Exploratory analysis for spatial point processes

References: Diggle [1983], Cressie [1993], Cressie and Wikle [2011]

• Estimating the intensity function
 – Analyzing spatial point processes in R
 – Ex 1: A nonhomogeneous Poisson point process
 – Ex 2: Trees at Hyytiälä
 – Ex 3: Gorilla nesting sites

• Estimating the K function
 – Estimating the weighted K-function
 – Ex 1: A homogeneous Poisson point process
 – Ex 2: Trees at Hyytiälä
 – Ex 3: Gorilla nesting sites
Estimating the intensity function

- Remember the **first order intensity function** is
 \[
 \lambda_Z(s) = \lim_{|ds| \to 0} \frac{E(Z(ds))}{|ds|}.
 \]

- We can estimate this function from a given spatial point pattern via nonparametric smoothing. Based on \(m = Z(D) \) observations \(z = \{s_1, \ldots, s_m\} \) observed in \(D \), our estimate of the intensity function is
 \[
 \hat{\lambda}_Z(s) = \frac{\sum_{i=1}^m k_b(s - s_i)}{K}.
 \]

- The **kernel** function, \(k_b(\cdot) \), that carries out the smoothing, is a probability density function which is assumed to be symmetric about the origin.

- The parameter \(b \) (the **bandwidth**) controls the amount of smoothing.

 - A smaller value of \(b \) yields a rougher estimate.

 - A larger value of \(b \) yields a smoother estimate.

- The choice of \(b \) trade-offs between too much bias and too much variability in the estimate.
Estimating the intensity function, continued

- In the estimate of the intensity function

\[K = \int_D k_b(s - t) dt, \]

is an edge correction.

- For 2D point processes Diggle [1985] suggests the use of the product of two Epanechnikov kernels

\[p_b(s) = e_b(s_x)e_b(s_y), \]

where \(s_x \) denotes the \(x \) coordinate of \(s \) and \(s_y \) denotes the \(y \) coordinate, with

\[e_b(x) = \frac{3}{4b} \left[1 - \frac{|x|}{b} \right] I(|x|/b \leq 1). \]

- A Gaussian kernel can also be used.
Analyzing spatial point processes in R

- We use the library `spatstat` for the statistical analysis of point processes in R.

 (http://cran.r-project.org/web/packages/spatstat/)

- The R function `density` will estimate the intensity function of a spatial point pattern `x`.

 \[
 \text{density}(x, \text{sigma})
 \]

 Here `sigma` is the bandwidth of a Gaussian kernel.

- To use the bandwidth proposed by Diggle [1985] use

 \[
 \text{density}(x, \text{bw.diggle})
 \]
Ex 1: A nonhomogeneous Poisson point process

- Here is the simulated example from the first set of notes.
Ex 2: Trees at Hyytiälä

- Comments:
Ex 3: Gorilla nesting sites

- Comments:
Estimating the K function

- Suppose that the spatial point process is stationary and isotropic with intensity λ_Z.

- Remember that **Ripley’s K-function** is defined to be

$$K_Z(t) = \frac{E_Z(t)}{\lambda_Z},$$

where $E_Z(t) =$ expected number of events within a distance t of an arbitrary point.

- Based on $z = \{s_i \in D : i = 1, \ldots, m\}$ we estimate $E_Z(t)$ by

$$\frac{1}{m} \sum_{i=1}^{m} \sum_{j \neq i} I(||s_i - s_j|| \leq t),$$

and λ_Z by

$$(m - 1)/|D|,$$

- The **estimated K-function** is then

$$\hat{K}_Z(t) = \frac{|D|}{m(m - 1)} \sum_{i=1}^{m} \sum_{j \neq i} I(||s_i - s_j|| \leq t).$$

- This estimator can have high bias for large values of t.
Estimating the weighted K-function

- In practice we need to introduce weighting into the estimator to correct for edge effects (allowing for the fact when cannot observe points outside D).

Given weights $\{w_{ij}\}$ the estimated K-function becomes

$$
\hat{K}_Z(t) = \frac{|D|}{m(m-1)} \sum_{i=1}^{m} \sum_{j \neq i} w_{ij} I(||s_i - s_j|| \leq t).
$$

- We use the R function `Kest` (with Ripley’s isotropic correction) to estimate the K-function.

- We can view the departure from a CSR process by plotting $\hat{K}_Z(t) - \pi t^2$ versus t.

- At short distances t:
 1. We have **clustering** when $K_Z(t) - \pi t^2 > 0$.
 2. We have **regularity** when $K_Z(t) - \pi t^2 < 0$.
Ex 1: A homogeneous Poisson point process

- An example with $\lambda_Z = 500$.

![Estimated K function and Deviation from CSR graphs](image-url)
Ex 2: Trees at Hyytiälä

Estimated K function

\[\hat{K}_{\text{iso}}(r) \]
\[K_{\text{pola}}(r) \]

Deviation from CSR

\[\hat{K}_{\text{iso}}(r) - K_{\text{pola}}(r) \]
Ex 3: Gorilla nesting sites

Estimated K function

\[\hat{K}_{iso}(r) \]
\[K_{polo}(r) \]

Deviation from CSR

\[\hat{K}_{iso}(r) - K_{polo}(r) \]
References

