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1. Problem Description

Let X be a compound Poisson process whose rate λ0 and

jump distribution ν0(·) change to λ1 and ν1(·), respectively, at

some unknown and unobservable time θ.

θ

(Disorder time)

Rate λ0

Rate λ1

Jump distr. ν0

Jump distr. ν1

0

Process X
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1. Problem Description

Let X be a compound Poisson process whose rate λ0 and

jump distribution ν0(·) change to λ1 and ν1(·), respectively, at

some unknown and unobservable time θ.

0

Process X

(Only the process X

is observable.)
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1. Problem Description

Let X be a compound Poisson process whose rate λ0 and

jump distribution ν0(·) change to λ1 and ν1(·), respectively, at

some unknown and unobservable time θ.

0

Process X

(Only the process X

is observable.)

Problem: Find a decision rule which

• detects the disorder time θ as quickly as possible,

• is adapted to the history of X.
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Let (Ω,F , P) be a probability space supporting random vari-

ables θ, Y1, Y2, · · · , a counting process N = {Nt; t ≥ 0}. Define

Xt = X0 +

Nt∑

k=1

Yk ≡ X0 +

∫

(0,t]×Rd
y p(ds, dy), t ≥ 0

in terms of the point process describing jump times and sizes

p((0, t] × A) ,
∞∑

k=1

1{σk≤t}1{Yk∈A}, t ≥ 0, A ∈ B(Rd).

and σk = inf{t > σk−1 : Xt 6= Xt−}, k = 1, 2, . . . (σ0 ≡ 0).

F = {Ft}t≥0 as the natural filtration of X,

G = {Gt}t≥0, Gt , Ft ∨ σ{θ}.
(1)

The disorder time θ has the distribution

P{θ = 0} = π and P{θ > t|θ > 0} = e−λt, t ≥ 0.(2)

The counting process {p(t, A) , p((0, t] × A); t ≥ 0} is a non-

homogeneous Poisson process with the (P, G)-intensity

h(t, A) , λ0ν0(A)1{t<θ} + λ1ν1(A)1{t≥θ}, t ≥ 0.(3)
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Our problem is (i) to calculate the minimum Bayes risk

V (π) , inf
τ∈F

Rτ(π),

Rτ(π) , P{τ < θ} + c · E
[
(τ − θ)+

]
, π ∈ [0, 1),

(4)

and (ii) to find an F-stopping time τ where the infimum is

attained (if exists, called a minimum Bayes detection rule).

The Bayes risk Rτ(π) in (4) associated with every F-stopping

time τ is the sum of

• the false alarm frequency P{τ < θ}, and

• the expected detection delay cost c · E[(τ − θ)+].
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Our problem is (i) to calculate the minimum Bayes risk

V (π) , inf
τ∈F

Rτ(π),

Rτ(π) , P{τ < θ} + c · E
[
(τ − θ)+

]
, π ∈ [0, 1),

(4)

and (ii) to find an F-stopping time τ where the infimum is

attained (if exists, called a minimum Bayes detection rule).

The Bayes risk Rτ(π) in (4) associated with every F-stopping

time τ is the sum of

• the false alarm frequency P{τ < θ}, and

• the expected detection delay cost c · E[(τ − θ)+].

Standard Bayes risks include

Linear delay penalty: Rτ(π) = P{τ < θ} + c E[(τ − θ)+],

R(ε)
τ (π) , P{τ < θ − ε} + c E[(τ − θ)+],

Expected miss: R(miss)
τ (π) , E[(θ − τ)+] + c E[(τ − θ)+],

Expon. delay penalty: R(exp)
τ (π) , P{τ < θ} + c E[eα(τ−θ)+ − 1].
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Where do the disorder problems arise?

Insurance companies: Recalculate the premiums for the fu-

ture sales of insurance policies when the risk structure

changes (e.g., the arrival rate of claims of certain size).

Airlines, retailers of perishable products: Adjust the prices

when a change in the demand structure is detected (e.g.,

the arrival rate of a certain type of customers).

Quality control and maintenance: Inspect, recalibrate, or

repair tools and machines as soon as a manufacturing

process goes out of control.

Fraud and computer intrusion detection: Alert the inspec-

tors for an immediate investigation as soon as abnormal

credit card activity, cell phone calls, or computer network

traffic are detected.
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2. The Model

Let (Ω,F , P0) be a p.s. with independent random elements:

• a Poisson process N = {Nt; t ≥ 0} with rate λ0,

• iid Rd-valued rv’s Y1, Y2, . . . with distr. ν0(·) (ν0({0}) = 0),

• a rv θ with the distribution

P0{θ = 0} = π and P0{θ > 0} = (1 − π)e−λt, t ≥ 0.

A compound Poisson process with arrival rate λ0 and jump

distribution ν0(·) is defined by

Xt = X0 +

Nt∑

k=1

Yk = X0 +

∫

(0,t]×A

y p(ds, dy), t ≥ 0

in terms of the point process on (R+ × Rd, B(R+) × B(Rd))

p((0, t] × A) ,
∞∑

k=1

1{σk≤t}1A(Yk), t ≥ 0, A ∈ B(Rd).

Under P0 the process {p((0, t] × A); t ≥ 0} is homogeneous

Poisson process with the F-intensity λ0 · ν0(A). Each σk is a

jump time of X, and F is its history, and G = F ∨ σ{θ}.
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Let λ1 be a constant, and ν1(·) be a probability measure on

(Rd, B(Rd)) absolutely continuous wrt ν0(·) with RN-derivative

f(y) ,
dν1

dν0

(y), y ∈ R
d.

Define locally a new probability measure P on (Ω,∨t≥0Gt) by

the Radon-Nikodym derivatives

dP

dP0

∣∣∣∣
Gt

= 1{t<θ} + 1{t≥θ}e
−(λ1−λ0)(t−θ)

Nt∏

k=Nθ−+1

[
λ1

λ0

f(Yk)

]
, t ≥ 0.(5)

Then every counting process {p((0, t]×A); t ≥ 0}, A ∈ B(Rd) is

a nonhomogeneous Poisson process with the (P, G)-intensity

h(t, A) = λ0ν0(A)1{t<θ} + λ1ν1(A)1{t≥θ}.(3)

Since P0 ≡ P on G0 = σ{θ}, the disorder time θ has the same

distribution under P0 and P.

Therefore, the model under the measure P of (5) has the

same setup described in the beginning.
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3. A Markovian sufficient statistic for detection problem

The Bayes risk Rτ(π) = P{τ < θ}+ E [(τ − θ)+], π ∈ [0, 1) in (4)

for every F-stopping rule τ can be written as

Rτ(π) = 1 − π + c (1 − π) E0

[∫ τ

0

e−λt

(
Φt −

λ

c

)
dt

]
.(6)

The expectation in (6) is taken under the ref. p.m. P0, and

Φt ,
P{θ ≤ t|Ft}

P{θ > t|Ft}
, t ∈ R+.(7)

The process Φ is a piecewise-deterministic Markov process:




Φt = x
(
t − σn−1, Φσn−1

)
, t ∈ [σn−1, σn)

Φσn =
λ1

λ0

f(Yn)Φσn−





, n ≥ 1.

The fucntion x(·, φ) = {x(t, φ); t ≥ 0} is the solution of

d

dt
x(t, φ) = λ + ax(t, φ), t ∈ R, and x(0, φ) = φ; i.e.,

x(t, φ) = φd + eat [φ − φd] , t ∈ R.

Here a , λ − λ1 + λ0, φd , −λ/a.
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The min. Bayes risk in (4) of the Poisson disorder problem is

U(π) = 1 − π + c (1 − π) · V

(
π

1 − π

)
, π ∈ [0, 1).

The function V : R+ 7→ (−∞, 0] is the value function of the

discounted optimal stopping problem

V (φ) , inf
τ∈F

E0

[∫ τ

0

e−λtg(Φt) dt

∣∣∣∣ Φ0 = φ

]
(8)

(a) φd > 0

φ

Φt(ω)

t

λ/c

Φt(ω)
t

φφdλ/c0

(b) φd < 0

0

with the running cost

function

g(φ) , φ −
λ

c
, φ ≥ 0.

for the piecewise deter-

ministic Markov process

Φ.

[Left: sample paths of

the process Φ]
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4. Successive approximations

Let us introduce the family of optimal stopping problems

Vn(φ) , inf
τ∈F

E
φ
0

[∫ τ∧σn

0

e−λsg(Φs)ds

]
, φ ∈ R+, n ≥ 0,(9)

obtained from (8) by stopping the process Φ at the nth jump

time σn of the process X.

Proposition. For every n ≥ 0 and φ ∈ R+, we have

−
1

c
·

(
λ0

λ + λ0

)n

≤ V (φ) − Vn(φ) ≤ 0.(10)

Proof. Due to the discounting and exponentially distributed

jump interarrival times of X under P0.

Lemma. For every F-stopping time τ and n ≥ 0, there is an

Fσn-measurable random variable Rn : Ω 7→ [0,∞] such that

τ ∧ σn+1 = (σn + Rn) ∧ σn+1, P0-a.s. on {τ ≥ σn}.
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If for every bounded function w : R+ 7→ R we define

Jw(t, φ) =

∫ t

0

e−(λ+λ0)u
(
g + λ0 · Sw

)(
x(u, φ)

)
du, t ∈ [0,∞]

where Sw(x) ,

∫

Rd
w

(
λ1

λ0

f(y) x

)
ν0(dy), x ∈ R.

then we can calculate the successive approximations {Vn(·)}n≥1

of the value function V (·) by

V0(·) ≡ 0, and Vn(·) = J0Vn−1(·) , inf
t≥0

JVn−1(t, ·) ∀n ≥ 1.

Moreover

1. Vn(·) ց V (·) (exponentially fast)

2. V (·) = J0V (·) on R+. (Dynamic programming equation)

3. The value function V (·) is concave and nonpositive.

4. The stopping region Γ = {φ ∈ R+ : V (φ) = 0} is in the form

Γ = [ξ,∞) for some 0 < ξ < +∞.
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5. Examples

14 jumps14 jumps

17 jumps14 jumps13 jumps

λ0 = λ1

Gamma(3,µ)

Gamma(6,µ)

Gamma(2,µ)

distributions

(a) Discrete jump (b) λ1

λ0
= 1

2
(c) λ1

λ0
= 1 (d) λ1

λ0
= 2

Exponential(µ)

(h) Gamma(6,µ)(g) Gamma(3,µ)(f) Gamma(2,µ)

distributions (µ = 2)

(e) Continuous jump

14 jumps
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Parameters: c = 0.2, λ = 1.5, λ0 = 3.
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(b) R(ε), ε = 0.1
λ

11 jumps 10 jumps 10 jumps

10 jumps 8 jumps 6 jumps 8 jumps

λ1

λ0

= 2

λ1

λ0

= 1
2

(d) R(exp), α = 1(c) R(miss)(a) R(linear)

11 jumps
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R(linear)
τ (π) , P{τ < θ} + c E(τ − θ)+,

R(ε)
τ (π) , P{τ < θ − ε} + c E(τ − θ)+,

R(miss)
τ (π) , E(θ − τ)+ + c E(τ − θ)+,

R(exp)
τ (π) , P{τ < θ} + c E[eα(τ−θ)+ − 1]





Standard Poisson

disorder problems:

E
φ
0

[∫ τ

0

e−λt (Φt − k) dt

]
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6. Appendix

Lebesgue decomposition of the measures. Let ν0(·) and ν1(·) be

probability measures on (Ω, B(Rd)). Then there exist a Borel

function f : Rd 7→ [0,∞] and a Borel set H ⊆ Rd such that

ν0(H) = 0,

ν1(B) =

∫

B

f(y)ν0(dy) + ν1(B ∩ H), B ∈ B(Rd).

If an observation Yn falls in H, then one cannot make any

error by concluding that the change from ν0(·) to ν1(·) has

happened.

In general, an alarm given for the first time by the sim-

ple rule above or the decision rule obtained in the previous

sections by applying to the measures ν0(·) and

ν̃1(·) =

∫

y∈·

f(y)ν0(dy),

will be optimal for the linear penalty in (4).
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