability phenomenon, which leads to an inconsistency of these

predictive sets.

The meta-analysis method presented in this work aims to identify a

robust predictive gene set by jointly analyzing two independent gene

expression data sets. The first stage of our method is to create stable

ranked gene lists for each of the data sets separately. This is achieved by

producing many different predictive gene sets (using different random

partitions of the data and cross validation) and ranking the genes

according to their repeatability frequency in the ensemble of predictive

gene sets (i.e. the frequency of appearance of each gene in the different

predictive gene sets). The resulting aggregated ranked gene list is

denoted the repeatability-based gene list (RGL). The gene core-set of

the data set includes all genes with a non-zero repeatability score

(i.e. appearing in at least one predictive gene set). The core-set genes are

ranked based on their repeatability frequency in the RGL.

The second stage of our method addresses the integration of two

microarray experiments originating from different studies. This stage

generates the joint core of genes which includes genes that appear in the

intersection of the gene core-sets of both data sets. The genes in the

joint core are ranked such that genes with relatively high repeatability

frequencies in both data sets are positioned at the top of the ranked joint

core.

2.2 Data sets

The study includes three lung cancer microarray data sets (Beer et al.,

2002; Bhattacharjee et al., 2001; Garber et al., 2001). All data sets were

downloaded from publicly available websites. Table 1 summarizes the

content of the data sets, naming them according to the university in

which they were constructed. Only adenocarcinoma tumors and normal

Table 1. The data sets used in the analysis

Data set Microarray platform Probe sets Cancer samples Normal samples

Michigan (Beer et al., 2002) Affymetrix (Hu6800) 7127 86 10

Harvard (Bhattacharjee et al., 2001) Affymetrix (HG_U95Av2) 12 600 139 17

Stanford (Garber et al., 2001) Spotted cDNA 24 000 41 5
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lung samples are included in the analysis. Additional information

regarding the adenocarcinoma samples used in the analysis is given in

the Supplementary information Table S1. A detailed description of data

preprocessing and probe-set filtering is also provided in the

Supplementary information.

2.3 Constructing a predictive model

The data is randomly divided into two sets: 80% of the samples are

assigned into a ‘working’ set and 20% of the samples are assigned into a

validation set. The proportion of normal and cancer samples in the

working and validation sets is adjusted to the proportion in the

complete data set. The working set is used to identify a predictive gene

set (as described in the subsequent subsection) and based on it a

predictive model is constructed by training a support vector machine

(SVM) classifier. The classification performance of the model is then

evaluated on the validation set.

2.4 Constructing predictive gene sets

Predictive gene sets are produced by two main stages: defining the

number of genes required for classification and selecting the genes

involved.

In the first stage, the optimal number of genes used for classification is

tuned by a 5-fold cross validation technique which incorporates a gene

selection procedure: the working set, defined in the previous subsection,

is further divided into five random disjoint subsets of equal size. In an

iterative procedure each subset is held out in turn for testing purposes

(test set), where the other four subsets are used for gene selection and

training (training set). In each fold, support vector machine recursive

feature elimination (SVM-RFE) (Guyon et al., 2002) is used to rank the

training set genes in decreasing order by their discriminative expression

pattern. An SVM classifier with a linear kernel is employed to test the

success rate of various numbers of genes from the top of the list ranging

from 5 to 100 (in increments of 5) on the held out set. The number of

genes ultimately selected for classification, N, is the number that

maximizes the average 5-fold cross validation success rate.

The second and final stage in construction the predictive gene set is to

rerank all genes by applying SVM-RFE on the full working set and

select the N-top genes (the method is explained in detail in the

Supplementary information).

2.5 Estimating the classification performance

Since the majority of the samples in our data sets are labeled as lung

cancer versus a small number of normal lungs, the classification success

rate is measured by the weighted average of true positives and true

negatives

1

2
�

TP

TPþ FP
þ

TN

TNþ FN

� �

where TP, FP, TN and FN denote true positives, false positives, true

negative and false negative, respectively.

2.6 Constructing a repeatability-based gene list and gene

core-set

Based on several predictive gene sets generated by different data

samplings, we construct the RGL [sampling schemes are often used to

increase certainty in the gene ranking e.g (Pepe et al., 2003)]. The genes

in the RGL are ranked according to their repeatability, i.e. their

frequency in the different generated predictive gene sets, such that genes

which are most frequent are at the top of the list. Whenever a gene is

represented by multiple probe sets, we kept for further analysis only one

probe set which exhibits its maximal repeatability frequency. We should

note that RGLs which are based on a standard bootstrapping scheme to

construct the predictive gene sets are similar to RGLs produced by the

resampling method used in our analysis (see section 2.3 in the

Methods). The Spearman correlation between the RGL lists produced

by the two resampling methods is 0.89 and 0.86 for the Michigan and

Harvard RGLs, respectively.

2.7 Ranking the joint core genes

The joint core genes are associated with two scores of repeatability

frequency originating from the two RGLs obtained from the

independent data sets. To rank the joint core genes (which appear in

both gene core-sets) we first sort the repeatability scores obtained from

the two independent lists leading to one unified list in which each gene

appears twice. The ranking of each gene in the joint core is based on

averaging the two positions of the gene in the unified sorted list.

3 RESULTS

3.1 Unstable ranked gene lists in a tumor versus normal

binary classification task

It has been previously shown that the instability problem

occurs in complex bioinformatics challenges such as finding

prognostic gene signatures (Ein-Dor et al., 2005; Michiels et al.,

2005). Ranked gene lists produced in these studies were

unstable and depended strongly on the subgroups of patients

on which they were generated. We show that the instability

problem is also observed in simpler questions like classification

of tumor versus normal tissues. Figure 1 demonstrates the

instability of the ranked gene lists constructed from repeatedly

applying SVM-RFE to the gene expression profiles of different

subgroups of patients drawn at random from the Michigan and

Harvard data sets separately. Evidently, genes which are

ranked high using one subgroup of patients may be ranked

low in another (as evident in both data sets).
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Fig. 1. 50-top ranked genes identified by SVM-RFE in five subgroups

of patients drawn at random from the Harvard (A) and Michigan

(B) data sets. Each subgroup contains 90% of the samples. Each row

represents a gene and each column represents a different subgroup of

patients. The genes are ordered by the leftmost column and the top

50 genes are marked by a line.
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3.2. Constructing a consistent repeatability-based gene list

Our first challenge is to produce a consistent gene ranking
method. Since our ranking procedure uses random samplings

of the data (see Methods section) and hence is not deterministic,
it is necessary to determine the number of predictive gene

sets, K, sufficient for obtaining a consistent RGL. To this end,

we repeat the gene ranking procedure twice, each time using
K predictive gene sets, producing two different RGLs.

RGL consistency is evaluated by calculating the Spearman
correlation between these two resulting RGLs. A high

Spearman correlation obviously testifies to high consistency

levels. This consistency test is performed for a varying K values,
ranging from 50 to 1500 in intervals of 50. The resulting mean

Spearman correlation increases with the number K of predictive
gene sets used (Fig. 2). Throughout this work we use K¼ 1000,

which evidently yields a consistent ranking. With K¼ 1000 the

Harvard data set exhibits a mean Spearman correlation
coefficient of 0.86 with a SD of 0.008, while the Michigan

data set manifest a mean of 0.84 with a SD of 0.01.
Furthermore, the predictive gene sets which construct the

RGLs reach high classification success rates. Mean success
rates are 90% and 98.6% for the Harvard and Michigan

data sets, respectively, testifying to the utility of the RGLs.

The mean number of genes participating in a predictive gene
set is 27.8 and 15.8 for the Harvard and Michigan data sets,

respectively with SDs of 24.3 and 17.5.
Investigating the two RGLs, we observe that �90% of the

genes in both data sets do not participate in any of the

predictive gene sets. Out of 4579 genes included in the two
data sets, 547 genes comprise the gene core-set of the Harvard

data set and 411 genes comprise the gene core-set of the
Michigan data set. The distribution of the repeatability

frequency in the core-sets of both data sets is presented in

Supplementary Figure S2 (Supplementary information).

3.3 Repeatability-based gene lists are stable

A stable ranked gene list is unsusceptible to random partition-
ing of the data. The stability of RGLs produced for the

Harvard and Michigan data sets is examined in Figure 3.

In contrast to the large variation in membership of the top 50

genes based on gene rankings by SVM-RFE (Fig. 1), the top 50

genes in the RGLs are reproducible. The mean overlap between

the 50 top ranked genes of the different RGLs is 37 and 40.6 for

the Harvard and Michigan data sets, respectively with SDs of

2.86 and 3.23, while the mean overlap between the 50 top

ranked genes when using SVM-RFE as a ranking method

(Fig. 1) is 24.1 and 26.8 for the Harvard and Michigan data

sets, respectively with SDs of 8.34 and 9.54. These results

suggest that indeed RGLs are stable, robust lists (it may be

noted, however, that in the improbable case of identical data

partitions, our method obviously leads to a less stable ranking

than SVM-RFE, as the latter is deterministic). A comparison
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Fig. 2. Assessing the consistency of RGLs in the Harvard (A) and Michigan (B) data sets. The x-axis represents the number of predictive gene sets

(K) and the y-axis represents the mean Spearman correlation between two RGLs produced over 100 samplings (see Methods section). SDs for each

number of predictive gene sets are marked.
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Fig. 3. 50-top ranked genes in five different RGLs produced by five

random subgroups of patients drawn from the Harvard (A) and

Michigan (B) data sets. Each subgroup contains 90% of the data.

Figure layout is similar to Figure 1.
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between the RGLs and the rankings produced by SVM-RFE is

provided in the Supplemetary information.

3.4 Comparing gene rankings between data sets

Since the RGL ranking in each data set separately (Harvard

versus Michigan) is rather stable one could expect that genes

that are highly discriminative in one data set would be also

highly discriminative in the second data set. Interestingly, this is
not the case: the diagonal in Figure 4 marks the position of

genes whose repeatability frequency is equivalent in both data

sets. Evidently, only few points are located around the
diagonal, whereas most points exhibit significant dissimilarity

in their repeatability frequencies over the two data sets. Six out

of the 10 top ranked genes in Harvard core-set do not appear in
Michigan core-set, suggesting that these genes are ‘data set

specific’ and may not be truly reflective of the underlying

disease process. The top ranked genes in Michigan core-set are

quite highly ranked in the Harvard core-set (eight out of the
10 top ranked genes in Michigan core-set appear in Harvard

core-set). These genes are reproducible across the studies,

testifying to their reliability.
The dissimilarity between data sets is also demonstrated by

the low Spearman correlation of 0.173 between the RGLs of the
Harvard and Michigan data sets.

3.5 Joint core magnitude

Since our goal is to examine whether relevant genes can be

more effectively discovered by jointly analyzing two indepen-
dent data sets, we focus on the joint core genes (obtained as

described in the Methods section). The magnitude of the joint

core of Michigan and Harvard data sets is 118 genes and is

statistically significant (P50.0025 as none of the permutation

runs reached the true joint core magnitude, see Supplementary

information). The magnitude of the joint core remains

significant across a variety of repeatability frequency thresholds

used to determine the genes in the core-sets (Supplementary

information Figure S3).

3.6 The joint core is transferable

A question remains, is the joint core more informative than the

two independent core-sets? A pertaining test would investigate

the transferability of these cores; that is, do they carry

predictive information as for a new unseen data set, preferably

even from a different technology? To this end, we test the

classification performance of the different cores on the Stanford

data set, an independent cross-platform microarray data of

lung cancer. To evaluate the classification performance

obtained with genes from the three cores (Harvard and

Michigan core-sets and the joint core) on the Stanford data

set, an SVM classifier is utilized in a standard train and test

procedure. This procedure is repeated for an increasing number

of genes selected from the top of the three ranked cores. This

enables us to compare the classification performance of the

ranked cores for the same number of genes each time.
The results show that the joint core outperforms the two

independent core-sets, obtaining a high level of classification

already with a very small number of highly ranked genes (54).

As observed in Figure 5, the first gene on the top ranked joint

core (RAGE), achieves a high success rate of 98% on its own.

The Michigan data set matches the joint core performance with

four genes only where the Harvard data set requires the top 13

genes to match the joint core performance. As observed in

Table 2, listing the genes in the different cores, the majority of

genes in the top of the Harvard set are not in the joint core
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while in the Michigan set this is not the case. Interestingly,
a marked increase in the Harvard set’s success rate is reached

(83%) by adding the fourth gene (TEK), which is the first in the
Harvard list to appear in the joint-core.

3.7 Biological significance of the joint core genes

We turn to examine the biological function of the 118 genes

composing the joint core, concentrating on their role in cancer.
In a prominent review by Hanahan et al. (Hanahan and
Weinberg, 2000), tumorigenesis is presented as a multistep

process which manifests several essential alterations in cell
physiology; these constitute the ‘hallmarks of cancer’.

In the joint core, several representatives of each of these
required alterations are found, as reported briefly below (their
rank in the joint core is indicated in parentheses):

3.7.1 Self-Sufficiency in growth signals In cancer cells many
oncogenes activate normal growth signaling pathways which

yield uncontrolled proliferation (Hanahan and Weinberg,
2000). A putative representative of this class is ErbB3 (rank

72), belonging to the epidermal growth factor (EGF) receptor
subfamily, which was shown to constitute a growth stimulatory
loop particularly for non-small cell lung cancer (NSCLC)

(Fong et al., 2003).

3.7.2 Insensitivity to antigrowth signals Reduced expression
of TGF� receptor type III (TGFBR3, rank 36), an antiproli-
ferative signal, is known to be associated with resistance to

TGF� and may play a role in tumorigenesis (Copland et al.,
2003).

3.7.3 Evading apoptosis The identified joint core is
comprised of several genes related to apoptosis as indicated

by their Gene Ontology class and KEGG pathway (Dennis
et al., 2003): PHLDA2 (rank 6), SPP1 (rank 21), ZBTB16
(rank 32), DNASE1L3 (rank 38), CSF2RB (rank 60), PML

(rank 80), IGFBP3 (rank 81), TNFRSF25 (rank 82).

3.7.4 Sustained angiogenesis Several genes in the joint

core are related to angiogenesis: TEK (TIE-2, rank 8),

MDK (rank 15), EDNRB (rank 23), PECAM1 (CD31, rank
24) and ANG1 (rank 35), CDH5 (rank 65) (Ahmed et al., 2000;

Choudhuri et al., 1997; Liao et al., 2000; Takahama et al.,

1999). Interestingly, there may be a clinical potential in

targeting these genes’ pathways by producing anti-angiogenic

agents. For example, it has been shown that blocking the TIE-
2/ANG1 pathway inhibits, to a certain extent, tumor angiogen-

esis (Takahama et al., 1999).

3.7.5 Tissue invasion and metastasis RAGE, the top ranked

gene in the joint core list, was shown to be involved in motility

and invasive behavior of cells. Furthermore, inhibition of
RAGE-amphoterin signaling suppressed tumor growth and

metastases in mice (Taguchi et al., 2000). S100A4 (rank 94) is

thought to mediate motility and invasiveness of cancer cells.

It is a marker for poor patient prognosis in number of

cancers (Li and Bresnick, 2006). Three other members of the
S100 family were found to be in the joint core genes: S100A3

(rank 18), S100G (rank 30), S100A8 (rank 52). This fact may

suggest an association between this family and lung cancer.

Other genes in the joint core which are related to tissue invasion

and metastases include: CAV1 (rank 13), SPP1 (rank 21) and

SPINT2 (rank58) (Ho et al., 2002; Rangaswami et al., 2006;
Suzuki et al., 2003).

Obviously, though it is encouraging to find quite a few of
these potentially involved genes in the joint core, their role in

the actual pathogenesis of adenocarcinoma tumors remains to

be explored. We additionally compared the joint core genes

found by our analysis to the results of Jiang et al. (2004), a

study with similar goals and applied to the same data sets

(Harvard and Michigan). Jiang et al., aiming to identify marker
genes which are capable of differentiating adenocarcinoma

from normal lung, discovered 13 and 10 marker genes by

applying two different models to the data (five genes common

to both models). Out of the union of 18 genes they identified

10 appear in our joint core, and out of the five genes common

to both models four of them appear in the joint core (these
results are evidently highly significant, P510�6). This high

overlap reinforces the probability that genes in the joint core

may be more reliable to the biology and diagnosis of

adenocarcinoma tumors. However, one eminent complicating

factor is that some of these genes (and in the joint core in
general) may be overexpressed and some underexpressed

(compared with their expression in normal, healthy tissue),

and in parallel, their putative repressing/activating role in the

molecular pathways which they belong to is in many cases still

unknown.

4 DISCUSSION

A key component of gene-expression analysis is the identifica-

tion of genes that play a pivotal role in the biological processes

underlying the microarray experiment. With the increasing

availability of microarray data sets there is a growing need for
integrative computational methods that evaluate multiple

independent microarray data sets. Meta-analysis methods are

applied to reduce study-specific biases, aiming to yield results

which offer improved reliability and validity. Here we propose

a predictor-based meta-analysis approach that generates a

Table 2. The 10-top ranked genes of the joint core, Michigan core-set

and Harvard core-set

Joint core Michigan core-set Harvard core-set

1 RAGE TNXB SMAD6

2 TNA CA4 GRK5

3 FABP4 RAGE HYAL2

4 TNXB FABP4 TEK

5 COX7A1 FGR CD34

6 PHLDA2 PHLDA2 S100A3

7 FGR TNA FKBP1A

8 TEK COX7A1 TNA

9 TACSTD1 CEACAM5 TLK1

10 MAP4 CASP1 EMP2

Genes that do not appear in the joint-core are marked in bold. Genes that do not

appear in the Stanford data set are marked in italics.
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robust predictive gene set. The method has its roots in ensemble
learning methods frequently used in prediction and classifica-
tion, where the underlying base learning algorithm is run

multiple times, and a vote is taken on the resulting hypotheses.
As confirmed experimentally in numerous cases by now,
ensemble methods can efficiently reduce both the bias and the

variance of learning algorithms and improve their overall
accuracy (Dietterich, 2002). Using this method the genes are
first ranked on different data sets, independently, according to

their classification power, and then they are combined into a
consolidated gene set, the joint core genes. Doing so, we
address two main challenges; (1) The instability problem:

When dividing a given data set into training and test sets,
different divisions produce different ranked gene lists which
subsequently give rise to different predictive gene sets. We show

that this phenomenon is not restricted to complex computa-
tional challenges such as finding a prognostic gene signatures
(Ein-Dor et al., 2005; Michiels et al., 2005), but is also observed
in less challenging questions like binary classification of tumor

versus normal tissues. Assuming that genes which are more
essential for classification will appear more consistently in
different predictive gene sets, we construct a ranked gene list

termed RGL. The RGL demonstrates high stability, with
an average overlap of approximately 39 genes between the
top 50 genes of two different RGLs, generated from

independent data divisions. (2) Transferability: How well do
features learned in the context of one data set perform on a
second, unseen, data set? Our results show successful transfer-

ability of the joint core genes to the unseen Stanford data set,
in which the top three genes of the ranked joint core yield a
classifier with an accuracy of 99.8%.

Applying the suggested gene ranking method to two
prominent lung cancer data sets, the Michigan and Harvard
data sets, results in a low Spearman correlation (r¼ 0.173)

between the two RGLs, although each list by itself is stable.
Moreover, genes exhibiting high classification power on one of
the data sets (and thus were ranked at the top of the RGL) were

ranked at the bottom of the corresponding RGL of the second
data set. Observing that the two independent RGLs produced
by our meta-analysis method are stable but exhibit a significant

dissimilarity, leads us to attribute this dissimilarity to factors
like biological differences among samples of different studies,
differences in platform generation and differences in protocols,

rather than to inner instability.
The joint core constructed by the meta-analysis approach

focuses on genes which appear in the core-sets of both data sets,

and hence are likely to be central to the phenomenon studied.
The first gene in the ranked joint core, RAGE, exhibits a very
high classification performance by itself. RAGE was shown to

be strongly down-regulated in NSCLC patients compared to
their paired normal lung tissues, not only on the transcriptional
level (as revealed by this study) but also on a protein level

(Schraml et al., 1997). These results may suggest RAGE as a
potential marker for diagnosis of lung cancer.
Studying the transferability to the Stanford data set confirms

that genes which are highly ranked only in one data set but are
not part of the joint core are biased to their data set and thus
exhibit low transferability. The joint core indeed shows

improved transferability, demonstrating high classification

even with a very small number of genes from the top of the
ranked joint core. Although the joint core has better classifica-

tion capability than the two separate cores, the joint core does

not show a significant similarity to the Stanford core set. This

may be due to the variation in platforms from which the data

sets were produced (discussed in the Supplementary

information).
The analysis method demonstrated in this study increases

the reliability of identifying powerful predictive genes sets.

The putative list of predictive genes identified may hold

promise as therapeutic targets and diagnostic markers.
Applying the method to other data sets and expanding the

method beyond two data sets may enhance our biological

understanding of previous microarray studies, with no extra

experimental work.
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