Spatial Clustering of Aedes Aegypti in Coastal Ecuador: Covariate Selection and a Hierarchical Bayesian Model

Group 2

MBI at Ohio State University

July 10, 2015
Background

- Dengue is a viral infection caused by any of 4 viruses transmitted mostly by the adult female Aedes aegypti mosquito bites.
- As there are no commercial vaccines available for Dengue, the primary method of control is the management of the Aedes aegypti mosquito.
- Disease management requires finding out the spatial patterns of the mosquito and analysing the specific factors that causes this kind of pattern.
Questions of Interest

- Can the spatial clustering of adult female Aedes aegypti mosquitoes be completely explained by characteristics of the neighboring homes?

- What covariates can help explain the variability in the cluster pattern?

- Is there a maximum radius around a house to where the presence of a mosquito has no effect?
Data

The city of Borbón spans a geographic area of 1.3 sq km with 5,000 residents living in 1,175 houses. 199 sampled houses.
Model Introduction

\[
Y(s_i) = \begin{cases}
1 & \text{if at least 1 mosquito at } s_i \\
0 & \text{otherwise}
\end{cases}
\]

- If we were to assume independence between spatial locations, we can define \(Y(s_i)^{ind} \sim \text{bernoulli}(p_i) \quad i = 1, 2, \ldots n \)

and use logistic model

\[
\log\left(\frac{p_i}{1 - p_i}\right) = X_i \beta
\]

with some covariates \(X_i \)
But, we know we have spatial dependency! Then we can define \(Y(s_i)|w(s_i) \overset{ind}{\sim} \text{Bernoulli}(p_i) \), and

\[
\log\left(\frac{p_i}{1 - p_i} \right) = X_i \beta^* + w(s_i)
\]

where \(w(s_i) \overset{ind}{\sim} \text{MVN}(0, \Sigma_w(\theta)) \) is a spatial process with covariance structure \(\Sigma_w(\theta) \).

Note: The interpretation of \(\beta^* \) differs from \(\beta \) since our interest is in \(Y(s_i)|w(s_i) \).
Defining Covariates

Characteristics by Grid Cell
Defining Covariates

How can we define covariates in our logistic model?

- number of houses within each grid cell (density)
- proportion of houses with mosquitos among sampled houses in each cell
- proportion of houses with mosquitos among all houses
- minimum distance to a house with mosquitos
- number of houses with mosquitos within a radius k
Bayesian Hierarchical Models

1. **Data Model** \(Y(s_i) | w(s_i) \overset{ind}{\sim} \text{bernoulli}(p_i) \)

 \[
 \log\left(\frac{p_i}{1-p_i} \right) = X_i \beta^* + w(s_i)
 \]

2. **Process Model** \(w(s_i) \overset{ind}{\sim} \text{MVN}(0, \Sigma_w(\theta)) \), \(\Sigma_w = \sigma^2 \exp(-\phi h) \)
 (exponential covariance structure)

3. **Parameter Model**

 \(\beta^* \sim \text{Normal}(0, \Sigma_{\beta}) \), \(\sigma^2 \sim \text{Inverse Gaussian}(a_\sigma, b_\sigma) \), \(\phi \sim \text{Uniform}(a_\phi, b_\phi) \).
Results

Ignoring the spatial dependence

\[\log\left(\frac{p_i}{1 - p_i} \right) = \beta_0 + \beta_1 \times \text{density} \]
Ignoring Spatial Dependence

\[\log\left(\frac{p_i}{1 - p_i}\right) = \beta_0 + \beta_1 \times \text{density} \]
Results (Bayesian Hierarchical Model)

Model 0: Assume there is no other predictors, i.e., $X\beta^*$ just represents the intercepts.

$$\hat{\beta}_0^* = -1.41(-1.76, -1.04),$$
$$\hat{\sigma}^2 = 0.37(0.13, 0.99), \quad \hat{\phi} = 2.07(0.66, 4.72)$$
Model 1: Model with the predictor “minimum distance to a house with mosquitos”.

\[
\hat{\beta}_0^* = -1.20 (-1.81, -0.66), \quad \hat{\beta}_1^* = -0.003 (-0.012, 0.005)
\]
\[
\hat{\sigma}^2 = 0.40 (0.16, 1.36), \quad \hat{\phi} = 0.88 (0.17, 3.33)
\]
Results (Bayesian Hierarchical Model)

Model 2: Model with the predictor “proportion of houses with mosquitos among sampled houses in each cell”.

\[\hat{\beta}_0^* = -1.82(-2.88, -0.92), \quad \hat{\beta}_1^* = 2.64(-1.92, 7.68), \]
\[\hat{\sigma}^2 = 0.50(0.18, 1.9), \quad \hat{\phi} = 2.60(0.39, 4.7) \]