Network Data Sampling and Estimation

Hui Yang and Yanan Jia

September 25, 2014
(1) Introduction
(2) Network Sampling Designs

- Induced and Incident Subgraph Sampling
- Star and Snowball Sampling
- Link Tracing Sampling
(3) Background on Statistical Sampling Theory
- Horvitz-Thompson Estimation for Totals
- Estimation of Group Size

4 Estimation of Totals in Network Graphs

- overview
- Vertex Totals
- Totals on Vertex Pairs
- Totals of Higher Order
(5) Estimation of Network Group Size
- Estimation of Network Group Size

Introduction

Introduction

- Population graph: network graph $G=(V, E)$
- Sampled graph: $G^{\star}=\left(V^{\star}, E^{\star}\right)$
- A characristic of network graph $G: \eta(G)$
- Estimation of $\eta(G): \hat{\eta}(G)$
- Example: Estimate the average degree of a network graph G by the average degree of a sampled graph $G^{\star}, \hat{\eta}(G)=\eta\left(G^{\star}\right)$, is this a proper estimator? Depend on the sampling design!

Network Sampling Designs

Induced and Incident Subgraph Sampling

Induced and Incident Subgraph Sampling

Figure: Induced Subgraph Sampling, vertices \rightarrow edges

Figure: Incident Subgraph Sampling, edges \rightarrow vertices

Induced and Incident Subgraph Sampling

$$
\pi_{i}=\frac{n}{N_{v}} \quad \text { and } \quad \pi_{\{i, j\}}=\frac{n(n-1)}{N_{v}\left(N_{v}-1\right)}
$$

Figure: Induced Subgraph Sampling, vertices \rightarrow edges

$\pi_{\{i, j\}}=n / N_{e}$
$\pi_{i}=\mathbb{P}($ vertex i is sampled $)$
$=1-\mathbb{P}($ no edge incident to i is sampled $)$
$= \begin{cases}1-\frac{\left(N_{e}-d_{i}\right)}{\binom{N_{e}}{n}}, & \text { if } n \leq N_{e}-d_{i}, \\ 1, & \text { if } n>N_{e}-d_{i},\end{cases}$

Figure: Incident Subgraph Sampling, edges \rightarrow vertices

Star and Snowball Sampling

Unlabeled Star Subgraph Sampling

Figure: Unlabeled Star Subgraph Sampling

Labeled Star (One-stage Snowball) Subgraph Sampling

Figure : Labeled Star Subgraph Sampling

Two-stage Snowball Subgraph Sampling

Figure: Two-stage Snowball Subgraph Sampling

Inclusion Probabilities of Star Subgraph Sampling

$$
\begin{aligned}
& \text { unlabeled star sampling } \\
& \qquad \begin{aligned}
& \pi_{i}=\frac{n}{N_{v}} \\
& \pi_{\{i, j\}}=1-\mathbb{P}(\text { neither } i \text { nor } j \text { are sampled }) \\
&= 1-\frac{\binom{N_{v}-2}{n}}{\binom{N_{v}}{n}}, \\
& \text { labeled star sampling } \\
& \pi_{i}=\sum_{L \subseteq \mathcal{N}_{i}^{+}}(-1)^{|L|+1} \mathbb{P}(L) \\
& \pi_{\{i, j\}}= 1-\mathbb{P}(\text { neither } i \text { nor } j \text { are sampled }) \\
&= 1-\frac{\binom{N_{v}-2}{n}}{\binom{N_{v}}{n}},
\end{aligned}
\end{aligned}
$$

Link Tracing Sampling

Link Tracing Subgraph Sampling

Figure : Link Tracing Subgraph Sampling

Background on Statistical Sampling Theory

Horvitz-Thompson Estimation for Totals

- Poputation \mathscr{U} of size N_{u}
- A value y_{i} associated with each unit $i \in \mathscr{U}$
- Sample S of size n, each unit $i \in \mathscr{U}$ has probability π_{i} of being included in S
- Population total: $\tau=\sum_{i \in \mathscr{U}} y_{i}$
- Horvitz-Thompson estimation of $\tau: \hat{\tau}_{\pi}=\sum_{i \in S} y_{i} / \pi_{i}$
- $\hat{\tau}_{\pi}$ is an unbiased estimate of τ

Estimation of Group Size

- Group size N_{u} is typically needed to compute π_{i} 's, in many cases N_{u} is unknown
- Capture-recapture estimator: first sample S_{1} of size n_{1} is taken, and all of the units in S_{1} are marked. All of the units in S_{1} are then returned to the population. Next, a sample of size n_{2} is taken. Then $\hat{N}_{u}^{(c / r)}=n_{1} /\left(m / n_{2}\right)=n_{1} n_{2} / m$, where m is the number of marked units observed in the second sample.

Estimation of Totals in Network Graphs

Estimation of Totals in Network Graphs

- Population $\mathscr{U}=\left\{1, \ldots, N_{u}\right\}$
- Unit Values y_{i} for $i \in \mathscr{U}$.
- Total $\tau=\sum_{i} y_{i}$ and average $\mu=\tau / N_{u}$.

With appropriate choice of a population of units \mathscr{U} and unit values y, various graph summary characteristics $\eta(G)$ can be written in a form that involves a total $\tau=\sum_{i} y_{i}$.

Vertex Totals

- Let $\mathscr{U}=V$ and $y_{i}=d_{i}$. The average degree of a graph G is obtained by scaling the total $\sum_{i \in V} d_{i}$ by N_{v}.
- Let $\mathscr{U}=V$ and y_{i} be a binary variable indicating that a vertex has a given characteristic. τ counts the number of vertices with that characteristic, and τ / N_{v}, the proportion.

Given a sample of vertices $V^{*} \subseteq V$, the Horvitz-Thompson estimator for vertex totals $\tau=\sum_{i \in V} y_{i}$ takes the form

$$
\hat{\tau}_{\pi}=\sum_{i \in V^{*}} \frac{y_{i}}{\pi_{i}}
$$

where the π_{i} are the vertex inclusion probabilities corresponding to the underlying network sampling design.

Totals on Vertex Pairs

- Let $\mathscr{U}=V^{(2)}$ and $y_{(i, j)}=I_{(i, j) \in E}$ be the indicator of the event that there is an edge between i and j. The number of edges N_{e} is given by the total $\sum_{(i, j) \in V^{(2)}} I_{(i, j) \in E}$.
- Let $\mathscr{U}=V^{(2)}$ and $y_{(i, j)}=I_{k \in(i, j)}$ be the indicator of the event that the shortest path between i and j contains node k. In the case of unique shortest paths, the betweenness centrality $c_{B}(k)$ of a vertex $k \in V$ is given by the total $\sum_{(i, j) \in V^{(2)}} I_{k \in(i, j)}$.

Given a sample of vertices pair $V^{*(2)} \subseteq V^{(2)}$, the Horvitz-Thompson estimator for vertex totals $\tau=\sum_{(i, j) \in V^{(2)}} y_{i j}$ takes the form

$$
\hat{\tau}_{\pi}=\sum_{(i, j) \in V^{*}(2)} \frac{y_{i, j}}{\pi_{i, j}}
$$

Totals on Vertex Pairs Example

- A network of interactions among $N_{v}=5,151$ proteins in S . cerevisiae with $N_{e}=31,201$.
- Induced subgraph sampling, with Bernoulli sampling of vertices, using $p=0.10,0.20,0.30$.
- Estimator of N_{e} is $\hat{N}_{e}=\sum_{(i, j) \in V^{*(2)}} \frac{y_{i, j}}{\pi_{i, j}}=\frac{N_{e}^{\star}}{p^{2}}$
- Histograms of \hat{N}_{e} based on 10,000 trials.

Totals of Higher Order

Let $\mathscr{U}=V^{(3)}$ be the set of all triples of distinct vertices (i, j, k)

- $y_{i j k}=A_{i j} A_{j k} A_{k i}$ (A is the adjacency matrix of G), then $\tau_{\Delta}(G)=\sum_{(i, j, k) \in V^{(3)}} y_{(i, j, k)}$ is the number of triangles in the graph.
- $y_{i j k}=A_{i j} A_{j k}\left(1-A_{k i}\right)+A_{i j}\left(i-A_{j k}\right) A_{k i}+\left(1-A_{i j}\right) A_{j k} A_{k i}$, then $\tau_{3}^{\star}(G)=\sum_{(i, j, k) \in V^{(3)}} y_{(i, j, k)}$ is the number of vertex triples that are connected by exactly two edges.

Given a sample $V^{*(3)} \subseteq V^{(3)}$, the Horvitz-Thompson estimator for $\tau=\sum_{(i, j, k) \in V^{(3)}} y_{(i, j, k)}$ takes the form

$$
\hat{\tau}_{\pi}=\sum_{(i, j, k) \in V^{*(3)}} \frac{y_{i, j, k}}{\pi_{i, j, k}}
$$

Totals of Higher Order

Clustering coefficient cl_{T} of a graph G :

$$
\mathrm{cl}_{T}(G)=\frac{3 \tau_{\triangle}(G)}{\tau_{3}(G)}=\frac{3 \tau_{\triangle}(G)}{\tau_{3}^{\star}(G)+3 \tau_{\triangle}(G)}
$$

where $\tau_{3}(G)$ is the number of connected triples, $\tau_{\Delta}(G)$ the number of triangles in the graph, and $\tau_{3}^{\star}(G)=\tau_{3}(G)-3 \tau_{\Delta}(G)$, is the number of vertex triples that are connected by exactly two edges.

The value $\mathrm{cl}_{T}(G)$, called the transitivity of the graph. $\mathrm{cl}_{T}(G)$ is a function of two different totals of the form

$$
\hat{\tau}_{\pi}=\sum_{(i, j, k) \in V^{(3)}} y_{i, j, k}
$$

Totals of Higher Order Example

- Protein interactions Network has $\tau_{\triangle}(G)=44,858$ triangles, $\tau_{3}^{\star}(G)=1,006,575$ triples connected by exactly two edges, and a clustering coefficient $\mathrm{cl} T(G)=0.1179$.
- We simulated 10,000 trials of induced subgraph sampling, with Bernoulli sampling of vertices, using $p=0.20$.
- Unbiased estimates of the two totals:

$$
\begin{gathered}
\tau_{\triangle}(G)=p^{-3} \tau_{\triangle}\left(G^{*}\right) \\
\tau^{\star}(G)=p^{-3} \tau^{\star}\left(G^{*}\right) \\
\mathrm{cl}_{T}(G)=\frac{3 \tau_{\triangle}(G)}{\tau_{3}^{\star}(G)+3 \tau_{\triangle}(G)}
\end{gathered}
$$

Estimation of Network Group Size

Estimation of Network Group Size

Simple random sampling without replacement or Bernoulli sampling

Doing the sampling twice, after 'marking' the first sample, use capture-recapture estimators,

$$
\hat{N}_{v}=\frac{n_{2}}{m} n_{1}
$$

Estimating the Size of a 'Hidden Population'

Snowball Sampling

- $G=(V, E)$ a directed graph.
- G^{\star} a subgraph of G, with vertices $V^{\star}=V_{0}^{\star} \cup V_{1}^{\star}$ obtained through a one-wave snowball sample, V_{0}^{\star} selected through Bernoulli sampling with p_{0}.
- N the size of the initial sample, M_{1} the number of arcs among individuals in V_{0}^{\star}, M_{2} the number of arcs pointing from individuals in V_{0}^{\star} to individuals in V_{1}^{\star}.
- Estimator of N_{v} will be derived using the method-of-moments.

$$
\hat{N}_{v}=n \frac{m_{1}+m_{2}}{m_{1}}
$$

Other Network Graph Estimation Problems

- Estimation of Degree Frequency.
- The estimation of the number of connected components in a graph.
- The estimation of quantities not easily expressed as totals.

Sampling and estimation are also being used as a way of producing computationally efficient 'approximations' to quantities that, if computed for the full network graph, would be prohibitively expensive.

Summary

Formalize the problem of sampling and estimation in network graphs Describe a handful of common network sampling designs Develop estimators of a number of quantities of interest.

Thanks for your attention!

