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Detecting Haplotype Effects in Genomewide Association Studies
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The analysis of genomewide association studies requires methods that are both computationally feasible and statistically
powerful. Given the large-scale collection of single nucleotide polymorphisms (SNPs), it is desirable to explore
the information contained in their interrelationships. In particular, utilizing haplotypes rather than individual SNPs
and accounting for correlations of polymorphisms in adjustment for multiple testing can lead to increased power. We
present a statistically powerful and numerically efficient method based on sliding windows of adjacent SNPs to detect
haplotype-disease association in genomewide studies. This method consists of an efficient algorithm to calculate a proper
likelihood-ratio statistic for any given window of SNPs, along with an accurate and efficient Monte Carlo procedure to
adjust for multiple testing. Simulation studies using the HapMap data showed that the proposed method performs well in
realistic situations. We applied the new method to a case-control study on rheumatoid arthritis and identified several loci
worthy of further investigations. Genet. Epidemiol. 2007. r 2007 Wiley-Liss, Inc.
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INTRODUCTION

Genomewide association studies were proposed a
decade ago as a potentially powerful tool to unravel
the genetic basis of complex diseases [Risch and
Merikangas, 1996]. However, it is only now that they
are becoming practical realities. Genotyping costs
have decreased greatly in recent years, to the point
where chips containing 100 K single nucleotide
polymorphisms (SNPs), or even 250 K have already
been used in various studies [Ozaki et al., 2002;
Klein et al., 2005; Maragenore et al., 2005; Thomas
et al., 2005], and investigations of larger numbers
of SNPs are already underway. While genomewide
association studies are currently in wide prolifera-
tion, the methodology to perform the analysis has
not kept pace with the collection of data [Thomas
et al., 2005].

To assess the association between SNPs and
disease, one can either examine individual SNPs or
consider the haplotypes of multiple SNPs. While the
latter is potentially more powerful than the former
[Collins et al., 1997; Akey et al., 2001; Morris and
Kaplan, 2002; Schaid et al., 2002; Zaykin et al., 2002],
it is computationally more intensive. The creation
of HapMap [Gibbs et al., 2003; International HapMap
Consortium 2005], however, has facilitated the use of

haplotypes. As the HapMap project and current SNP
platforms focus on cataloging common SNPs, the
single-SNP analysis is not capable of detecting rare
causative SNPs. In contrast, haplotype-based analy-
sis may be able to do so if the rare SNP is captured
by a haplotype [de Bakker et al., 2005].

A major analytical challenge is that haplotypes are
not directly measured. Several methods are available
to infer individual haplotypes from unphased
genotype data (e.g., [Excoffier and Slatkin, 1995;
Stephens et al., 2001; Niu et al., 2002]). Using the
inferred individual haplotypes in the ensuing
association analysis can result in biased estimates
and reduced power [Lin and Huang, 2007]. A few
methods have been proposed to properly account for
phase uncertainty in the association analysis [Zhao
et al., 2003; Stram et al., 2003; Epstein and Satten,
2003; Lin et al., 2005], all of which are focused on the
analysis of a single candidate gene.

In this article, we provide a computationally
efficient and statistically powerful method for
detecting haplotype-disease association in genome-
wide studies. We consider sliding windows
of adjacent SNPs (see Mathias et al. [2006] and the
references therein). Within each window, we use an
efficient and stable algorithm to calculate a like-
lihood-ratio test statistic that properly accounts for
phase uncertainty and case-control sampling. The
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windows may be overlapping or non-overlapping,
and the window sizes may be fixed or variable. We
allow exhaustive testing, which considers all possi-
ble windows up to a certain size and thus
encompasses the single-SNP analysis.

The number of tests can be very large, particularly
in the case of exhaustive testing. It is common to use
the Bonferroni correction or permutation to adjust
for multiple testing. The former is overly conserva-
tive, especially for overlapping windows and
exhaustive testing, while the latter is computation-
ally impractical for haplotype-based genomewide
testing. Another limitation of these approaches is
that they aim to control the family-wise error rate
(FWER), i.e., the probability of even one false
positive result, which is a very stringent criterion
for massive-scale hypothesis testing.

In this article, we propose a computationally
efficient method to properly adjust for multiple
testing in large-scale association studies. This meth-
od can be used to control the probability of k (Z1) or
more false positives, denoted by k-FWER [Lehmann
and Romano, 2005]. The basic strategy is to ascertain
the joint distribution of the test statistics among
windows and to evaluate this joint distribution by an
efficient Monte Carlo (MC) procedure. By properly
accounting for the correlations of the test statistics,
the proposed method avoids the conservativeness
of the Bonferroni approach. Our MC procedure
reduces the computational burden by orders
of magnitude in comparison to permutation. Simu-
lation studies with the phased haplotypes of the
HapMap CEU population showed that the proposed
method with various window choices provides
accurate control of the traditional FWER as well as
the more general k-FWER and is substantially more
powerful than the Bonferroni correction and its
k-FWER version of Lehmann and Romano [2005].

We applied the new method to a case-control
study of association between rheumatoid arthritis
(RA) and 2,300 SNPs in a region of interest on
chromosome 18. Previous studies had shown mild
evidence for linkage in this region [Merriman et al.,
2001] as well as possible links of this region to a
variety of other auto-immune diseases such as type
I diabetes and multiple sclerosis. The single-SNP
analysis did not show any significant results (after
adjusting for multiple comparisons), and neither did
the haplotype-based analysis with the Bonferroni
correction. The use of the proposed method revealed
several areas that merit further investigations.

METHODS

Our method for assessing haplotype-disease asso-
ciation within a given window is as follows. We first
estimate the frequencies of all possible haplotypes

for cases and controls separately by using the
expectation-maximization (EM) algorithm (Excoffier
and Slatkin, 1995). To improve stability and speed up
computation, we remove the haplotypes with esti-
mated frequencies ocf in the control group, where cf

is a very small number, say 1/n or 2/n, and n is the
total number of subjects in the study. The remaining
number of haplotypes is denoted by K. The subjects
whose genotypes are not compatible with the
retained haplotypes are dropped from the data. For
k 5 1, . . ., K, let hk denote the kth haplotype and let pk

denote the frequency of hk in the whole population.
We fit a logistic regression model with additive
haplotype effects that compares all haplotypes with
estimated frequencies 4ce in both cases and con-
trols, where ce is a small number, say 5/n or 10/n.
We use the most frequent haplotype as the reference
group in the model. The haplotypes with estimated
frequencies less than the threshold ce are also
included in the reference group. Estimating separate
effects of such rare haplotypes would be numeri-
cally unstable. The number of haplotype effects in
the model is denoted by r. We set ce higher than cf

because it is more difficult to estimate the effect of a
rare haplotype than to estimate its frequency.

The observed data consist of (Yi, Gi), i 5 1, . . ., n,
where Yi and Gi denote the disease status and
genotype for the ith subject. With H representing the
pair of haplotypes for a subject, the logistic regres-
sion model takes the form:

PrðY ¼ 1jH ¼ ðhk; hlÞÞ ¼
eaþb

TZðhk;hlÞ

1þ eaþb
TZðhk;hlÞ

;

where a pertains to the intercept, b represents log-
odd ratios,

Zðhk; hlÞ ¼

Iðhk ¼ h1Þ þ Iðhl ¼ h1Þ

..

.

Iðhk ¼ hrÞ þ Iðhl ¼ hrÞ

264
375;

and I ( � ) is the indicator function. This formulation
differs from that of previous work [Lin et al., 2005]
in that we are comparing all the r haplotypes
simultaneously rather than comparing a single
halotype to all others. The likelihood should take
into account the phase uncertainty in the genotype
data as well as the biased sampling of the case-
control design. Under the assumption of rare disease
and Hardy-Weinberg equilibrium, the likelihoodQn

i¼1 PrðGijYiÞ can be shown to beYn

i¼1

�k;lI½ðhk; hlÞ 2 SðGiÞ�eYib
TZðhk;hlÞpkpl

�k;leYib
TZðhk;hlÞpkpl

;

where S (G) denotes the set of haplotypes compatible
with genotype G, and the summation of (k, l) is taken
from 1 to K.
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To incorporate the constraints that
PK

k¼1 pk ¼ 1
and pk � 0, k51; . . ., K, into the calculations, we
reparametrize the model by defining p�k ¼ pk=pK and
nk ¼ log p�k , k51; . . ., K. Write n ¼ ðn1; . . . ; nK�1Þ and
y ¼ ðb; nÞ. Then the log-likelihood can be written as

lðyÞ ¼
Xn

i¼1

log

P
k;l I ðhk; hlÞ 2 SðGiÞ½ �ey

TWðYi ;hk ;hlÞP
k;l ey

TWðYi ;hk ;hlÞ

" #
;

where

WðYi; hk; hlÞ ¼

YiZðhk; hlÞ

Iðhk ¼ h1Þ þ Iðhl ¼ h1Þ

..

.

Iðhk ¼ hK�1Þ þ Iðhl ¼ hK�1Þ

26664
37775:

The corresponding score function and information
matrix are

U yð Þ

¼
Xn

i¼1

P
k;l I½ðhk; hlÞ 2 SðGiÞ�WðYi; hk; hlÞe

yTWðYi ;hk ;hlÞP
k;l I½ðhk; hlÞ 2 SðGiÞ�ey

TWðYi;hk;hlÞ

"

�

P
k;l WðYi; hk; hlÞe

yTWðYi;hk;hlÞP
k;l ey

TWðYi;hk;hlÞ

#
;

and

�ðyÞ ¼
Xn

i¼1

P
k;l WðYi; hk; hlÞ

�2ey
TWðYi ;hk ;hlÞP

k;l ey
TWðYi ;hk ;hlÞ

"

�

P
k;l WðYi; hk; hlÞe

yTWðYi ;hk ;hlÞP
k;l ey

TWðYi ;hk ;hlÞ

( )�2
35

�
Xn

i¼1

P
k;l I½ðhk; hlÞ 2 SðGiÞ�WðYi; hk; hlÞ

�2ey
TWðYi ;hk ;hlÞP

k;l I½ðhk; hlÞ 2 SðGiÞ�ey
TWðYi ;hk ;hlÞ

"

�

P
k;l I½ðhk; hlÞ 2 SðGiÞ�WðYi; hk; hlÞe

yTWðYi ;hk ;hlÞP
k;l I½ðhk; hlÞ 2 SðGiÞ�ey

TWðYi ;hk ;hlÞ

( )�2
35;

where a�2 ¼ aaT. To obtain the maximum likelihood
estimate by, we solve the score equation U (y) 5 0 by
using the Newton-Raphson method. We set the
initial value of y to ey ¼ ð0;enÞ, where en is the
maximum likelihood estimate of n in the pooled
sample obtained by the EM algorithm.

We can test the haplotype-disease association by
using the likelihood ratio statistic 2½lðbyÞ � lðeyÞ�, the
score statistic, or the Wald statistic. All the three test
statistics have approximately the w2 distribution
with r degrees of freedom. In deriving the joint
distribution of the test statistics over different
windows, it is convenient to work with the score
statistic. We partition the score function and infor-

mation matrix to conform with the partition of b and
n in y, i.e.,

UðyÞ ¼
UbðyÞ
UnðyÞ

� �
;

and

�ðyÞ ¼
�bbðyÞ �bnðyÞ
�nbðyÞ �nnðyÞ

� �
:

Also, let Ub;iðyÞ and Un;iðyÞ denote the contributions
from the ith subject to UbðyÞ and UnðyÞ. The score
statistic can then be written as

T ¼ Ubð
eyÞTV�1Ubð

eyÞ;
where V ¼

Pn
i¼1 UiU

T
i and Ui ¼ Ub;ið

eyÞ � �bn ð
eyÞ��1

nn
ðeyÞUn;ið

eyÞ:
We approximate the joint distribution of the test

statistics over windows through a MC simulation
procedure. Specifically, we construct eT ¼ eUTV�1 eU,
where eU ¼Pn

i¼1 UiXi, and Xi, i 5 1, . . ., n, are
independent standard normal random variables.
Suppose that we have a total of m windows, which
may or may not be overlapping and which cover the
whole region one is scanning. Let Tj and eTj denote
the values of T and eT in the jth window. The same set
of Xi, i 5 1, . . ., n, is used for all the m simulated
statistics eT1; . . . ; eTm. By the arguments of Lin [2005],
the joint distribution of ðT1; . . . ;TmÞ can be approxi-

mated by the joint distribution of ðeT1; . . . ; eTmÞ. We
obtain realizations from the latter distribution by
generating the normal samples ðX1; . . . ;XnÞ while
fixing the genotype and phenotype data at their
observed values.

The above MC approximation is valid whether
T1; . . . ;Tm are the likelihood ratio, score or Wald
statistics. Our simulation studies revealed that the
approximation tends to be more accurate for the
likelihood-ratio statistics than the score and Wald
statistics although the differences are generally very
small. The numerical results reported in this article
pertain to the likelihood ratio.

In the standard multiple-testing framework [West-
fall and Young, 1993; Lin, 2005], the m test statistics
have the same degrees of freedom. In our setting, the
test statistics have different degrees of freedom
because the numbers of haplotype effects tested vary
among windows. Thus, we propose a step-down
multiple-testing procedure which orders the
P-values of the test statistics rather than the actual
values of the test statistics. This is similar to
Algorithm 2.8 in Westfall and Young [1993], which
is based on resampling from the original data.

For j 5 1, . . ., m, let pj be the (observed) P-value
associated with the test statistic Tj, which is obtained
from the w2 distribution with rj degrees of freedom,
where rj is the number of haplotype effects tested in
the jth window. Let pð1Þ � pð2Þ � . . . � pðmÞ be the
ordered P-values, and let Hð1Þ; . . . ;HðmÞ be the
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corresponding null hypotheses. In addition, leteTð1Þ; . . . ; eTðmÞ be the simulated test statistics asso-
ciated with Hð1Þ; . . . ;HðmÞ, and let epð1Þ; . . . ;epðmÞ be the
corresponding simulated P-values. The adjusted
P-value for testing HðjÞ (i.e., the smallest significance
level at which HðjÞ would be rejected by the multiple
testing procedure) is determined by

Pr min
j�l�m

epðlÞ � pðjÞ

� �
:

We estimate this probability with 5,000 realizations
of epð1Þ; . . . ;epðmÞ, which are obtained by repeatedly
generating the normal samples ðX1; . . . ;XnÞ while
holding the observed data fixed. To control the
traditional FWER at a, one would reject only those
hypotheses whose adjusted P-values are less than a.

The traditional FWER may be too stringent in
massive-scale hypothesis testing. Thus, we extend
Lehmann and Romano’s [2005] idea of controlling
k-FWER, which is the probability of rejecting greater
than or equal to k true hypotheses. To obtain the MC
adjusted P-values on the basis of k-FWER, we simply
replace the minimum P-value in the above formula
by the kth smallest P-value. The adjusted P-values
based on the Bonferroni correction, as suggested by
Lehmann and Romano, are pðjÞm=k, j 5 1, . . ., m. Only
k 5 1 and 2 were used in our calculations in this
article, although a larger value of k may be desirable
for increasing quantities of markers.

RESULTS

SIMULATION STUDIES

We simulated data from the 120 phased haplo-
types of Caucasians in the Phase I HapMap data. We

considered two regions on chromosome 18: the
ENCODE region, which consists of 796 SNPs, and
the full set of 32,177 SNPs for the chromosome.
We selected a pair of haplotypes randomly from the
HapMap data for each subject and then added
the two haplotypes to give the subject’s
genotype. We generated disease according to an
additive-effect logistic model with an overall disease
rate of 5%.

Figures 1 and 2 display the locations of the two
HapMap regions and the linkage disequilibrium
(LD) among the SNPs. The SNPs in the ENCODE
region show much higher levels of LD than the full
set of SNPs. This reflects the fact that the density
of SNPs in the ENCODE region is higher than
elsewhere.

We used the ENCODE data to assess the perfor-
mance of the proposed MC method and Bonferroni
correction for different window sizes, and over-
lapping versus non-overlapping windows. We set
cf ¼ 2=n and ce ¼ 10=n. We considered both the
FWER and 2-FWER, denoted by Bon and Bon-2 for
the Bonferroni correction and by MC and MC-2 for
the proposed MC method. The results of these
studies for windows of three and four SNPs are
presented in Table I. For both window sizes, the
causative haplotype began at SNP 601 and had
frequency of .14. The type I error pertains to the
probability of declaring any disease-causing SNPs
when no effect exists, while the power is the same
quantity when one haplotype is in fact causative.
Both MC and MC-2 provide accurate control of the
type I error in all cases, whereas both Bon and Bon-
2 are severely conservative and thus much less
powerful than MC and MC-2. As expected, MC-2 is
considerably more powerful than MC. The power of

TABLE I. Type I error/power of haplotype tests at the .05 nominal significance level based on the ENCODE data

Odds ratio Sample size

Overlapping windows Non-overlapping windows

Bon Bon-2 MC MC-2 Bon Bon-2 MC MC-2

Windows of three SNPS
1.0 1,000 .014 .016 .041 .041 .015 .017 .054 .055

2,000 .009 .015 .041 .049 .016 .010 .047 .039
1.5 1,000 .369 .455 .488 .557 .371 .447 .509 .611

2,000 .754 .798 .880 .914 .798 .853 .876 .931
1.7 1,000 .693 .741 .843 .899 .725 .786 .829 .900

Windows of four SNPS
1.0 1,000 .007 .009 .038 .043 .023 .018 .046 .040

2,000 .013 .013 .049 .053 .017 .009 .040 .036
1.5 1,000 .286 .356 .481 .572 .397 .480 .512 .631

2,000 .735 .791 .876 .907 .813 .863 .879 .935
1.7 1,000 .676 .736 .821 .867 .743 .808 .845 .907

Note: Sample size pertains to the total number of study subjects, half of which are cases and half are controls. Bon and Bon-2 pertain to the
FWER and 2-FWER based on the Bonferroni correction, and MC and MC-2 to the FWER and 2-FWER based on the Monte Carlo procedure.
Each entry is based on 1,000 simulated datasets.
FWER, family-wise error rate.
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MC is similar to and often higher than that of Bon-2.
Using the proposed method, a sample size of 2,000
subjects is sufficient to detect an odds ratio of
1.5 with high power, and even a sample size of 1,000
provides power 4.8 for an odds ratio of 1.7. Non-
overlapping windows appear to have higher power
than overlapping windows.

In these studies, the single-SNP analysis reduced
the power by about 3% for both window sizes of
3 and 4. The fairly moderate reduction in power is
attributed to the simulation setup, which involves a
common causal haplotype. We performed additional
studies with a rare causative SNP that is captured by
a rare haplotype but not actually measured in the
data and observed power gain of up to 25% for the
haplotype analysis over the single-SNP analysis
(results not shown).

For the full set of 32,177 SNPs, we used non-
overlapping windows of size 3, and the results are
presented in Table II. The causative haplotype began
at SNP 637, and had frequency of .18. As expected,
the larger magnitude of data in this setting leads
to lower all around power as compared with
the ENCODE data. The decline in power, however,
is not drastic in view of the fact that the number
of tests is increased by a factor of 40.

In the above two sets of studies, causative
haplotypes had the same length as the window size
used for analysis, so the power would be higher than
what might be expected in a real study, where the
length of the disease-predisposing haplotype is
unknown. Thus, we considered exhaustive testing
of non-overlapping windows of 1–4 adjacent SNPs
in the ENCODE data. The results are presented in

Fig. 2. Patterns of linkage disequilbrium (LD), as measured by the squared correlation coefficient r2 between pairs of markers, in two
HapMap regions on chromosome 18. (a) 796 single nucleotide polymorphisms (SNPs) in the ENCODE region; (b) first 1,000 SNPs in the

full set of SNPs.

Fig. 1. Locations of single nucleotide polymorphisms (SNPs) in two regions of interest on chromosome 18. (a) 2,300 SNPs from the
rheumatoid arthritis case-control study; (b) 796 SNPs from the HapMap ENCODE region.
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Table III. The increase in the multiplicity of tests
seems to cause only a slight loss of power in
comparison to the non-overlapping windows of a
fixed size.

We conducted another set of simulation studies to
assess the sensitivity of our method to various
assumptions. To increase genetic diversity, we
generated data from the full set of SNPs on
chromosome 18 according to the algorithm of
Durrant et al. [2004]. The causative haplotype had
a frequency of .18 and was located at the same
window of SNPs as in the previous studies using the
full set of SNPs, which started at the 637th SNP. We
generated haplotypes under the following form of
Hardy-Weinberg disequilibrium:

pkl ¼
p2

k þ rpkð1� pkÞ; k ¼ l;
ð1� rÞpkpl; k 6¼ l;

�
where r5 .02 [Lin et al., 2005]. We increased the
overall disease rate to 10% and decreased thresholds

cf and ce to 1/n and 5/n, respectively. We considered
10,000 windows of five SNPs, each overlapping by
three SNPs. The results are presented in Table IV.
The MC method continues to have correct type I
error while the Bonferroni correction remains
conservative. The relative power of Bon, Bon-2, MC
and MC-2 has the same trend as in the previous
studies.

RHEUMATOID ARTHRITIS STUDY

Study subjects were taken from the North Amer-
ican Rheumatoid Arthritis Consortium (NARAC).
Numerous studies [Jawaheer et al., 2004; Plenge
et al., 2005] have used data from this source, and
details of enrollment procedures have been pub-
lished previously [Jawaheer et al., 2001]. Detailed
clinical and marker data are available on the
NARAC website (http://www.naracdata.org).
Families in this consortium satisfied the following
requirements: two or more siblings fulfilled the
American College of Rheumatology (ACR) [1987]
criteria for RA [Arnett et al., 1998]; at least one
sibling had documented erosions on hand radio-
graphs; and at least one sibling had disease onset
between the ages of 18 and 60 years. Families with
any other disease associated with similar articular
symptoms, such as psoriasis or inflammatory bowel
disease, were excluded.

A total of 460 cases were chosen from throughout
the United States, and confirmation of RA diagnosis
was obtained from patients’ rheumatologists. Radio-
graphs of the hands and wrists were also obtained to
document the presence and extent of joint involve-
ment. A total of 460 unrelated controls from Long
Island were matched to the cases on the basis of age
and sex. All subjects are non-Ashkenazi Caucasians.
Informed consent was obtained from all subjects,
and approval of the local institutional review

TABLE II. Type I error/power of haplotype tests with
non-overlapping windows of three SNPs at the .05
nominal significance level based on the full set of SNPs
on chromosome 18 of the HapMap data for studies with
500 cases and 500 controls

Odds ratio Bon Bon-2 MC MC-2

1.0 .022 .015 .039 .046
1.5 .221 .296 .292 .477
1.7 .577 .649 .646 .761

Note: Bon and Bon-2 pertain to the FWER and 2-FWER based on
the Bonferroni correction, and MC and MC-2 to the FWER and 2-
FWER based on the Monte Carlo procedure. Each entry is based
on 1,000 simulated datasets. FWER, family-wise error rate.
SNP, single nucleotide polymorphism.

TABLE III. Type I error/power of the exhaustive testing
with non-overlapping windows of one–four SNPs based
on the ENCODE data when the causative haplotype
contains four SNPs

Odds ratio
Sample

size Bon Bon-2 MC MC-2

1.0 1,000 .016 .010 .051 .057
2,000 .011 .016 .057 .060

1.5 1,000 .308 .388 .480 .567
2,000 .755 .818 .877 .920

1.7 1,000 .677 .747 .822 .890

Note: Sample size pertains to the total number of study subjects,
half of which are cases and half are controls. Bon and Bon-2
pertain to the FWER and 2-FWER based on the Bonferroni
correction, and MC and MC-2 to the FWER and 2-FWER based on
the Monte Carlo procedure. Each entry is based on 1,000
simulated datasets. FWER, family-wise error rate.
SNP, single nucleotide polymorphism.

TABLE IV. Type I error/power of haplotype tests with
partially overlapping windows of five SNPs at the .05
nominal significance level under Hardy-Weinberg
disequilibrium and common disease based on the full
set of SNPs on chromosome 18 of the HapMap data for
studies with 500 cases and 500 controls

Odds ratio Bon Bon-2 MC MC-2

1.0 .021 .016 .035 .050
1.5 .108 .157 .137 .271
1.7 .434 .492 .473 .628

Note: Bon and Bon-2 pertain to the FWER and 2-FWER based on
the Bonferroni correction, and MC and MC-2 to the FWER and 2-
FWER based on the Monte Carlo procedure. Each entry is based
on 1,000 simulated datasets. FWER, family-wise error rate.
SNP, single nucleotide polymorphism.
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board was secured at every recruitment site before
enrollment.

The SNPs were a custom set selected from ‘‘double
hit’’ SNPs (dbSNP) on the basis of their distribution
and favorable assay design characteristics. The 2,297
SNPs represent the SNPs successfully typed with
minor allele frequency greater than 5% out of the
3,072 SNPs attempted in a region of chromosome 18;
the region is shown in Figure 1(a). The assumption
of Hardy-Weinberg equilibrium (HWE) was exam-
ined for single markers using the exact test im-
plemented in Merlin. Several were identified with
significant deviations from HWE, even though
neighboring markers often showed good coinci-
dence between observed and expected genotype
frequencies. Because some significant deviations
from HWE are expected by chance even when
the assumption holds and departures from HWE
may be caused by association between the marker
alleles and disease susceptibility, we did not exclude
any markers from the analysis.

We applied the proposed Monte Carlo method as
well as the Bonferroni and permutation methods to
this study, and considered both FWER and 2-FWER.
We set cf ¼ 1=n and ce ¼ 10=n. The results for non-
overlapping windows of size 4 are summarized in

Table V; only the windows with adjusted MC-2
P-values of less than .25 are shown. The last two
windows, D and E, in the table merit special
attention, as their MC-2 P-values are less than
.1. As expected, the MC and MC-2 adjusted
P-values are much smaller than their Bonferroni
counterparts. Indeed, the Bonferroni-adjusted
P-values are two–three fold of their MC counter-
parts. For this study, permutation was computa-
tionally feasible (although very slow) and yielded
similar results to those of the MC method. Table VI
identifies the SNPs and the most significant
haplotypes in the five windows with MC-2
adjusted P-values of o.25.

There were no significant SNPs in the single-SNP
analysis, whether with the simple Bonferroni correc-
tion or the more powerful MC method. The lowest
adjusted P-value for any single SNP was a MC-2
P-value of 0.16. The single-SNP analysis yielded
unadjusted P-values of .621, .554, .077 and .151 for
the four SNPs in window E, which has an
unadjusted P-value of .0005 for the overall haplotype
test and an unadjusted P-value of .0025 for the effect
of haplotype 1111. Thus, the haplotype analysis
provides much stronger evidence for genetic effects
than the single-SNP analysis in this study.

We also performed the exhaustive testing of
non-overlapping windows of sizes one–four, which
did not produce any significant SNPs or windows.
This is not surprising, as this procedure entails
more than eight times as many tests as the analysis
of non-overlapping windows of size 4, which
had only mildly significant results. In this study,
the gain in power from looking at different size
windows did not compensate for the extra quantity
of tests.

In summary, the proposed MC-2 method
produced two adjusted P-values of o.1. This degree
of significance was achieved because the analysis
made use of haplotypes and 2-FWER. No adjusted
P-value would be o.1 if the analysis was based
on individual SNPs, traditional FWER, or Bonferroni
correction.

TABLE V. The adjusted P-values for the five most
significant non-overlapping windows of four SNPs in
the rheumatoid arthritis study

Window Bon Bon-2 MC MC-2 Perm Perm-2

A .694 .347 .334 .137 .341 .145
B 1.000 .580 .470 .225 .479 .242
C 1.000 .553 .455 .217 .465 .234
D .467 .234 .248 .087 .262 .090
E .289 .144 .163 .049 .162 .047

Note: Bon and Bon-2 pertain to the FWER and 2-FWER based on
the Bonferroni correction, MC and MC-2 pertain to the FWER and
2-FWER based on the Monte Carlo procedure, and Perm and
Perm-2 pertain to the FWER and 2-FWER based on permutation.
SNP, single nucleotide polymorphism; FWER, family-wise
error rate.

TABLE VI. Estimated haplotype effects for the five most significant non-overlapping windows of four SNPs in the
rheumatoid arthritis study

Window SNPs Haplotype Frequency Odds ratio
Unadjusted

P-value

A (377, 378, 379, 380) 0110 .052 .46 .00052
B (685, 686, 687, 688) 0110 .032 1.94 .021

1011 .147 .70 .0096
C (1097, 1098, 1099, 1100) 0110 .280 1.43 .0006
D (1101, 1102, 1103, 1104) 0100 .305 1.41 .00083
E (1141, 1142, 1143, 1144) 1111 .030 2.54 .0025

0001 .053 .67 .061

SNP, single nucleotide polymorphism.
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DISCUSSION

The proposed method incorporates several new
ideas: (1) a stable and efficient algorithm was
constructed to calculate a proper statistic for testing
haplotype-disease association for a given window
of SNPs; (2) the joint distribution of such test
statistics over different windows was derived; (3) a
multiple-testing procedure for statistics with differ-
ent degrees of freedom was introduced; (4) the
concept of k-FWER was adopted; (5) an accurate MC
procedure for multiple testing was developed. The
concept of k-FWER is useful in genomewide associa-
tion studies even if one is not interested in haplotype
analysis. The MC multiple-testing procedure for
statistics with different degrees of freedom also has
other applications.

Like Epstein and Satten [2003] and Lin et al. [2005],
our statistic for testing haplotype-disease association
for a set of SNPs is based on the retrospective
likelihood, which properly reflects the case-control
sampling. The calculation of our test statistic makes
use of a novel parameterization, which lends itself to
a simple Newton-Raphson algorithm that is more
efficient and more reliable than the EM algorithms
used by the previous authors. More important, this
article deals with haplotype analysis in association
scans rather than candidate genes. The computer
program implementing the new method will
be posted on the website: http://www.bios.unc.
edu/�lin.

Our analysis of the RA study suggested loci for
further investigations. Our collaborators at the NAR-
AC are currently genotyping an additional 667 cases
and 662 controls in the regions shown in Table VI.
Furthermore, an independent set of cases and
controls from Europe will be used for confirmation.

The values of cf and ce determine which rare
haplotypes are removed from the analysis and
which are omitted from association testing. Lower
values of cf and ce permit characterization of rarer
haplotypes and their association with disease;
however, overly low values will destabilize the
algorithm. An alternative strategy is to adopt the
haplotype clustering methods of Tzeng et al. [2006].
Because those methods are formulated in terms of
the score test of Schaid et al. [2002] multiplied by an
allocation matrix, they could be incorporated within
the MC framework described here.

The selection of windows requires some thought.
The number of windows to be used must be
balanced against the degree of penalty for multiple
testing. It may be more powerful to focus on non-
overlapping windows than to consider every possi-
ble adjacent group of SNPs. One compromise is
to use exhaustive testing with non-overlapping win-
dows. The level of LD in the region of causative SNPs

will also affect the power. A lower level of LD will
create a greater number of common haplotypes, and
thus will reduce the power to detect a true effect. In
regions of high LD, non-overlapping windows will
certainly have high power even if the causative
haplotype happens to be out of phase with the
windows. A longer causative haplotype will not be
as well detected by windows of four or five SNPs
as by a larger window. Testing for larger windows
increases the computational intensity greatly, because
of the increase in the numbers of haplotypes. The need
for testing with large windows can be alleviated
by using tag SNPs. If a few SNPs encode much of
the variation in a region, then a small set of tag SNPs
can capture the effect of a long haplotype.

We have selected windows without considering
the actual LD patterns. An alternative approach is to
select windows in such a way that the SNPs are in
strong LD within windows and in low LD between
windows. Specifically, we may select non-overlap-
ping windows based on a definition of haplotype
blocks, such as all SNPs within the block having
pairwise correlation 4.8. This allows for variable
length blocks, although it entails an arbitrary
definition of haplotype blocks. It would be worth-
while to investigate the performance of such
strategies.

The choice of k for k-FWER will affect the
interpretation of results. It is clear that using a larger
k results in greater power; however, this increase
in power is accompanied by an increased number
of false positives. Chen and Storey [2006] discussed
a similar measure, GWER-k, for linkage analysis,
which is equivalent to the (k11)-FWER. In their
simulation studies, controlling the GWER-1 at the .05
level resulted in GWER-0 rates which ranged from
.13 to .34. Considering different values of k may thus
be more practical than attempting to achieve the
same increase in power by increasing the a level
for k 5 1.

This article is focused on genetic effects. In some
studies, investigators are interested in gene-environ-
ment interactions. By incorporating the profile like-
lihood approach of Lin et al. [2005], we can extend the
proposed method to detect haplotype-environment
interactions in genomewide association studies. In
addition, we may accommodate Hardy-Weinberg
disequilibrium as in Lin et al. [2005]. It would be
difficult to use permutation if one is interested in
testing gene-environment interactions.

The proposed MC procedure is substantially
more powerful than the conventional Bonferroni
correction while providing accurate control of the
type I error. The MC procedure requires nearly
a thousandth the computing time of the permutation
procedure (with 1,000 permuted data sets) and thus
can be used for studies involving large quantities of
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SNPs. This is because calculating the simulated
statistics only involves generation of normal random
variables, whereas calculating the test statistics
involves fitting the model through iterative numer-
ical algorithms. For the RA study, it took about
320 sec on an IBM BladeCenter HS20 (Intel Xeon 2.8
GHz) machine to carry out the MC procedure for
non-overlapping windows of four SNPs, as opposed
to 39 h for permutation. Exhaustive testing for
windows ranging from one SNP to four SNPs
required 1,225 seconds.

Lin et al. [2004] considered exhaustive testing of
haplotype-disease association over all possible win-
dows of segments, and used a computationally
efficient permutation procedure to assess the signi-
ficance of the correlated tests. Their approach is
based on a version of the transmission disequili-
brium test and is applicable to family data only. Our
approach can also be extended to family studies.
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