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A Model for Network Graphs

a collection,
{Pθ(G ),G ∈ G : θ ∈ Θ}

where G is a collection of possible graphs,

Pθ is a probability distribution on G,
and θ is a vector of parameters, ranging over possible values in Θ.



A Model for Network Graphs

a collection,
{Pθ(G ),G ∈ G : θ ∈ Θ}

where G is a collection of possible graphs,

Pθ is a probability distribution on G,
and θ is a vector of parameters, ranging over possible values in Θ.

Keep in mind...

Mathematical Model
- approximate relationship
- simulations

vs.
Statistical Model
- describe uncertainty
- learn about θ



A Naive Model

adjacency matrix, Y, for an undirected, unweighted network where each

Yij is the tie variable for vertices i and j

Logistic Regression

suppose Yij
iid∼ Bernoulli(p)

logit(p) = θ

p1 Model

Yij ∼ Bernoulli(pij)

logit(pij) = θ + γi + γj

for directed graphs,

P(Yij = y1,Yji = y2) ∝ exp {y1(θ + αi + βj) + y2(θ + αj + βi ) + y1y2ρ}
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Keep Improving...

p2 Model

take the p1 model, Yij ∼ Bernoulli(pij)

logit(pij) = θ + γi + γj

and additionally, model γ = Xβ + ζ, where ζi
iid∼ Normal(0, σ2ζ )

θij = θ + Zijδ

where the X are covariates for the set of vertices
and the Z are dyadic attributes

I accounts for some dependence between the Yij

I can incorporate meaningful covariates

I ∼ mixed effects logisitic regression
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Markov Dependence

A Markov Process

let {Xt} be a stochastic process such that

P(Xn = xn|Xn−1 = xn−1, ...X1 = x1) = P(Xn = xn|Xn−1 = xn−1)

A Simple Markov Random Field
dependence on nearest neighbors
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I all possible edges that share a vertex are dependent

Dependence graph represent each possible edge as a vertex; vertices
are connected if they are dependent
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Markov Dependence

Hammersley-Clifford theorem → any undirected graph on Nv vertices
with dependence graph D has probability

P(G ) =

(
1

c

)
exp

∑
A⊆G

αA


where αA is an indicator of the clique A in D.

Markov Model
cliques of D are edges, k-stars, and triangles in G
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Markov Model

Pθ(Y = y) =

(
1

κ

)
exp

{
Nv−1∑
k=1

θkSk(y) + θτT (y)

}

where S1(y) = Ne

Sk(y) = # of k-stars for 2 ≤ k ≤ Nv − 1

and T (y) = # of triangles

“Triad Model”
k ≤ 2 only
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Notes on the Markov Model

I intuitive dependence structure

I interpret sign of θi as tendency for/against statistic i above
expectations for a random graph

I model fitting and simulations done via MCMC
not easy...

I model degeneracy issues
places lots of mass on only a few outcomes

I especially so for large Nv

I related to the phase transitions known for the Ising model

I change statistics for the MCMC algorithm
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Exponential Random Graph Models

Exponential Family
Z belongs to an exponential family if its pmf can be expressed as

Pθ(Z = z) = exp
{
θ′g(z)− ψ(θ)

}
where ψ(θ) is the normalization term.

ERGM
let Yij = Yji be a binary r.v. indicating the presence of an edge between
vertices i and j

Pθ(Y = y) =

(
1

κ

)
exp

{∑
H

θHgH(y)

}

where each H is a configuration, gH(y) is an indicator/count of H in y
and κ = κ(θ) is the normalization constant.
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Exponential Random Graph Models

Logistic Regression Yij
iid∼ Bernoulli(p)

logit(p) = θ

⇒ Pθ(Yij = 1) = p = logit−1(θ) =
eθ

1 + eθ

so now, Pθ(Y = y) = =

(
eθ

1 + eθ

)S1(y)( 1

1 + eθ

)(Nv2 )−S1(y)

=
exp {θS1(y)}

(1 + eθ)(Nv2 )

Bernoulli Model: Pθ(Y = y) =

(
1

κ

)
exp {θ S1(y)}
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Exponential Random Graph Models

I Bernoulli Model
complete independence

Pθ(Y = y) =
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possible edges that share a vertex are dependent

Pθ(Y = y) =

(
1

κ

)
exp

{
Nv−1∑
k=1

θkSk(y) + θτT (y)
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?? dependence
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I Snijders et al. (2006)
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New Specifications - Snijders et al. (2006)

make use of clique-like structures...

Pθ(Y = y) =

(
1

κ

)
exp

{
θ1S1(y) + θ2u

(s)
λ1

(y) + +θ3u
(t)
λ2

(y) + θ4u
p
λ2

(y)
}

where S1(y) = Ne

u
(s)
λ (y) =

Nv−1∑
k=2

(−1)k
Sk(y)

λk−2
alternating k-stars

u
(t)
λ (y) =

∑
i<j

yij

Nv−2∑
k=1

(
−1

λ

)k−1(L2ij
k

)
alt. k-triangles

upλ(y) = λ
∑
i<j

{
1−

(
1− 1

λ

)L2ij
}

alt. independent two-paths



New Specifications - Snijders et al. (2006)

k-triangles

independent two-paths



Some Notes on the Snijders Model

I fewer, less severe issues with model degeneracy

I model fitting and simulations done via MCMC

I interpretation of θ?

I what should λ be? what does it mean?
→ curved exponential family

I satisfies (weaker) partial conditional dependence

Yiv and Yuj are conditionally dependent only if one of the two
conditions hold:

1. {i , v} ∩ {u, j} 6= ∅

2. yiu = yvj = 1
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Network Models - Summary

I Statistical Models

Simple Logistic Regression / Bernoulli Model

p1 Model

p2 Model

Markov Model

Snijders et al. (2006)

ERGMs or p∗ Models

I Mathematical Models

Random Graphs – CUG, Erdos-Renyi, Generalized

Small World

Preferential Attachment

 too simple



Network Models - Summary

I Statistical Models

Simple Logistic Regression / Bernoulli Model

p1 Model

p2 Model

Markov Model

← too hard to fit

Snijders et al. (2006)

← too hard to interpret

ERGMs or p∗ Models

I Mathematical Models

Random Graphs – CUG, Erdos-Renyi, Generalized

Small World

Preferential Attachment

 too simple



Network Models - Summary

I Statistical Models

Simple Logistic Regression / Bernoulli Model

p1 Model

p2 Model

Markov Model

← too hard to fit

Snijders et al. (2006)

← too hard to interpret

ERGMs or p∗ Models

I Mathematical Models

Random Graphs – CUG, Erdos-Renyi, Generalized

Small World

Preferential Attachment

 too simple



Network Models - Summary

I Statistical Models

Simple Logistic Regression / Bernoulli Model

p1 Model

p2 Model

Markov Model ← too hard to fit

Snijders et al. (2006)

← too hard to interpret

ERGMs or p∗ Models

I Mathematical Models

Random Graphs – CUG, Erdos-Renyi, Generalized

Small World

Preferential Attachment

 too simple



Network Models - Summary

I Statistical Models

Simple Logistic Regression / Bernoulli Model

p1 Model

p2 Model

Markov Model ← too hard to fit

Snijders et al. (2006) ← too hard to interpret

ERGMs or p∗ Models

I Mathematical Models

Random Graphs – CUG, Erdos-Renyi, Generalized

Small World

Preferential Attachment

 too simple



Network Models - Summary

I Statistical Models

Simple Logistic Regression / Bernoulli Model

p1 Model

p2 Model

Markov Model ← too hard to fit

Snijders et al. (2006) ← too hard to interpret

ERGMs or p∗ Models

I Mathematical Models

Random Graphs – CUG, Erdos-Renyi, Generalized

Small World

Preferential Attachment

 too simple



Random Graphs

a conditional uniform graph (CUG) distribution with sufficient statistic
t taking on value x:

P(G = g |t, x) =
1

|{g ′ ∈ G : t(g ′) = x}|
I{g ′∈G:t(g ′)=x}(g)

where t = (t1, ...tn) is an n-tuple of real-valued functions on G and
x ∈ Rn is a known vector.

I pick a particular G and specify uniform probability



Special Cases

an Erdos-Renyi random graph puts uniform probablity on GNv ,Ne so
that

P(G = g |Nv ,Ne) =
1(N
Ne

) I{g∈GNv ,Ne }(g)

where N =
(Nv

2

)
.

another variant of this model, suggested by Gilbert around the same time
uses

GNv ,p = collection of graphs G with Nv vertices that may be
obtained by assigning an edge independently to each
possible edge with probability p ∈ (0, 1)
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Some Notes about Random Graphs

I mathematical models

I Erdos-Renyi appears to be the most commonly used

I most thoroughly studied
degree distribution, probability of connectedness, etc.

I easy to work with

PROS
intuitive
easy simulations
short path lengths

CONS
unrealistic
degree dist. is not broad enough
levels of clustering too low
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Some Other Mathematical Models

Watts-Strogatz Small World Model

0. lattice of Nv vertices

1. randomly “rewire” each edge independently and with probability p,
such that we change one endpoint of that edge to a different vertex
(chosen uniformly)

I high levels of clustering, yet small distances between most nodes



Some Other Mathematical Models

Barabasi-Albert Preferential Attachment Model
(a network growth model)

0. G (0) of N
(0)
v vertices and N

(0)
e edges

...

t. G (t) is created by adding a vertex of degree m ≥ 1 to G (t−1), where
the probability that this new vertex is connected to any existing
vertex in G (t−1) is

dv∑
v ′∈V dv

, where dv is the degree of vertex v

I can achieve broad degree distributions



Network Models - Summary

I Statistical Models

Simple Logistic Regression / Bernoulli Model

p1 Model

p2 Model

Markov Model ← too hard to fit

Snijders et al. (2006) ← too hard to interpret

ERGMs or p∗ Models

I Mathematical Models

Random Graphs – CUG, Erdos-Renyi, Generalized

Small World

Preferential Attachment

 too simple



Thank you!!
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