Statistical Inference for Diffusion Processes

Radu Herbei

The Ohio State University
The Mathematical Biosciences Institute

July 7, 2015
Motivation

Let \(x(t) \) be the state of a system at time \(t \geq 0 \). Assume that the time evolution of \(x(\cdot) \) can be described via

\[
\begin{align*}
\frac{d}{dt} x(t) &= b(x(t)), \quad \text{for } t > 0 \\
x(0) &= x_0
\end{align*}
\]

(1)

where \(b(\cdot) \) is a given, smooth function. Under conditions which will not be discussed here, the problem above can be solved, i.e., one can find a function \(x(t) \) satisfying (1). This function is necessarily smooth and its graph may take the following form.

\[x_0 \rightarrow x(t) \]

Figure: Trajectory of a solution \(x(\cdot) \).
In many cases, one can obtain measurements of the variable x (at many time points). When plotted against time, trajectories behave as follows:

![Figure: Trajectory of a “measured” solution $X(\cdot)$.](image)

Note that

- We are plotting observations X, not the variable x;
- There are many dissimilarities between the two graphs;
- There are many similarities between the two graphs;
Our goal is to **understand** how X changes in time, accounting for various sources of uncertainty: measurement error, approximate dynamics, etc.

Why? Ultimately we would like to predict the value of the system at a future time point, or a spatial location of interest. For the time being, we will ignore the fact that X may contain measurement error – this can be dealt with later.

Clearly x and X are different and one cannot use (1) to describe how X behaves in time.

On the other hand one can observe that the evolution of X is very similar to that of x, which indicates that

\[
\frac{d}{dt} X(t) = b(X(t))
\]

is a “good” place to start in describing how X changes in time.
The little wiggles that appear in the graph of X can be thought of as “noise” - something that we cannot explain, but something that doesn’t seem to change the overall dynamics.

This suggests the following modification

\[
\begin{align*}
\frac{d}{dt} X(t) &= b(X(t)) + "\text{noise}" , \quad \text{for } t > 0 \\
X(0) &= X_0
\end{align*}
\]
Questions:

- define “noise” in a rigorous way; define what it means for $X(\cdot)$ to solve the system above;
- discuss uniqueness, asymptotic behavior, dependence upon X_0, $b(\cdot)$, etc

These questions are addressed by the classical SDE theory. In many cases, $b(\cdot)$ is also unknown. This raises some additional questions:

- estimate b (parametric, non-parametric, Bayes, etc.);
- if “noise” involves parameters, estimate those too;
- what statistical properties do all the estimators have? (consistency, asymptotics);
- computational issues
Outline (part I)

- Primer on stochastic processes
- Brownian Motion
- Stochastic integrals
- Itô processes, stochastic differential equations, Itô formula
- Solutions of diffusion processes
- Girsanov formula
References

Probability spaces, random variables

- Let \((Ω, B, P)\) be a probability space.
 - \(Ω \neq \emptyset\) is the sample space;
 - \(B ⊆ 2^Ω\) is a \(σ\)-field (its elements are called events);
 - \(P : B → [0, 1]\) is a probability measure.

- A Borel-measurable map \(X : Ω → \mathbb{R}^k\) is called a random vector (or variable, if \(k = 1\)). In general, a Borel-measurable map \(X : Ω → D\) is called a random element (of \(D\)). Here \(D\) is a generic metric space.

- The law of \(X\) or, the distribution of \(X\) is the probability measure \(PX^{-1} : B(\mathbb{D}) → [0, 1]\)

\[
PX^{-1}(B) = P(X^{-1}(B)) = P(\{\omega ∈ Ω : X(\omega) ∈ B\}) \quad ∀ \ B ∈ B(\mathbb{D})
\]
Stochastic Processes

View 1: A collection of random variables \(\{X_t, \ t \in \mathcal{T}\} \).
Typically \(\mathcal{T} = [0, \infty) \) or \(\mathcal{T} = [0, \ T] \).

\[
X_t : \Omega \to \mathbb{R} \quad t \in \mathcal{T}
\]

For each \(\omega \in \Omega \), the map

\[
t \mapsto X_t(\omega) \quad t \in \mathcal{T}
\]

is called a sample path.

Figure: Two sample paths of a stochastic process.
View 2: A map

\[X : \mathcal{T} \times \Omega \rightarrow \mathbb{R} \quad (t, \omega) \mapsto X(t, \omega) \equiv X_t(\omega) \]

View 3: A map

\[X : \Omega \rightarrow \mathbb{R}^{\mathcal{T}} \quad \omega \mapsto X_\omega \quad \text{where} \quad X_\omega : \mathcal{T} \rightarrow \mathbb{R} \]

Unless otherwise specified, we will assume that \(\mathcal{T} = [0, T] \).
A family of σ-fields (\mathcal{F}_t), $t \in \mathcal{T}$ such that $\mathcal{F}_{t_1} \subset \mathcal{F}_{t_2}$ if $t_1 < t_2$ is called a filtration.

A σ-field \mathcal{F}_t is viewed as “information”. Thus, $\mathcal{F}_{t_1} \subset \mathcal{F}_{t_2}$ can be interpreted as “information accumulates in time”.

The process (X_t), $t \in \mathcal{T}$ is adapted to the filtration \mathcal{F}_t if

$$X_t \in \mathcal{F}_t / \mathcal{B}(\mathbb{R})$$

The process (X_t), $t \in \mathcal{T}$ is measurable if the map

$$(t, \omega) \mapsto X(t, \omega) \quad t \in [0, T] \ \omega \in \Omega$$

is measurable wrt the product σ-field $\mathcal{B}([0, T]) \times \mathcal{B}$.

The process (X_t) is progressively measurable if, for each $t \in [0, T]$ the map

$$(s, \omega) \mapsto X(s, \omega) \quad s \in [0, t] \ \omega \in \Omega$$

is measurable wrt the product σ-field $\mathcal{B}([0, t]) \times \mathcal{B}_t$.
Some classes of stochastic processes

Stationary processes.
The process $X^T = \{X_t, \ t \in \mathcal{T}\}$ is called stationary in a narrow sense if

$$P(X_{t_1} \in A_1, \ldots, X_{t_n} \in A_n) = P(X_{t_1+\delta} \in A_1, \ldots X_{t_n+\delta} \in A_n)$$

The process $X^T = \{X_t, \ t \in \mathcal{T}\}$ is called stationary in a wide sense if

$$E(X_t) < \infty \quad E(X_t) = E(X_{t+\delta}) \quad E(X_sX_t) = E(X_{s+\delta}X_{t+\delta})$$

The process X^T has independent increments if, for any $t_1 < t_1 < \cdots < t_n$, the increments

$$X(t_2) - X(t_1), X(t_3) - X(t_2), \ldots, X(t_n) - X(t_{n-1})$$

are independent.
Markov processes

The stochastic process X^T is called Markov wrt the filtration (\mathcal{F}_t) if

$$P(A \cap B \mid X_t) = P(A \mid X_t)P(B \mid X_t)$$

for any $t \in \mathcal{T}$, $A \in \mathcal{F}_t$, $B \in \mathcal{F}_{[t, \infty)} \equiv \sigma(X_s, s \geq t)$.

Theorem (1.12, L&S)

The process X_t is Markov iff for each measurable function $f(x)$ with $\sup_x |f(x)| < \infty$ and any $0 \leq t_1 \leq \ldots, \leq t_n \leq t$,

$$E(f(X_t) \mid X_{t_1}, \ldots, X_{t_n}) = E(f(X_t) \mid X_{t_n})$$

Stochastic processes with independent increments are an important subclass of Markov processes.
Martingales

The stochastic process \((X_t), \ t \in \mathcal{T}\) is called a martingale with respect to the filtration \((\mathcal{F}_t)\) if \(E(X_t) < \infty, \ t \in \mathcal{T}\) and

\[
E(X_t | \mathcal{F}_s) = X_s \text{ a.s. } t \geq s.
\]

Exercise Let \(Y_1, Y_2, \ldots\) be such that
\((Y_1, Y_2, \ldots, Y_n) \sim p_n(y_1, \ldots, y_n)\) wrt \(\lambda\).
Let \(q_n(y_1, \ldots, y_n)\) be an alternative pdf (wrt \(\lambda\)). Then

\[
X_n = \frac{q_n(Y_1, \ldots, Y_n)}{p_n(Y_1, \ldots, Y_n)}
\]

is a martingale wrt \(\mathcal{F}_n = \sigma(Y_1, \ldots, Y_n)\).
Brownian Motion (BM)

- discovered by Robert Brown (1828);
- first quantitative work on BM due to Bachelier (1900) – in the context of stock price fluctuations;
- Einstein (1905) derived the transition density for BM from molecular-kinetic theory of heat;
- Wiener (1923, 1924) – first rigorous treatment of BM; first proof of existence;
- P. Lévy (1939, 1948) – most profound work (construction by interpolation, first passage times, more).
Definition of a BM

A real-valued continuous time stochastic process $\mathbb{W}^T = \{\mathbb{W}_t, t \geq 0\}$ is called a Brownian motion if

- $\mathbb{W}_0 = 0$ a.s.;
- \mathbb{W}^T has stationary and independent increments;
- If $s < t$, $\mathbb{W}_t - \mathbb{W}_s$ is a Gaussian variate with

$$\mathbb{E}(\mathbb{W}_t - \mathbb{W}_s) = 0 \quad \text{Var}(\mathbb{W}_t - \mathbb{W}_s) = \sigma^2(t - s)$$

- For almost all $\omega \in \Omega$, the sample path $t \mapsto \mathbb{W}_t(\omega)$ is a continuous function of $t \geq 0$

If $\sigma = 1$ the process (\mathbb{W}_t) is called a standard BM.
Simulation
Properties

Let W^T be a SBM.

- The natural filtration generated by a BM process is
 \[F_t = \sigma(W_s, 0 \leq s \leq t) \]

- $E(W_t) = 0$, $\text{Var}(W_t) = t$
- SBM is a martingale wrt (F_t)
- Independent increments \Rightarrow Markov process.

Exercise Let $t_1 < t_2 < \cdots < t_n$. Derive the joint distribution of $(W(t_1), W(t_2), \ldots, W(t_n))$.
Existence

Constructive method.
Let η_1, η_2, \ldots be iid $N(0, 1)$ variates and $\phi_1(t), \phi_2(t), \ldots$ be an arbitrary complete orthonormal sequence in $L_2[0, T]$. Define

$$\Phi_j(t) = \int_0^t \phi_j(s) \, ds \quad j = 1, 2, \ldots$$

Theorem. The series

$$\mathbb{W}_t = \sum_{j=1}^{\infty} \eta_j \Phi_j(t)$$

converges P-a.s. and defines a Brownian motion process on $[0, T]$.
Brownian motion as a limit of a random walk

Let $X_n = \pm 1$ with probability $1/2$ and consider the partial sum

$$S_n = X_1 + X_2 + \cdots + X_n.$$

Then, as $n \to \infty$,

$$P\left(\frac{S_{[nt]}}{\sqrt{n}} < x \right) \to P(W_t < x)$$

(discussion)
Strong Markov property

Let τ be a Markov time wrt \mathcal{F}_t, assume that $P(\tau \leq T) = 1$. Fix s such that $P(s + \tau \leq T) = 1$.

$$E(f(W_{\tau+s} | \mathcal{F}_\tau) = E(f(W_{\tau+s} | W_\tau)$$

This is equivalent to saying that

$$\tilde{W}_t = W_{\tau+t} - W_\tau$$

is a SBM, independent of \mathcal{F}_τ.
Reflection principle

Let W^T be a SBM and τ a Markov time. The process

$$W^*(t) = \begin{cases} W_t & \text{if } t \leq \tau \\ W_\tau - (W_t - W_\tau) & \text{if } t \geq \tau \end{cases}$$

is a SBM.

Let $\tau = \inf\{t \geq 0, \ W_t \geq x\}$ where $x > 0$, and let

$$M_t = \sup_{0 \leq s \leq t} W_s$$

Then,

$$P(M_t \geq x) = P(\tau \leq t) = 2P(W_t \geq x)$$
Stochastic Integral

Let \((\Omega, \mathcal{B}, P)\) be a prob. space, \(\mathbb{W}^T\) be a SBM.
The quadratic variation (on \([0, T]\)) is defined as

\[
[\mathbb{W}^T, \mathbb{W}^T] = \lim_{\|\Pi\| \to 0} \sum_{i=0}^{n-1} |\mathbb{W}_{t_{i+1}} - \mathbb{W}_{t_i}|^2
\]

where \(\Pi = (0 = t_0 < t_1 < \cdots < t_n = T)\) is a partition of \([0, T]\).

Lemma. The quadratic variation of a Brownian motion is

\[
[\mathbb{W}^T, \mathbb{W}^T] = T \quad \text{a.s.}
\]
Differential forms (stochastic calculus)

Recall that \([\mathbb{W}_T, \mathbb{W}_T] = T\) a.s. In short, we write that

\[d\mathbb{W}_t \ d\mathbb{W}_t = dt \]

It can also be shown that

\[dt \ d\mathbb{W}_t = 0 \quad \text{and} \quad dt \ dt = 0 \]

Higher order variations are all equal to zero.
Stochastic integrals

Let X^T be a stochastic process (random function). Define

$$\mathcal{M}_T = \left\{ X^T - \text{prog. meas.} \colon P\left(\int_0^T X^2(t, \omega) dt < \infty \right) = 1 \right\}$$

This is the class of all progressively measurable functions which are square integrable a.s. Also, define

$$\mathcal{M}^2_T = \left\{ X^T \in \mathcal{M}_T \colon E\left(\int_0^T X^2(t, \omega) dt \right) < \infty \right\}$$

Consider $h \in \mathcal{M}^2_T$ and W^T – Brownian motion. We aim to define the Itô integral

$$I_T(h) = \int_0^T h(s, \omega) dW_s$$
Case 1: h is a simple function.

$$h : [0, T] \times \Omega \rightarrow \mathbb{R} \quad (t, \omega) \mapsto h(t, \omega)$$

Assume that there exists $0 = t_0 < t_1 < \cdots < t_n = T$ such that

$$h(t) = h_i \quad \text{if} \quad t \in [t_i, t_{i+1})$$
The Itô integral $I_T(h)$ is defined as

$$I_T(h) = \int_0^T h(t, \omega) d\mathbb{W}_t$$

$$= h_0(\mathbb{W}_{t_1} - \mathbb{W}_{t_0}) + h_1(\mathbb{W}_{t_2} - \mathbb{W}_{t_1}) + \cdots + h_{n-1}(\mathbb{W}_{t_n} - \mathbb{W}_{t_{n-1}})$$

$$= \sum_{i=0}^{n-1} h_i(\mathbb{W}_{t_{i+1}} - \mathbb{W}_{t_i})$$
Properties of the Itô integral

- $I_T(h)$ is a martingale. That is,

$$E(I_T(h)) = 0, \quad E(I_T(h) \mid \mathcal{F}_t) = I_t(h), \quad t < T,$$

where $\mathcal{F}_t = \sigma(W_u, \ 0 \leq u \leq t)$.

- For any simple functions $h, g \in \mathcal{M}_T^2$,

$$E\left(I_T(h) \cdot I_T(g)\right) = E\left(\int_0^T h(t, \omega) g(t, \omega) dt\right)$$

thus,

$$E\left(I_T(h)^2\right) = E\left(\int_0^T h(t, \omega)^2 dt\right)$$

- The quadratic variation is

$$[I_T(h), I_T(h)] = \int_0^T h(t, \omega)^2 dt$$
Case 2: General h.

Lemma There exists a sequence of simple random functions h_n such that

$$
\int_0^T |h_n(t, \omega) - h(t, \omega)|^2 dt \xrightarrow{\mathbb{P}} 0 \quad \text{as } n \to \infty
$$
The stochastic integral $I_T(h)$ is defined as the limit

$$\int_0^T h_{n}(t,\omega) d\mathbb{W}_t \xrightarrow{P} I_T(h) = \int_0^T h(t,\omega) d\mathbb{W}_t \quad \text{as } n \to \infty$$

Important observation: The Ito integral is defined as a limit of a Riemann-Stieltjes sum, where the intermediate points are taken to be the lower limits of the partition intervals.

$$\sum_{i=0}^{n-1} h(t_i) (\mathbb{W}(t_{i+1}) - \mathbb{W}(t_i)) \xrightarrow{P} I_T(h) = \int_0^T h_t \ d\mathbb{W}_t$$
Properties

- As a function of t, the paths $l_t(h)$ are continuous;
- for each t, $l_t(h)$ is measurable wrt \mathcal{F}_t;
- $\alpha l_t(h) + \beta l_t(g) = l_t(\alpha h + \beta g)$
- $l_t(h)$ is a martingale;
-
 $$E(l_t^2(h)) = E \int_0^t h^2(s) \, ds$$
-
 $$[l, l](t) = \int_0^t h^2(s) \, ds$$

Differential form

$$l_t(h) = \int_0^t h(u, \omega) \, d\mathbb{W}_u \quad \Leftrightarrow \quad dl_t(h) = h(t, \omega) \, d\mathbb{W}_t$$
Exercise

Show that:

$$\int_0^T W_t \, dW_t = \frac{1}{2} W_T^2 - \frac{1}{2} T$$
Itô processes

Let $h \in \mathcal{M}^2_T$ and g be such that $P\left(\int_0^T |g(t,\omega)|dt < \infty\right) = 1$. The stochastic process

$$X_t = X_0 + \int_0^t g(s,\omega)ds + \int_0^t h(s,\omega)d\mathbb{W}_s$$

is called an Itô process.

In differential form,

$$dX_t = g(t,\omega)dt + h(t,\omega)d\mathbb{W}_t \quad X(0) = X_0, \quad t \in [0, T]$$
Examples

- The Ornstein-Uhlenbeck (OU) process is defined as

\[dX_t = (\theta_1 - \theta_2 X_t)dt + \theta_3 d\mathbb{W}_t \quad X(0) = X_0, \; t \in [0, T] \]

where \(\theta_1, \theta_2 \in \mathbb{R}, \; \theta_3 > 0 \).

- The Geometric Brownian Motion (GBM) process is defined as

\[dX_t = \theta_1 X_t dt + \theta_2 X_t d\mathbb{W}_t \quad X(0) = X_0, \; t \in [0, T] \]

where \(\theta_1 \in \mathbb{R}, \; \theta_2 > 0 \)

- The Cox-Ingersoll-Ross (CIR) process is defined as

\[dX_t = (\theta_1 - \theta_2 X_t)dt + \theta_3 \sqrt{X_t} d\mathbb{W}_t \quad X(0) = X_0, \; t \in [0, T] \]

where \(\theta_1, \theta_2 \in \mathbb{R}, \; \theta_3 > 0 \).
Stochastic integral wrt an Itô process

As before, let \(f \in \mathcal{M}_T^2 \) and \(X^T \) be an Itô process defined via the SDE

\[
dX_t = g(t, \omega)dt + h(t, \omega)d\mathbb{W}_t \quad X(0) = X_0, \ t \in [0, T]
\]

The Itô integral wrt \(X^T \) is defined as

\[
\int_0^T f(t, \omega)dX_t = \int_0^T f(t, \omega)g(t, \omega)dt + \int_0^T f(t, \omega)h(t, \omega)d\mathbb{W}_t
\]

Here we assume that all the above integrals are well defined.
Itô formula

The class of Itô processes is closed with respect to smooth transformations, in the following sense. Let X^T be an Itô process defined by

$$dX_t = g(t, \omega)dt + h(t, \omega)d\mathbb{W}_t \quad X(0) = X_0, \ t \in [0, T]$$

Also let $G(t, x)$ be a “smooth” function: the derivatives G_t, G_x, G_{xx} exist and are continuous. Then the stochastic process $Y_t = G(t, X_t)$ is an Itô process with the stochastic differential

$$dY_t = \left[G_t(t, X_t) + G_x(t, X_t)g(t, \omega) + \frac{1}{2} G_{xx}(t, X_t)h(t, \omega)^2 \right] dt + \left[G_x(t, X_t)h(t, \omega) \right] d\mathbb{W}_t$$

or,

$$dY_t = \left[G_t(t, X_t) + \frac{1}{2} G_{xx}(t, X_t)h(t, \omega)^2 \right] dt + \left[G_x(t, X_t) \right] dX_t$$
Application

Consider the OU process

\[dX_t = (\theta_1 - \theta_2 X_t)dt + \theta_3 dW_t \quad X(0) = X_0, \ t \in [0, T] \]

and the transformation \(Y(t) = X(t)e^{\theta_2 t} \).
Application

Consider the OU process

\[dX_t = (\theta_1 - \theta_2 X_t)dt + \theta_3 dW_t \quad X(0) = X_0, \quad t \in [0, T]\]

and the transformation \(Y(t) = X(t)e^{\theta_2 t}\).

The solution is

\[X_t = X_0 e^{-\theta_2 t} + \frac{\theta_1}{\theta_2} (1 - e^{-\theta_2 t}) + \theta_3 \int_0^t e^{-\theta_2 (t-s)} dW_s\]
Application

Consider the Geometric Brownian Motion (GBM)

\[dX_t = \theta_1 X_t \, dt + \theta_2 X_t \, d\mathbb{W}_t \quad X(0) = X_0, \quad t \in [0, T] \]

and the transformation \(Y(t) = \log(X(t)) \).
Application

Consider the Geometric Brownian Motion (GBM)

\[dX_t = \theta_1 X_t \, dt + \theta_2 X_t \, dW_t \quad X(0) = X_0, \ t \in [0, T] \]

and the transformation \(Y(t) = \log(X(t)) \).

The solution is

\[X_t = X_0 e^{(\theta_1 - (1/2)\theta_2^2) t + \theta_2 W_t} \]
Another (important) application of Itô formula

\[dX_t = S(X_t)dt + \sigma(X_t)dW_t \quad X(0) = X_0, \quad 0 \leq t \leq T \]

If \(h(\cdot) \) is a smooth function, show that

\[\int_0^T h(X_s) \, dX_s = \int_{X_0}^{X_T} h(s) \, ds - \frac{1}{2} \int_0^T h'(X_s)\sigma(X_s)^2 \, ds \]

Solution: Define \(G(x) = \int_0^x h(s)\, ds \) and use Itô formula for \(Y(t) = G(X(t)) \).
Diffusion processes

A homogeneous diffusion process is a particular case of an Itô process, defined as the solution of the stochastic differential equation (SDE)

\[dX_t = S(X_t)dt + \sigma(X_t)dW_t \quad X(0) = X_0, \quad 0 \leq t \leq T \]

Notation: \(\{X_t, 0 \leq t \leq T\} \equiv X^T \).

The functions \(S(\cdot) \) and \(\sigma(\cdot) \) are called the drift and diffusion coefficients, respectively. In integral form, the process \(X^T \) is represented as

\[X_t = X_0 + \int_0^t S(X_u)du + \int_0^t \sigma(X_u)dW_u, \quad 0 \leq t \leq T \]
Strong solution of an SDE

\[
\begin{align*}
 dX_t &= S(X_t) \, dt + \sigma(X_t) \, dW_t, \quad X(0) = X_0, \quad 0 \leq t \leq T
\end{align*}
\]

The SDE above has a strong solution \(\{X_t, t \in [0, T]\} \) on \((\Omega, \mathcal{F}, P)\) wrt the Wiener process \(\{W_t, t \in [0, T]\} \) and initial condition \(X_0 \) if:

- \(\{X_t, t \in [0, T]\} \) is adapted to \(\mathcal{F}_t = \sigma(X_0, W_u, u \in [0, t]) \);
- \(P(X(0) = X_0) = 1 \);
- \(\{X_t, t \in [0, T]\} \) has continuous sample paths;
- \[
 P\left\{ \int_0^T \left[S(X_t) + \sigma(X_t)^2 \right] dt < \infty \right\} = 1
 \]
- \[
 X_t = X_0 + \int_0^t S(X_u) \, du + \int_0^t \sigma(X_u) \, dW_u
 \]
 holds a.s. for each \(0 \leq t \leq T \).
The crucial requirement of this definition is captured in the highlighted condition; it corresponds to our intuitive understanding of X_t as the output of a dynamical system described by $[S(\cdot), \sigma(\cdot)]$, whose input is W^T and X_0. The **principle of causality** for dynamical systems requires that the output X_t at time t depend only on X_0 and the input $\{W_u, 0 \leq u \leq t\}$.

(GŁ) Globally Lipschitz condition

$$|S(x) - S(y)| + |\sigma(x) - \sigma(y)| \leq L|x - y| \quad \forall \ x, y \in \mathbb{R}^k$$

This implies a linear growth condition

$$|S(x) + \sigma(x)| \leq \tilde{L}(1 + |x|)$$

Theorem. Let the condition $GŁ$ be fulfilled and $P(|X_0| < \infty) = 1$. Then the SDE above has a unique strong solution.

Proof can be found in L&S, Theorem 4.6.
Locally Lipschitz condition. For any \(N < \infty \) and \(|x|, |y| < N \), there exists a constant \(L_N > 0 \) such that

\[|S(x) - S(y)| + |\sigma(x) - \sigma(y)| \leq L_N |x - y| \]

and

\[2xS(x) + \sigma(x)^2 \leq B(1 + x^2) . \]

Theorem Let the condition \(\mathcal{L} \) be fulfilled and \(P(|X_0| < \infty) = 1 \). Then the SDE above has a unique strong solution.

Proof can be found in K&S.
Weak Solution of an SDE

\[dX_t = S(X_t)dt + \sigma(X_t)dW_t, \quad X(0) = X_0, \quad 0 \leq t \leq T \]

A weak solution to the SDE above is a triplet
\((\Omega, \mathcal{F}, P), \{\mathcal{F}_t, 0 \leq t \leq T\}, (X^T, W^T)\) where

- \((\Omega, \mathcal{F}, P)\) is a probability space and
 \(\{\mathcal{F}_t, 0 \leq t \leq T\}\) is a filtration of \(\mathcal{F}\);
- \(X^T = \{X_t, 0 \leq t \leq T\}\) is a continuous, adapted process;
- \(W^T = \{W_t, 0 \leq t \leq T\}\) is a Brownian motion;
-
 \[
 P\left\{ \int_0^T \left[S(X_t) + \sigma(X_t)^2 \right] dt < \infty \right\} = 1
 \]

-
 \[X_t = X_0 + \int_0^t S(X_s)ds + \int_0^t \sigma(X_s)dW_s\]

holds a.s. for each \(0 \leq t \leq T\).
Uniqueness of solutions for SDEs

Suppose \((\Omega, \mathcal{F}, P), \{\mathcal{F}_t, 0 \leq t \leq T\}, (X^T, \mathbb{W}^T)\) and \((\Omega, \mathcal{F}, P), \{\tilde{\mathcal{F}}_t, 0 \leq t \leq T\}, (\tilde{X}^T, \tilde{\mathbb{W}}^T)\) are two weak solutions with common initial value \(P(X_0 = \tilde{X}_0) = 1\). We say that pathwise uniqueness holds if

\[
P(X_t = \tilde{X}_t \ \forall \ 0 \leq t \leq T) = 1
\]

Suppose \((\Omega, \mathcal{F}, P), \{\mathcal{F}_t, 0 \leq t \leq T\}, (X^T, \mathbb{W}^T)\) and \((\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P}), \{\tilde{\mathcal{F}}_t, 0 \leq t \leq T\}, (\tilde{X}^T, \tilde{\mathbb{W}}^T)\) are two weak solutions with the same initial distribution \(L(X_0) = L(\tilde{X}_0)\). We say that uniqueness in the sense of probability law holds if the two processes \(X^T\) and \(\tilde{X}^T\) have the same law.
(ES) The function $S(\cdot)$ is locally bounded, the function $\sigma^2(\cdot)$ is continuous and for some $A > 0$

$$xS(x) + \sigma(x)^2 \leq A(1 + x^2)$$

Theorem. Suppose that condition \mathcal{ES} is fulfilled, then the SDE has a unique (in law) weak solution.

Proof can be found in K&S.
Absolute continuity of measures on $C([0, T])$

Preamble

► Assume that $X = 3.5$ is one observation, generated from one of two possible probability distributions P_1 and P_2 (over \mathbb{R})

► Q: Is X likely to be a draw from P_1 or P_2?
Absolute continuity of measures on $C([0, T])$

Preamble

▶ Assume that $X = 3.5$ is one observation, generated from one of two possible probability distributions P_1 and P_2 (over \mathbb{R})

▶ Q: Is X likely to be a draw from P_1 or P_2?

▶ A: Calculate the likelihood ratio

$$\frac{dP_1}{dP_2}(X) = \frac{dP_1}{dP_2}(3.5)$$

▶ If this quantity is “large”, X is likely a draw from P_1

▶ Otherwise, X is likely a draw from P_2
Absolute continuity of measures on $\mathcal{C}([0, T])$

Similar ideas can be applied to stochastic processes.
(Reference: L&S, Chapter 7)

- (Ω, \mathcal{F}, P) - prob. space, (\mathcal{F}_t) - filtration, (\mathbb{W}_t) - SBM
- $\mathcal{C}([0, T]) = \text{space of continuous functions on } [0, T]$
- Let X_t be a homogeneous Itô process

\[
dX_t = \beta(X_t)dt + d\mathbb{W}_t \quad X_0 = 0
\]
\[
d\mathbb{W}_t = d\mathbb{W}_t \quad \mathbb{W}_0 = 0
\]

- let $\mu_X, \mu_\mathbb{W}$ be the probability measures on $\mathcal{C}_T([0, T])$ induced by X_t, \mathbb{W}_t.
- Task: define \[
\frac{d\mu_X}{d\mu_\mathbb{W}}
\]

Does it exist?
Theorem

Under some conditions, $\mu_X \sim \mu_W$ and

$$
\frac{d\mu_W}{d\mu_X}(X) = \exp \left\{ - \int_0^T \beta(X_t) \, dX_t + \frac{1}{2} \int_0^T \beta(X_t)^2 \, dt \right\}
$$

(Girsanov formula)
Example

\[dX_t = -\theta \, dt + d\mathbb{W}_t \quad 0 \leq t \leq 1 \quad X_0 = 0 \]

Assume \(\theta > 0 \).
Girsanov formula, more general case

\[dX_t = A(X_t)dt + b(X_t)d\mathbb{W}_t \]
\[dY_t = a(Y_t)dt + b(Y_t)d\mathbb{W}_t \]

Assume that \(X_0 = Y_0 \). Under some conditions,

\[
\frac{d\mu_Y}{d\mu_X}(X) = \exp \left\{ - \int_0^T \frac{A(X_t) - a(X_t)}{b(X_t)^2} \, dX_t + \frac{1}{2} \int_0^T \frac{A(X_t)^2 - a(X_t)^2}{b(X_t)^2} \, dt \right\}
\]