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Remember ERGMs (Exponential Random Graph Models)

▸ Exponential family models

▸ Sufficient statistics count the number of edges, triangles, k-

cliques, etc…

▸ Only observe sub-networks

▸ Estimate from sub-network, extrapolate to “whole” network



Practical questions

▸ 1.  Are the MLEs from the sub-graph consistent?

 (What does consistency mean in this setting?)

▸ 0.  “Logically Prior” question:  is it “probabilistically consistent 

to apply the same ERGM, with the same parameters, both to 

the whole network and its sub-networks?”



Definition 1:  Projective

▸ The family 𝒫𝐴,Θ 𝐴∈𝒜
is projective when 𝐴 ⊂ 𝐵 implies that 

ℙ𝐴,𝜃 can be recovered by marginalization [over 𝐵\A?] over 

ℙ𝐵,𝜃, for all 𝜃.



Definition 2:  Separable Increments

▸ The sufficient statistics of the family 𝒫𝐴,Θ 𝐴∈𝒜
have separable increments 

when, for each 𝐴 ⊂ 𝐵, 𝑥 ∈ 𝒳𝐴, the range of possible increments 𝛿 is the 

same for all 𝑥, and the conditional volume factor is constant in 𝑥, that is, 

𝑣𝐵\A|𝐴 𝛿, 𝑥 = 𝑣𝐵\A(𝛿).

▸ [The number {of super-graphs in B consistent with a subgraph in A and for 

which the “extra” statistic (increment) = 𝛿} does not depend on the 

subgraph in A?]

▸ Note:  this “depends only on the functional forms of the sufficient 

statistics, … and not on the model parameters.” 



Projective Theorems/Propositions:

▸ The exponential family 𝒫𝐴,Θ 𝐴∈𝒜
is projective if and only if the sufficient 

statistics 𝑇𝐴 𝐴∈𝒜 have separable increments.

▸ (Predictive Sufficiency) In a projective exponential family, the distribution 

of 𝑋B\A conditional on 𝑋𝐴 depends on the data only through 𝑇𝐵\A.



Consistency Theorems

▸ Suppose that model ℙ𝜃 (infinite-dimensional A) is projective, 

and that the log partition function obeys equation (10) for 

each 𝐴 ∈ 𝒜.  Then the MLE exists and is strongly consistent. 

 wrt a growing sequence of sets 𝐴 s.t. a function of the measure of the size, 𝑟|𝐴| → ∞

 (10) log zA 𝜃 ≡ 𝑎𝐴 𝜃 = 𝑟|𝐴|𝑎(𝜃)

 If  instead lim
𝑟 𝐴 →∞

𝑎𝐴 𝜃

𝑟 𝐴
= 𝑎(𝜃), then convergence in probability still holds (theorem 4).

 If (10) holds only for some 𝜃, then MLE may be consistent only for some 𝜃.

 All components of 𝑇𝐴 must be scaled by the same factor 𝑟|𝐴|.



Application:  ERGM

▸ Remember that sufficient statistics typically are vectors of 

counts of edges, triangles, cliques, k-stars, etc.

▸ Dyadic independence (𝑡 𝑋 =  𝑖=1
𝑛  𝑗<𝑖 𝑡𝑖𝑗(𝑋𝑖𝑗 , 𝑋𝑗𝑖)) implies 

projectability via Theorem 1.  This applies to the 𝛽-model.

▸ Homophily (friend of a friend is a friend) causes problems…



Application:  ERGM (p. 16)

▸ “Sadly, no statistic which counts triangles, or larger motifs, can have the 

nice additive form of dyad counts, no matter how we decompose the 

network.  Take, for instance, triangles.  Any given edge among the first n 

nodes could be part of a triangle, depending on ties to the next node.  

Thus to determine the number of triangles among the first n+1 nodes, we 

need much more information about the sub-graph of the first n nodes than 

just the number of triangles among them.  Indeed, we can go further.  The 

range of possible increments to the number of triangles changes with the 

number of existing triangles.  This is quite incomparable with separable 

increments, so, by (1), the parameters cannot be projective.”

▸ Question:  Can we look at this problem so one-dimensionally?



Application:  ERGM (p.16-17)

▸ “While these ERGMs are not projective, some of them may … still satisfy equation 

(14) [and thus the MLEs converge in probability].  For instance, in models where T 

has two elements, the number of edges and the (normalized) number of triangles 

or of 2-stars, the log partition function is known to scale like 𝑛(𝑛 − 1) as 𝑛 → ∞, at 

least in the parameter regimes where the models behave basically like either very 

full or very empty Erdős-Rényi networks…Since these models are not projective, 

however, it is impossible to improve parameter estimates by getting more data, 

since parameters for smaller sub-graphs just cannot be extrapolated to larger 

graphs (or vice versa)…

▸ “Such an ERGM may provide a good description of a social network on a certain 

set of nodes, but it cannot be projected to give predictions on any larger or more 

global graph from which that one was drawn.”



Application:  ERGM (p. 17)

▸ “If an ERGM is postulated for the whole network, then inference for its 

parameters must explicitly treat the unobserved portions of the network 

as missing data (perhaps through an expectation-maximization 

algorithm), though of course there may be considerable uncertainty about 

just how much data is missing.”

▸ Question:  Does this make sense in light of the last slide?



Solutions?

▸ Model the evolution of networks over time 

 “Hanneke, Fu and Xing consider situations where the distribution of the 

network at time t+1 conditional on the network at time t follows an exponential 

family.”

 “Even when the statistics in the conditional specification include (say) 

changes in the number of triangles, the issues raised above do not apply.”

▸ Give up the exponential family form

 Won’t work because… “Lauritzen showed that whenever the sufficient 

statistics for a semi-group, the models must be either ordinary exponential 

families, or certain generalizations thereof with much the same properties.”



The end… (p 18)

▸ “…every infinite exchangeable graph distribution is actually a mixture over 

projective dyadic-independence distributions, though not necessarily ones 

with a finite-dimensional sufficient statistic.  Along any one sequence of 

sub-graphs from such an infinite graph, in fact, the densities of all motifs 

approach limiting values which pick out a unique projective dyadic-

independence distribution… This suggests that an alternative to 

parametric inference would be nonparametric estimation of the limiting 

dyadic-independence model, by smoothing the adjacency matrix; this, 

too, we pursue elsewhere.”



Naïve Thoughts and Questions

▸ Did I miss the assertion that the ERGM MLEs from sub-graphs are not 

consistent?

▸ Is the problem that sampling/structure is considered to be “uniform”?  That is, any 

newly sampled node is equally likely to be connected to all the existing identical 

nodes (who are currently part of the same motifs)?

▸ Is there a way to think about a network with 4 nodes as a collection of 4 non-

independent networks with 3 nodes?  Or 6 networks with 2 nodes?  I.e., can we 

define a dimension that is scientifically meaningful and start there, rather than with 

all of the nodes?  6 degrees of Kevin Bacon style?  Then think of the smaller 

networks as coming from a mixture of ERGMs? 

▸ Is the problem that we are thinking about binary adjacency matrices?  If we 

extended the matrices to ordinal or continuous measures of connection, would 

“local” networks make more sense?


