Network Models

and Network Comparisons

Anna Mohr

Department of Statistics The Ohio State University

Catherine Calder

Department of Statistics The Ohio State University

Observational Data Reading Group October 9th, 2014

A Statistical Framework

SAMPLING

SAMPLING FOR NETWORKS

STATISTICAL INFERENCE

STATISTICAL INFERENCE FOR NETWORKS

STATISTICAL INFERENCE FOR NETWORKS

A Model for Network Graphs

a collection,

 $\{\mathbb{P}_{\boldsymbol{\theta}}(\boldsymbol{G}), \boldsymbol{G} \in \boldsymbol{\mathcal{G}} : \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$

where \mathcal{G} is a collection of possible graphs, \mathbb{P}_{θ} is a probability distribution on \mathcal{G} , and θ is a vector of parameters, ranging over possible values in Θ .

A Model for Network Graphs

a collection,

 $\{\mathbb{P}_{\boldsymbol{\theta}}(\boldsymbol{G}), \boldsymbol{G} \in \boldsymbol{\mathcal{G}} : \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$

where \mathcal{G} is a collection of possible graphs, \mathbb{P}_{θ} is a probability distribution on \mathcal{G} , and θ is a vector of parameters, ranging over possible values in Θ .

Keep in mind...

Mathematical Model

- approximate relationship
- simulations

Statistical Model

- vs. describe uncertainty
 - learn about heta

adjacency matrix, \mathbf{Y} , for an *undirected*, *unweighted* network where each Y_{ij} is the tie variable for vertices *i* and *j*

Logistic Regression

suppose

 $Y_{ij} \stackrel{iid}{\sim} \mathsf{Bernoulli}(p)$ $\mathsf{logit}(p) = heta$

adjacency matrix, \mathbf{Y} , for an *undirected*, *unweighted* network where each Y_{ij} is the tie variable for vertices *i* and *j*

Logistic Regression

suppose

 $Y_{ij} \stackrel{iid}{\sim} \mathsf{Bernoulli}(p)$ $\mathsf{logit}(p) = heta$

 $Y_{ij} \sim \mathsf{Bernoulli}(p_{ij})$ $\mathsf{logit}(p_{ij}) = \theta + \gamma_i + \gamma_j$

adjacency matrix, \mathbf{Y} , for an *undirected*, *unweighted* network where each Y_{ij} is the tie variable for vertices *i* and *j*

Logistic Regression

suppose

 $Y_{ij} \stackrel{iid}{\sim} \mathsf{Bernoulli}(p)$ $\mathsf{logit}(p) = heta$

\mathbf{p}_1 Model

 $Y_{ij} \sim \mathsf{Bernoulli}(p_{ij})$ $\mathsf{logit}(p_{ij}) = \theta + \gamma_i + \gamma_j$

adjacency matrix, \mathbf{Y} , for an *undirected*, *unweighted* network where each Y_{ij} is the tie variable for vertices *i* and *j*

Logistic Regression

suppose $Y_{ij} \stackrel{iid}{\sim} \text{Bernoulli}(p)$ $\text{logit}(p) = \theta$

\mathbf{p}_1 Model

 $Y_{ij} \sim \mathsf{Bernoulli}(p_{ij})$ $\mathsf{logit}(p_{ij}) = \theta + \gamma_i + \gamma_j$

for directed graphs, $\mathbb{P}(Y_{ij} = y_1, Y_{ji} = y_2) \propto \exp \{y_1(\theta + \alpha_i + \beta_j) + y_2(\theta + \alpha_j + \beta_i) + y_1y_2\rho\}$

Keep Improving...

take the p_1 model,

 $Y_{ij} \sim \mathsf{Bernoulli}(p_{ij})$ $\mathsf{logit}(p_{ij}) = \theta + \gamma_i + \gamma_j$

and additionally, model

$$\boldsymbol{\gamma} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\zeta}, \text{ where } \boldsymbol{\zeta}_i \stackrel{iid}{\sim} \operatorname{Normal}(0, \sigma_{\zeta}^2)$$

 $\theta_{ij} = \theta + \mathbf{Z}_{ij}\delta$

where the ${\bf X}$ are covariates for the set of vertices and the ${\bf Z}$ are dyadic attributes

Keep Improving...

p₂ Model

take the p_1 model,

 $Y_{ij} \sim \mathsf{Bernoulli}(p_{ij})$ $\mathsf{logit}(p_{ij}) = \theta + \gamma_i + \gamma_j$

and additionally, model

$$\boldsymbol{\gamma} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\zeta}, \text{ where } \boldsymbol{\zeta}_i \stackrel{iid}{\sim} \operatorname{Normal}(0, \sigma_{\zeta}^2)$$

 $\theta_{ij} = \theta + \mathbf{Z}_{ij}\delta$

where the ${\bf X}$ are covariates for the set of vertices and the ${\bf Z}$ are dyadic attributes

Keep Improving...

p₂ Model

take the p_1 model,

 $Y_{ij} \sim \mathsf{Bernoulli}(p_{ij})$ $\mathsf{logit}(p_{ij}) = \theta + \gamma_i + \gamma_j$

and additionally, model

 $\gamma = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\zeta}, \text{ where } \zeta_i \stackrel{iid}{\sim} \operatorname{Normal}(0, \sigma_{\zeta}^2)$ $\theta_{ij} = \theta + \mathbf{Z}_{ij}\delta$

where the ${\bf X}$ are covariates for the set of vertices and the ${\bf Z}$ are dyadic attributes

► accounts for some dependence between the Y_{ij}

- can incorporate meaningful covariates
- \blacktriangleright \sim mixed effects logisitic regression

A Markov Process

let $\{X_t\}$ be a stochastic process such that

 $\mathbb{P}(X_n = x_n | X_{n-1} = x_{n-1}, \dots X_1 = x_1) = P(X_n = x_n | X_{n-1} = x_{n-1})$

 $X_1, X_2, \dots X_{t-1}, X_t, X_{t+1}, \dots$

A Markov Process

let $\{X_t\}$ be a stochastic process such that

 $\mathbb{P}(X_n = x_n | X_{n-1} = x_{n-1}, \dots X_1 = x_1) = P(X_n = x_n | X_{n-1} = x_{n-1})$

A Simple Markov Random Field

dependence on nearest neighbors

Network Graph

all possible edges that share a vertex are dependent

Network Graph

all possible edges that share a vertex are dependent

Dependence graph represent each possible edge as a vertex; vertices are connected if they are dependent

Network Graph

all possible edges that share a vertex are dependent

Dependence graph represent each possible edge as a vertex; vertices are connected if they are dependent

Network Graph

all possible edges that share a vertex are dependent

Dependence graph represent each possible edge as a vertex; vertices are connected if they are dependent

Network Graph

all possible edges that share a vertex are dependent

Dependence graph represent each possible edge as a vertex; vertices are connected if they are dependent

Network Graph

all possible edges that share a vertex are dependent

Dependence graph represent each possible edge as a vertex; vertices are connected if they are dependent

Network Graph

all possible edges that share a vertex are dependent

Dependence graph represent each possible edge as a vertex; vertices are connected if they are dependent

Hammersley-Clifford theorem \rightarrow any undirected graph on N_v vertices with dependence graph D has probability

$$\mathbb{P}(G) = \left(\frac{1}{c}\right) \exp\left\{\sum_{A \subseteq G} \alpha_A\right\}$$

Hammersley-Clifford theorem \rightarrow any undirected graph on N_v vertices with dependence graph D has probability

$$\mathbb{P}(G) = \left(\frac{1}{c}\right) \exp\left\{\sum_{A \subseteq G} \alpha_A\right\}$$

Hammersley-Clifford theorem \rightarrow any undirected graph on N_v vertices with dependence graph D has probability

$$\mathbb{P}(G) = \left(\frac{1}{c}\right) \exp\left\{\sum_{A \subseteq G} \alpha_A\right\}$$

Hammersley-Clifford theorem \rightarrow any undirected graph on N_v vertices with dependence graph D has probability

$$\mathbb{P}(G) = \left(\frac{1}{c}\right) \exp\left\{\sum_{A \subseteq G} \alpha_A\right\}$$

Hammersley-Clifford theorem \rightarrow any undirected graph on N_v vertices with dependence graph D has probability

$$\mathbb{P}(G) = \left(\frac{1}{c}\right) \exp\left\{\sum_{A \subseteq G} \alpha_A\right\}$$

Hammersley-Clifford theorem \rightarrow any undirected graph on N_v vertices with dependence graph D has probability

$$\mathbb{P}(G) = \left(\frac{1}{c}\right) \exp\left\{\sum_{A \subseteq G} \alpha_A\right\}$$

Hammersley-Clifford theorem \rightarrow any undirected graph on N_v vertices with dependence graph D has probability

$$\mathbb{P}(G) = \left(\frac{1}{c}\right) \exp\left\{\sum_{A \subseteq G} \alpha_A\right\}$$

where α_A is an indicator of the clique A in D.

Markov Model cliques of *D* are edges, k-stars, and triangles in *G*

Markov Model

$$\mathbb{P}_{\theta}(\mathbf{Y} = \mathbf{y}) = \left(\frac{1}{\kappa}\right) \exp\left\{\sum_{k=1}^{N_{v}-1} \theta_{k} S_{k}(\mathbf{y}) + \theta_{\tau} T(\mathbf{y})\right\}$$

where $S_1(\mathbf{y}) = N_e$ $S_k(\mathbf{y}) = \# \text{ of k-stars} \quad \text{for } 2 \le k \le N_v - 1$ and $T(\mathbf{y}) = \# \text{ of triangles}$

Markov Model

$$\mathbb{P}_{\theta}(\mathbf{Y} = \mathbf{y}) = \left(\frac{1}{\kappa}\right) \exp\left\{\sum_{k=1}^{N_{v}-1} \theta_{k} S_{k}(\mathbf{y}) + \theta_{\tau} T(\mathbf{y})\right\}$$

where $S_1(\mathbf{y}) = N_e$ $S_k(\mathbf{y}) = \# \text{ of k-stars} \quad \text{for } 2 \le k \le N_v - 1$ and $T(\mathbf{y}) = \# \text{ of triangles}$

"Triad Model" $k \le 2$ only

Notes on the Markov Model

- intuitive dependence structure
- interpret sign of θ_i as tendency for/against statistic i above expectations for a random graph

Notes on the Markov Model

- intuitive dependence structure
- interpret sign of θ_i as tendency for/against statistic i above expectations for a random graph
- model fitting and simulations done via MCMC not easy...

Notes on the Markov Model

- intuitive dependence structure
- interpret sign of θ_i as tendency for/against statistic i above expectations for a random graph
- model fitting and simulations done via MCMC not easy...
- model degeneracy issues places lots of mass on only a few outcomes
 - especially so for large N_v
 - related to the phase transitions known for the Ising model
 - change statistics for the MCMC algorithm

Exponential Family

 ${\bf Z}$ belongs to an exponential family if its pmf can be expressed as

$$\mathbb{P}_{oldsymbol{ heta}}(\mathsf{Z}=\mathsf{z}) = \expig\{oldsymbol{ heta}'g(\mathsf{z}) - \psi(oldsymbol{ heta})ig\}$$

where $\psi(\theta)$ is the normalization term.

Exponential Family

 ${\bf Z}$ belongs to an exponential family if its pmf can be expressed as

$$\mathbb{P}_{oldsymbol{ heta}}(\mathbf{Z}=\mathbf{z}) = \expig\{oldsymbol{ heta}'g(\mathbf{z})-\psi(oldsymbol{ heta})ig\}$$

where $\psi(\theta)$ is the normalization term.

ERGM

let $Y_{ij} = Y_{ji}$ be a binary r.v. indicating the presence of an edge between vertices i and j

$$\mathbb{P}_{m{ heta}}(\mathbf{Y}=\mathbf{y}) = \left(rac{1}{\kappa}
ight) \exp\left\{\sum_{H} heta_{H} g_{H}(\mathbf{y})
ight\}$$

where each *H* is a configuration, $g_H(\mathbf{y})$ is an indicator/count of *H* in \mathbf{y} and $\kappa = \kappa(\boldsymbol{\theta})$ is the normalization constant.

Markov Model

$$\mathbb{P}_{\boldsymbol{\theta}}(\mathbf{Y} = \mathbf{y}) = \left(\frac{1}{\kappa}\right) \exp\left\{\sum_{k=1}^{N_{\nu}-1} \theta_k S_k(\mathbf{y}) + \theta_{\tau} T(\mathbf{y})\right\}$$

ERGM

let $Y_{ij} = Y_{ji}$ be a binary r.v. indicating the presence of an edge between vertices i and j

$$\mathbb{P}_{m{ heta}}(\mathbf{Y} = \mathbf{y}) = \left(rac{1}{\kappa}
ight) \exp\left\{\sum_{H} heta_{H} g_{H}(\mathbf{y})
ight\}$$

where each *H* is a configuration, $g_H(\mathbf{y})$ is an indicator/count of *H* in \mathbf{y} and $\kappa = \kappa(\theta)$ is the normalization constant.

Logistic Regression

 $Y_{ij} \stackrel{iid}{\sim} \mathsf{Bernoulli}(p)$ $\mathsf{logit}(p) = heta$

Logistic Regression Y_{ij}^{ij}

 \Rightarrow

 $Y_{ij} \stackrel{iid}{\sim} \mathsf{Bernoulli}(p)$ $\mathsf{logit}(p) = heta$

$$\mathbb{P}_{ heta}(Y_{ij}=1)=p=\mathsf{logit}^{-1}(heta)=rac{e^{ heta}}{1+e^{ heta}}$$

so now, $\mathbb{P}_{ heta}(\mathbf{Y} = \mathbf{y}) = \prod_{i,j} \mathbb{P}_{ heta}(Y_{ij} = y_{ij})$

 $\begin{array}{ll} \text{Logistic Regression} & Y_{ij} \stackrel{iid}{\sim} \text{Bernoulli}(p) \\ & \text{logit}(p) = \theta \\ \\ \Rightarrow & \mathbb{P}_{\theta}(Y_{ij} = 1) = p = \text{logit}^{-1}(\theta) = \frac{e^{\theta}}{1 + e^{\theta}} \end{array}$

so now, $\mathbb{P}_{\theta}(\mathbf{Y} = \mathbf{y}) = \left[\mathbb{P}_{\theta}(Y_{ij} = 1)\right]^{S_1(\mathbf{y})} \left[\mathbb{P}_{\theta}(Y_{ij} = 0)\right]^{\binom{N_v}{2} - S_1(\mathbf{y})}$

so now,

 $\begin{array}{ll} \text{Logistic Regression} & Y_{ij} \stackrel{iid}{\sim} \text{Bernoulli}(p) \\ & \text{logit}(p) = \theta \\ \\ \Rightarrow & \mathbb{P}_{\theta}(Y_{ij} = 1) = p = \text{logit}^{-1}(\theta) = \frac{e^{\theta}}{1 + e^{\theta}} \end{array}$

 $egin{aligned} \mathbb{P}_{ heta}(\mathbf{Y}=\mathbf{y}) &= \left[\mathbb{P}_{ heta}(Y_{ij}=1)
ight]^{S_1(\mathbf{y})}\left[\mathbb{P}_{ heta}(Y_{ij}=0)
ight]^{\binom{N_v}{2}-S_1(\mathbf{y})} \ &= \left(rac{e^{ heta}}{1+e^{ heta}}
ight)^{S_1(\mathbf{y})}\left(rac{1}{1+e^{ heta}}
ight)^{\binom{N_v}{2}-S_1(\mathbf{y})} \end{aligned}$

 $\begin{array}{ll} \text{Logistic Regression} & Y_{ij} \stackrel{iid}{\sim} \text{Bernoulli}(p) \\ & \text{logit}(p) = \theta \\ \\ \Rightarrow & \mathbb{P}_{\theta}(Y_{ij} = 1) = p = \text{logit}^{-1}(\theta) = \frac{e^{\theta}}{1 + e^{\theta}} \end{array}$

so now,

$$\mathbb{P}_{\theta}(\mathbf{Y} = \mathbf{y}) = \left[\mathbb{P}_{\theta}(Y_{ij} = 1)\right]^{S_{1}(\mathbf{y})} \left[\mathbb{P}_{\theta}(Y_{ij} = 0)\right]^{\binom{N_{v}}{2} - S_{1}(\mathbf{y})}$$

$$= \left(\frac{e^{\theta}}{1+e^{\theta}}\right)^{S_1(\mathbf{y})} \left(\frac{1}{1+e^{\theta}}\right)^{\binom{N_v}{2}-S_1(\mathbf{y})}$$
$$= \frac{\exp\left\{\theta S_1(\mathbf{y})\right\}}{(1+e^{\theta})^{\binom{N_v}{2}}}$$

 $\begin{array}{ll} \text{Logistic Regression} & Y_{ij} \stackrel{iid}{\sim} \text{Bernoulli}(p) \\ & \log (p) = \theta \\ \\ \Rightarrow & \mathbb{P}_{\theta}(Y_{ij} = 1) = p = \log (t^{-1}(\theta)) = \frac{e^{\theta}}{1 + e^{\theta}} \end{array}$

so now,

$$\mathbb{P}_{\theta}(\mathbf{Y} = \mathbf{y}) = \left[\mathbb{P}_{\theta}(Y_{ij} = 1)\right]^{S_{1}(\mathbf{y})} \left[\mathbb{P}_{\theta}(Y_{ij} = 0)\right]^{\binom{N_{v}}{2} - S_{1}(\mathbf{y})}$$

$$= \left(\frac{e^{\theta}}{1+e^{\theta}}\right)^{S_{1}(\mathbf{y})} \left(\frac{1}{1+e^{\theta}}\right)^{\binom{N_{v}}{2}-S_{1}(\mathbf{y})}$$

$$=\frac{\exp\left\{\theta S_{1}(\mathbf{y})\right\}}{\left(1+e^{\theta}\right)^{\binom{N_{\nu}}{2}}}$$

Bernoulli Model: $\mathbb{P}_{\theta}(\mathbf{Y} = \mathbf{y}) = \left(\frac{1}{\kappa}\right) \exp \left\{\theta S_1(\mathbf{y})\right\}$

Bernoulli Model

complete independence

$$\mathbb{P}_{ heta}(\mathbf{Y} = \mathbf{y}) = \left(rac{1}{\kappa}
ight) \exp\left\{ heta S_1(\mathbf{y})
ight\}$$

Bernoulli Model

complete independence

$$\mathbb{P}_{ heta}(\mathbf{Y} = \mathbf{y}) = \left(\frac{1}{\kappa}\right) \exp\left\{\theta S_1(\mathbf{y})\right\}$$

Markov Model

possible edges that share a vertex are dependent

$$\mathbb{P}_{ heta}(\mathbf{Y} = \mathbf{y}) = \left(rac{1}{\kappa}
ight) \exp\left\{\sum_{k=1}^{N_{v}-1} heta_{k} S_{k}(\mathbf{y}) + heta_{ au} T(\mathbf{y})
ight\}$$

Bernoulli Model

complete independence

$$\mathbb{P}_{ heta}(\mathbf{Y} = \mathbf{y}) = \left(\frac{1}{\kappa}\right) \exp\left\{\theta S_1(\mathbf{y})\right\}$$

Markov Model

possible edges that share a vertex are dependent

$$\mathbb{P}_{ heta}(\mathbf{Y} = \mathbf{y}) = \left(rac{1}{\kappa}
ight) \exp\left\{\sum_{k=1}^{N_{v}-1} heta_{k} S_{k}(\mathbf{y}) + heta_{ au} T(\mathbf{y})
ight\}$$

- General Case
 - ?? dependence

$$\mathbb{P}_{ heta}(\mathbf{Y} = \mathbf{y}) = \left(rac{1}{\kappa}
ight) \exp\left\{\sum_{H} heta_{H} g_{H}(\mathbf{y})
ight\}$$

Bernoulli Model

complete independence

$$\mathbb{P}_{\theta}(\mathbf{Y} = \mathbf{y}) = \left(\frac{1}{\kappa}\right) \exp\left\{\theta S_1(\mathbf{y})\right\}$$

Markov Model

possible edges that share a vertex are dependent

$$\mathbb{P}_{ heta}(\mathbf{Y} = \mathbf{y}) = \left(rac{1}{\kappa}
ight) \exp\left\{\sum_{k=1}^{N_{v}-1} heta_{k} S_{k}(\mathbf{y}) + heta_{ au} T(\mathbf{y})
ight\}$$

General Case
 ?? dependence

$$\mathbb{P}_{ heta}(\mathbf{Y} = \mathbf{y}) = \left(rac{1}{\kappa}
ight) \exp\left\{\sum_{H} heta_{H} g_{H}(\mathbf{y})
ight\}$$

▶ Snijders et al. (2006)

New Specifications - Snijders et al. (2006)

make use of clique-like structures...

$$\mathbb{P}_{\boldsymbol{\theta}}(\mathbf{Y} = \mathbf{y}) = \left(\frac{1}{\kappa}\right) \exp\left\{\theta_1 S_1(\mathbf{y}) + \theta_2 u_{\lambda_1}^{(s)}(\mathbf{y}) + \theta_3 u_{\lambda_2}^{(t)}(\mathbf{y}) + \theta_4 u_{\lambda_2}^p(\mathbf{y})\right\}$$

where $S_1(\mathbf{y}) = N_e$

$$u_{\lambda}^{(s)}(\mathbf{y}) = \sum_{k=2}^{N_{v}-1} (-1)^{k} \frac{S_{k}(\mathbf{y})}{\lambda^{k-2}}$$

$$u_{\lambda}^{(t)}(\mathbf{y}) = \sum_{i < j} y_{ij} \sum_{k=1}^{N_{\nu}-2} \left(\frac{-1}{\lambda}\right)^{k-1} \binom{L_{2ij}}{k}$$
$$u_{\lambda}^{p}(\mathbf{y}) = \lambda \sum_{i < j} \left\{ 1 - \left(1 - \frac{1}{\lambda}\right)^{L_{2ij}} \right\}$$

alternating k-stars

alt. k-triangles

alt. independent two-paths

New Specifications - Snijders et al. (2006)

k-triangles

FIGURE 3. Two examples of a two-triangle.

FIGURE 4. A k-triangle for k = 5, which is also called a five-triangle.

independent two-paths

FIGURE 5. Two-independent two-paths (a) and five-independent two-paths (b).

Some Notes on the Snijders Model

- ▶ fewer, less severe issues with model degeneracy
- model fitting and simulations done via MCMC

Some Notes on the Snijders Model

- ► fewer, less severe issues with model degeneracy
- model fitting and simulations done via MCMC
- interpretation of θ ?
- ► what should \(\lambda\) be? what does it mean? → curved exponential family

Some Notes on the Snijders Model

- ► fewer, less severe issues with model degeneracy
- model fitting and simulations done via MCMC
- interpretation of θ ?
- ► what should \(\lambda\) be? what does it mean? → curved exponential family
- satisfies (weaker) partial conditional dependence

 Y_{iv} and Y_{uj} are conditionally dependent only if one of the two conditions hold:

1. $\{i, v\} \cap \{u, j\} \neq \emptyset$

$$2. \quad y_{iu} = y_{vj} = 1$$

Statistical Models

Simple Logistic Regression / Bernoulli Model p_1 Model p_2 Model Markov Model Snijders et al. (2006)

Statistical Models

Simple Logistic Regression / Bernoulli Model p_1 Model p_2 Model Markov Model Snijders et al. (2006) ERGMs or p* Models

Statistical Models

Simple Logistic Regression / Bernoulli Model p1 Model p2 Model Markov Model Snijders et al. (2006) ERGMs or p* Models

too simple

Statistical Models

Simple Logistic Regression / Bernoulli Model p_1 Model p_2 Model Markov Model \leftarrow too hard to fit Snijders et al. (2006)

too simple

ERGMs or p* Models

Statistical Models

Simple Logistic Regression / Bernoulli Model p_1 Model p_2 Model Markov Model \leftarrow too hard to fit Snijders et al. (2006) \leftarrow too hard to interpret

too simple

ERGMs or p* Models

Statistical Models

Simple Logistic Regression / Bernoulli Model p_1 Model p_2 Model Markov Model \leftarrow too hard to fit Snijders et al. (2006) \leftarrow too hard to interpret

too simple

ERGMs or p* Models

Mathematical Models

Random Graphs – *CUG, Erdos-Renyi, Generalized* Small World Preferential Attachment

Random Graphs

a **conditional uniform graph** (**CUG**) distribution with sufficient statistic **t** taking on value \mathbf{x} :

$$\mathbb{P}(G = g | \mathbf{t}, \mathbf{x}) = \frac{1}{|\{g' \in \mathcal{G} : \mathbf{t}(g') = \mathbf{x}\}|} I_{\{g' \in \mathcal{G} : \mathbf{t}(g') = \mathbf{x}\}|}(g)$$

where $\mathbf{t} = (t_1, ..., t_n)$ is an n-tuple of real-valued functions on \mathcal{G} and $\mathbf{x} \in \mathbb{R}^n$ is a known vector.

 \blacktriangleright pick a particular ${\cal G}$ and specify uniform probability

an **Erdos-Renyi random graph** puts uniform probablity on \mathcal{G}_{N_v,N_e} so that

$$\mathbb{P}(G=g|N_v,N_e)=rac{1}{inom{N}{N_e}}I_{\{g\in\mathcal{G}_{N_v,N_e}\}}(g)$$
 where $N=inom{N_v}{2}.$

an **Erdos-Renyi random graph** puts uniform probablity on \mathcal{G}_{N_v,N_e} so that

$$\mathbb{P}(G = g | N_v, N_e) = \frac{1}{\binom{N}{N_e}} I_{\{g \in \mathcal{G}_{N_v, N_e}\}}(g)$$
 where $N = \binom{N_v}{2}$.

another variant of this model, suggested by Gilbert around the same time uses

 $\mathcal{G}_{N_v,p} =$ collection of graphs G with N_v vertices that may be obtained by assigning an edge independently to each possible edge with probability $p \in (0,1)$

an **Erdos-Renyi random graph** puts uniform probablity on \mathcal{G}_{N_v,N_e} so that

$$\mathbb{P}(G = g | N_v, N_e) = \frac{1}{\binom{N}{N_e}} I_{\{g \in \mathcal{G}_{N_v, N_e}\}}(g)$$
 where $N = \binom{N_v}{2}$.

another variant of this model, suggested by Gilbert around the same time uses

 $\mathcal{G}_{N_v,p} =$ collection of graphs G with N_v vertices that may be obtained by assigning an edge independently to each possible edge with probability $p \in (0,1)$

→ **Bernoulli Model** for large N_v , when $p = f(N_v)$ and $N_e \sim pN_v$

an **Erdos-Renyi random graph** puts uniform probablity on \mathcal{G}_{N_v,N_e} so that

$$\mathbb{P}(G = g | N_v, N_e) = \frac{1}{\binom{N}{N_e}} I_{\{g \in \mathcal{G}_{N_v, N_e}\}}(g)$$
 where $N = \binom{N_v}{2}$.

another variant of this model, suggested by Gilbert around the same time uses

 $\mathcal{G}_{N_{v},p} =$ collection of graphs G with N_{v} vertices that may be obtained by assigning an edge independently to each possible edge with probability $p \in (0,1)$

→ **Bernoulli Model** for large N_v , when $p = f(N_v)$ and $N_e \sim pN_v$

a **generalized random graph** puts uniform probability on $\mathcal{G}_{N_v,t}$ where t is any other statistic/motif/characteristic of G.

• degree distribution $\Rightarrow N_e$ fixed

Some Notes about Random Graphs

- mathematical models
- Erdos-Renyi appears to be the most commonly used
 - most thoroughly studied degree distribution, probability of connectedness, etc.
 - easy to work with

Some Notes about Random Graphs

- mathematical models
- Erdos-Renyi appears to be the most commonly used
 - most thoroughly studied degree distribution, probability of connectedness, etc.
 - easy to work with

PROS intuitive easy simulations short path lengths

Some Notes about Random Graphs

- mathematical models
- Erdos-Renyi appears to be the most commonly used
 - most thoroughly studied degree distribution, probability of connectedness, etc.
 - easy to work with

PROS

intuitive easy simulations short path lengths

CONS

unrealistic

degree dist. is not broad enough levels of clustering too low

Some Other Mathematical Models

Watts-Strogatz Small World Model

- 0. lattice of N_{ν} vertices
- randomly "rewire" each edge independently and with probability p, such that we change one endpoint of that edge to a different vertex (chosen uniformly)

high levels of clustering, yet small distances between most nodes

Some Other Mathematical Models

Barabasi-Albert Preferential Attachment Model

- (a network growth model)
 - 0. $G^{(0)}$ of $N_v^{(0)}$ vertices and $N_e^{(0)}$ edges
 - t. $G^{(t)}$ is created by adding a vertex of degree $m \ge 1$ to $G^{(t-1)}$, where the probability that this new vertex is connected to any existing vertex in $G^{(t-1)}$ is

$$\frac{d_v}{\sum_{v' \in V} d_v}, \quad \text{where } d_v \text{ is the degree of vertex } v$$

can achieve broad degree distributions

Statistical Models

Simple Logistic Regression / Bernoulli Model p_1 Model p_2 Model Markov Model \leftarrow too hard to fit Snijders et al. (2006) \leftarrow too hard to interpret

too simple

ERGMs or p* Models

Mathematical Models

Random Graphs – *CUG, Erdos-Renyi, Generalized* Small World Preferential Attachment

Thank you!!

Some References

van Duijn, Marijtje A. J., Tom A. B. Snijders and Bonne J. H. Zijlstra. 2004. " p_2 : A Random Effects Model with Covariates for Directed Graphs." *Statistica Neerlandica* 58(2): 234-254.

Frank, Ove and David Strauss. 1986. "Markov Graphs." *Journal of the American Statistical Association* 81: 832-42.

Snijders, Tom A. B., Philippa E. Pattison, Garry L. Robins, and Mark S. Handcock. 2006. "New Specifications for Exponential Random Graph Models." *Sociological Methodology* 36(1): 99-153

Butts, Carter T. 2008. "Social Network Analysis: A Methodological Introduction." *Asian Journal of Social Psychology* 11: 13-41.

Erdos, P and A. Renyi. 1960. "On the Evolution of Random Graphs." *Publications of the Mathematical Institute of the Hungarian Academy of Sciences* 5: 17-61.

van Wijk, Bernadette C. M., Cornelis J. Stam, and Andreas Daffertschofer. 2010. "Comparing Brain Networks of Different Size and Connectivity Density Using Graph Theory." *PLoS ONE* 5(10): e13701.