Network Models

and Network Comparisons

Anna Mohr
Department of Statistics
The Ohio State University

Catherine Calder
Department of Statistics
The Ohio State University

Observational Data Reading Group
October 9th, 2014

What is a model?

A Statistical Framework

What is a model?

SAMPLING

What is a model?

SAMPLING FOR NETWORKS

What is a model?

STATISTICAL INFERENCE

What is a model?

STATISTICAL INFERENCE FOR NETWORKS

What is a model?

STATISTICAL INFERENCE FOR NETWORKS

A Model for Network Graphs

a collection,

$$
\left\{\mathbb{P}_{\boldsymbol{\theta}}(G), G \in \mathcal{G}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\right\}
$$

where \mathcal{G} is a collection of possible graphs,
$\mathbb{P}_{\boldsymbol{\theta}}$ is a probability distribution on \mathcal{G}, and $\boldsymbol{\theta}$ is a vector of parameters, ranging over possible values in Θ.
\qquad

A Model for Network Graphs

a collection,

$$
\left\{\mathbb{P}_{\boldsymbol{\theta}}(G), G \in \mathcal{G}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\right\}
$$

where \mathcal{G} is a collection of possible graphs,
$\mathbb{P}_{\boldsymbol{\theta}}$ is a probability distribution on \mathcal{G}, and $\boldsymbol{\theta}$ is a vector of parameters, ranging over possible values in Θ.

Keep in mind...

Mathematical Model

- approximate relationship vs.
- simulations

Statistical Model

- describe uncertainty
- learn about $\boldsymbol{\theta}$

A Naive Model

adjacency matrix, \mathbf{Y}, for an undirected, unweighted network where each $Y_{i j}$ is the tie variable for vertices i and j

Logistic Regression

suppose

$$
\begin{aligned}
Y_{i j} & \stackrel{i i d}{\sim} \operatorname{Bernoulli}(p) \\
\operatorname{logit}(p) & =\theta
\end{aligned}
$$

A Naive Model

adjacency matrix, \mathbf{Y}, for an undirected, unweighted network where each $Y_{i j}$ is the tie variable for vertices i and j

Logistic Regression

suppose

$$
\begin{aligned}
Y_{i j} & \stackrel{i i d}{\sim} \operatorname{Bernoulli}(p) \\
\operatorname{logit}(p) & =\theta
\end{aligned}
$$

$$
\begin{aligned}
Y_{i j} & \sim \operatorname{Bernoulli}\left(p_{i j}\right) \\
\operatorname{logit}\left(p_{i j}\right) & =\theta+\gamma_{i}+\gamma_{j}
\end{aligned}
$$

A Naive Model

adjacency matrix, \mathbf{Y}, for an undirected, unweighted network where each $Y_{i j}$ is the tie variable for vertices i and j

Logistic Regression

suppose

$$
\begin{aligned}
Y_{i j} & \stackrel{i i d}{\sim} \operatorname{Bernoulli}(p) \\
\operatorname{logit}(p) & =\theta
\end{aligned}
$$

p_{1} Model

$$
\begin{aligned}
Y_{i j} & \sim \operatorname{Bernoulli}\left(p_{i j}\right) \\
\operatorname{logit}\left(p_{i j}\right) & =\theta+\gamma_{i}+\gamma_{j}
\end{aligned}
$$

A Naive Model

adjacency matrix, \mathbf{Y}, for an undirected, unweighted network where each $Y_{i j}$ is the tie variable for vertices i and j

Logistic Regression

suppose

$$
\begin{aligned}
Y_{i j} & \stackrel{i i d}{\sim} \operatorname{Bernoulli}(p) \\
\operatorname{logit}(p) & =\theta
\end{aligned}
$$

p_{1} Model

$$
\begin{aligned}
Y_{i j} & \sim \operatorname{Bernoulli}\left(p_{i j}\right) \\
\operatorname{logit}\left(p_{i j}\right) & =\theta+\gamma_{i}+\gamma_{j}
\end{aligned}
$$

for directed graphs,
$\mathbb{P}\left(Y_{i j}=y_{1}, Y_{j i}=y_{2}\right) \propto \exp \left\{y_{1}\left(\theta+\alpha_{i}+\beta_{j}\right)+y_{2}\left(\theta+\alpha_{j}+\beta_{i}\right)+y_{1} y_{2} \rho\right\}$

Keep Improving...

take the p_{1} model,

$$
\begin{aligned}
Y_{i j} & \sim \operatorname{Bernoulli}\left(p_{i j}\right) \\
\operatorname{logit}\left(p_{i j}\right) & =\theta+\gamma_{i}+\gamma_{j}
\end{aligned}
$$

and additionally, model

$$
\begin{aligned}
\gamma & =\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\zeta}, \quad \text { where } \zeta_{i} \stackrel{i i d}{\sim} \operatorname{Normal}\left(0, \sigma_{\zeta}^{2}\right) \\
\theta_{i j} & =\theta+\mathbf{Z}_{i j} \delta
\end{aligned}
$$

where the \mathbf{X} are covariates for the set of vertices
and the \mathbf{Z} are dyadic attributes

Keep Improving...

p_{2} Model

take the p_{1} model,

$$
\begin{aligned}
Y_{i j} & \sim \operatorname{Bernoulli}\left(p_{i j}\right) \\
\operatorname{logit}\left(p_{i j}\right) & =\theta+\gamma_{i}+\gamma_{j}
\end{aligned}
$$

and additionally, model

$$
\begin{aligned}
\gamma & =\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\zeta}, \quad \text { where } \zeta_{i} \stackrel{i i d}{\sim} \operatorname{Normal}\left(0, \sigma_{\zeta}^{2}\right) \\
\theta_{i j} & =\theta+\mathbf{Z}_{i j} \delta
\end{aligned}
$$

where the \mathbf{X} are covariates for the set of vertices and the \mathbf{Z} are dyadic attributes

Keep Improving...

p_{2} Model

take the p_{1} model,

$$
\begin{aligned}
Y_{i j} & \sim \operatorname{Bernoulli}\left(p_{i j}\right) \\
\operatorname{logit}\left(p_{i j}\right) & =\theta+\gamma_{i}+\gamma_{j}
\end{aligned}
$$

and additionally, model

$$
\begin{aligned}
\gamma & =\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\zeta}, \quad \text { where } \zeta_{i} \stackrel{i i d}{\sim} \operatorname{Normal}\left(0, \sigma_{\zeta}^{2}\right) \\
\theta_{i j} & =\theta+\mathbf{Z}_{i j} \delta
\end{aligned}
$$

where the \mathbf{X} are covariates for the set of vertices and the \mathbf{Z} are dyadic attributes

- accounts for some dependence between the $Y_{i j}$
- can incorporate meaningful covariates
- ~ mixed effects logisitic regression

Markov Dependence

A Markov Process

let $\left\{X_{t}\right\}$ be a stochastic process such that

$$
\mathbb{P}\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}, \ldots X_{1}=x_{1}\right)=P\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}\right)
$$

$$
X_{1}, X_{2}, \ldots X_{t-1}, X_{t}, X_{t+1}, \ldots
$$

Markov Dependence

A Markov Process

let $\left\{X_{t}\right\}$ be a stochastic process such that

$$
\mathbb{P}\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}, \ldots X_{1}=x_{1}\right)=P\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}\right)
$$

$$
X_{1}, X_{2}, \ldots X_{t-1}, X_{t}, X_{t+1}, \ldots
$$

A Simple Markov Random Field
dependence on nearest neighbors

Markov Dependence

Network Graph

- all possible edges that share a vertex are dependent

Markov Dependence

Network Graph

- all possible edges that share a vertex are dependent

Dependence graph represent each possible edge as a vertex; vertices are connected if they are dependent

Markov Dependence

Network Graph

- all possible edges that share a vertex are dependent

Dependence graph represent each possible edge as a vertex; vertices are connected if they are dependent
let $N_{v}=4$, then

$\{1,2\}$
$\{2,3\}$

$\{1,3\}$
$\{1,4\}$

Markov Dependence

Network Graph

- all possible edges that share a vertex are dependent

Dependence graph represent each possible edge as a vertex; vertices are connected if they are dependent
let $N_{v}=4$, then

Markov Dependence

Network Graph

- all possible edges that share a vertex are dependent

Dependence graph represent each possible edge as a vertex; vertices are connected if they are dependent
let $N_{v}=4$, then

Markov Dependence

Network Graph

- all possible edges that share a vertex are dependent

Dependence graph represent each possible edge as a vertex; vertices are connected if they are dependent
let $N_{v}=4$, then

Markov Dependence

Network Graph

- all possible edges that share a vertex are dependent

Dependence graph represent each possible edge as a vertex; vertices are connected if they are dependent
let $N_{v}=4$, then

Markov Dependence

Hammersley-Clifford theorem \rightarrow any undirected graph on N_{v} vertices with dependence graph D has probability

$$
\mathbb{P}(G)=\left(\frac{1}{c}\right) \exp \left\{\sum_{A \subseteq G} \alpha_{A}\right\}
$$

where α_{A} is an indicator of the clique A in D.

Markov Dependence

Hammersley-Clifford theorem \rightarrow any undirected graph on N_{v} vertices with dependence graph D has probability

$$
\mathbb{P}(G)=\left(\frac{1}{c}\right) \exp \left\{\sum_{A \subseteq G} \alpha_{A}\right\}
$$

where α_{A} is an indicator of the clique A in D.

Markov Dependence

Hammersley-Clifford theorem \rightarrow any undirected graph on N_{v} vertices with dependence graph D has probability

$$
\mathbb{P}(G)=\left(\frac{1}{c}\right) \exp \left\{\sum_{A \subseteq G} \alpha_{A}\right\}
$$

where α_{A} is an indicator of the clique A in D.

Markov Dependence

Hammersley-Clifford theorem \rightarrow any undirected graph on N_{v} vertices with dependence graph D has probability

$$
\mathbb{P}(G)=\left(\frac{1}{c}\right) \exp \left\{\sum_{A \subseteq G} \alpha_{A}\right\}
$$

where α_{A} is an indicator of the clique A in D.

Markov Dependence

Hammersley-Clifford theorem \rightarrow any undirected graph on N_{v} vertices with dependence graph D has probability

$$
\mathbb{P}(G)=\left(\frac{1}{c}\right) \exp \left\{\sum_{A \subseteq G} \alpha_{A}\right\}
$$

where α_{A} is an indicator of the clique A in D.

Markov Dependence

Hammersley-Clifford theorem \rightarrow any undirected graph on N_{v} vertices with dependence graph D has probability

$$
\mathbb{P}(G)=\left(\frac{1}{c}\right) \exp \left\{\sum_{A \subseteq G} \alpha_{A}\right\}
$$

where α_{A} is an indicator of the clique A in D.

Markov Dependence

Hammersley-Clifford theorem \rightarrow any undirected graph on N_{v} vertices with dependence graph D has probability

$$
\mathbb{P}(G)=\left(\frac{1}{c}\right) \exp \left\{\sum_{A \subseteq G} \alpha_{A}\right\}
$$

where α_{A} is an indicator of the clique A in D.

Markov Model
cliques of D are edges, k-stars, and triangles in G

Markov Model

$$
\mathbb{P}_{\boldsymbol{\theta}}(\mathbf{Y}=\mathbf{y})=\left(\frac{1}{\kappa}\right) \exp \left\{\sum_{k=1}^{N_{v}-1} \theta_{k} S_{k}(\mathbf{y})+\theta_{\tau} T(\mathbf{y})\right\}
$$

where $S_{1}(\mathbf{y})=N_{e}$

$$
\begin{aligned}
S_{k}(\mathbf{y}) & =\# \text { of } k \text {-stars for } 2 \leq k \leq N_{v}-1 \\
\text { and } T(\mathbf{y}) & =\# \text { of triangles }
\end{aligned}
$$

Markov Model

$$
\begin{aligned}
\mathbb{P}_{\boldsymbol{\theta}}(\mathbf{Y}=\mathbf{y}) & =\left(\frac{1}{\kappa}\right) \exp \left\{\sum_{k=1}^{N_{v}-1} \theta_{k} S_{k}(\mathbf{y})+\theta_{\tau} T(\mathbf{y})\right\} \\
\text { where } S_{1}(\mathbf{y}) & =N_{e} \\
S_{k}(\mathbf{y}) & =\# \text { of } \mathrm{k} \text {-stars } \quad \text { for } 2 \leq k \leq N_{v}-1 \\
\text { and } T(\mathbf{y}) & =\# \text { of triangles }
\end{aligned}
$$

"Triad Model"
$k \leq 2$ only

Notes on the Markov Model

- intuitive dependence structure
- interpret sign of θ_{i} as tendency for/against statistic i above expectations for a random graph

Notes on the Markov Model

- intuitive dependence structure
- interpret sign of θ_{i} as tendency for/against statistic i above expectations for a random graph
- model fitting and simulations done via MCMC not easy...

Notes on the Markov Model

- intuitive dependence structure
- interpret sign of θ_{i} as tendency for/against statistic i above expectations for a random graph
- model fitting and simulations done via MCMC not easy...
- model degeneracy issues places lots of mass on only a few outcomes
- especially so for large N_{v}
- related to the phase transitions known for the Ising model
- change statistics for the MCMC algorithm

Exponential Random Graph Models

Exponential Family

\mathbf{Z} belongs to an exponential family if its pmf can be expressed as

$$
\mathbb{P}_{\boldsymbol{\theta}}(\mathbf{Z}=\mathbf{z})=\exp \left\{\boldsymbol{\theta}^{\prime} g(\mathbf{z})-\psi(\boldsymbol{\theta})\right\}
$$

where $\psi(\boldsymbol{\theta})$ is the normalization term.

Exponential Random Graph Models

Exponential Family

\mathbf{Z} belongs to an exponential family if its pmf can be expressed as

$$
\mathbb{P}_{\boldsymbol{\theta}}(\mathbf{Z}=\mathbf{z})=\exp \left\{\boldsymbol{\theta}^{\prime} g(\mathbf{z})-\psi(\boldsymbol{\theta})\right\}
$$

where $\psi(\boldsymbol{\theta})$ is the normalization term.

ERGM

let $Y_{i j}=Y_{j i}$ be a binary r.v. indicating the presence of an edge between vertices i and j

$$
\mathbb{P}_{\boldsymbol{\theta}}(\mathbf{Y}=\mathbf{y})=\left(\frac{1}{\kappa}\right) \exp \left\{\sum_{H} \theta_{H} g_{H}(\mathbf{y})\right\}
$$

where each H is a configuration, $g_{H}(\mathbf{y})$ is an indicator/count of H in \mathbf{y} and $\kappa=\kappa(\boldsymbol{\theta})$ is the normalization constant.

Exponential Random Graph Models

Markov Model

$$
\mathbb{P}_{\boldsymbol{\theta}}(\mathbf{Y}=\mathbf{y})=\left(\frac{1}{\kappa}\right) \exp \left\{\sum_{k=1}^{N_{v}-1} \theta_{k} S_{k}(\mathbf{y})+\theta_{\tau} T(\mathbf{y})\right\}
$$

ERGM

let $Y_{i j}=Y_{j i}$ be a binary r.v. indicating the presence of an edge between vertices i and j

$$
\mathbb{P}_{\boldsymbol{\theta}}(\mathbf{Y}=\mathbf{y})=\left(\frac{1}{\kappa}\right) \exp \left\{\sum_{H} \theta_{H} g_{H}(\mathbf{y})\right\}
$$

where each H is a configuration, $g_{H}(\mathbf{y})$ is an indicator/count of H in \mathbf{y} and $\kappa=\kappa(\boldsymbol{\theta})$ is the normalization constant.

Exponential Random Graph Models

Logistic Regression

$$
\begin{aligned}
Y_{i j} & \stackrel{i i d}{\sim} \operatorname{Bernoulli}(p) \\
\operatorname{logit}(p) & =\theta
\end{aligned}
$$

Exponential Random Graph Models

Logistic Regression
$Y_{i j} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(p)$
$\operatorname{logit}(p)=\theta$
$\Rightarrow \quad \mathbb{P}_{\theta}\left(Y_{i j}=1\right)=p=\operatorname{logit}^{-1}(\theta)=\frac{e^{\theta}}{1+e^{\theta}}$

Exponential Random Graph Models

Logistic Regression
$Y_{i j} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(p)$

$$
\operatorname{logit}(p)=\theta
$$

$\Rightarrow \quad \mathbb{P}_{\theta}\left(Y_{i j}=1\right)=p=\operatorname{logit}^{-1}(\theta)=\frac{e^{\theta}}{1+e^{\theta}}$
so now,

$$
\mathbb{P}_{\theta}(\mathbf{Y}=\mathbf{y})=\prod_{i, j} \mathbb{P}_{\theta}\left(Y_{i j}=y_{i j}\right)
$$

Exponential Random Graph Models

Logistic Regression
$Y_{i j} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(p)$
$\operatorname{logit}(p)=\theta$
\Rightarrow

$$
\mathbb{P}_{\theta}\left(Y_{i j}=1\right)=p=\operatorname{logit}^{-1}(\theta)=\frac{e^{\theta}}{1+e^{\theta}}
$$

so now,

$$
\mathbb{P}_{\theta}(\mathbf{Y}=\mathbf{y})=\left[\mathbb{P}_{\theta}\left(Y_{i j}=1\right)\right]^{S_{1}(\mathbf{y})}\left[\mathbb{P}_{\theta}\left(Y_{i j}=0\right)\right]^{\binom{N_{v}}{2}-S_{1}(\mathbf{y})}
$$

Exponential Random Graph Models

Logistic Regression

$Y_{i j} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(p)$

$$
\operatorname{logit}(p)=\theta
$$

\Rightarrow

$$
\mathbb{P}_{\theta}\left(Y_{i j}=1\right)=p=\operatorname{logit}^{-1}(\theta)=\frac{e^{\theta}}{1+e^{\theta}}
$$

so now,

$$
\begin{aligned}
\mathbb{P}_{\theta}(\mathbf{Y}=\mathbf{y}) & =\left[\mathbb{P}_{\theta}\left(Y_{i j}=1\right)\right]^{S_{1}(\mathbf{y})}\left[\mathbb{P}_{\theta}\left(Y_{i j}=0\right)\right]^{\binom{N_{v}}{2}-S_{1}(\mathbf{y})} \\
& =\left(\frac{e^{\theta}}{1+e^{\theta}}\right)^{S_{1}(\mathbf{y})}\left(\frac{1}{1+e^{\theta}}\right)^{\binom{N_{v}}{2}-S_{1}(\mathbf{y})}
\end{aligned}
$$

Exponential Random Graph Models

Logistic Regression
$Y_{i j} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(p)$

$$
\operatorname{logit}(p)=\theta
$$

\Rightarrow

$$
\mathbb{P}_{\theta}\left(Y_{i j}=1\right)=p=\operatorname{logit}^{-1}(\theta)=\frac{e^{\theta}}{1+e^{\theta}}
$$

so now,

$$
\begin{aligned}
\mathbb{P}_{\theta}(\mathbf{Y}=\mathbf{y}) & =\left[\mathbb{P}_{\theta}\left(Y_{i j}=1\right)\right]^{S_{1}(\mathbf{y})}\left[\mathbb{P}_{\theta}\left(Y_{i j}=0\right)\right]^{\binom{N_{v}}{2}-S_{1}(\mathbf{y})} \\
& =\left(\frac{e^{\theta}}{1+e^{\theta}}\right)^{S_{1}(\mathbf{y})}\left(\frac{1}{1+e^{\theta}}\right)^{\binom{N_{v}}{2}-S_{1}(\mathbf{y})} \\
& =\frac{\exp \left\{\theta S_{1}(\mathbf{y})\right\}}{\left(1+e^{\theta}\right)^{\binom{N_{v}}{2}}}
\end{aligned}
$$

Exponential Random Graph Models

Logistic Regression $\quad Y_{i j}{ }^{i i d} \sim \operatorname{Bernoulli}(p)$

$$
\operatorname{logit}(p)=\theta
$$

$$
\Rightarrow \quad \mathbb{P}_{\theta}\left(Y_{i j}=1\right)=p=\operatorname{logit}^{-1}(\theta)=\frac{e^{\theta}}{1+e^{\theta}}
$$

so now,

$$
\begin{aligned}
\mathbb{P}_{\theta}(\mathbf{Y}=\mathbf{y}) & =\left[\mathbb{P}_{\theta}\left(Y_{i j}=1\right)\right]^{S_{1}(\mathbf{y})}\left[\mathbb{P}_{\theta}\left(Y_{i j}=0\right)\right]^{\binom{N_{v}}{2}-S_{1}(\mathbf{y})} \\
& =\left(\frac{e^{\theta}}{1+e^{\theta}}\right)^{S_{1}(\mathbf{y})}\left(\frac{1}{1+e^{\theta}}\right)^{\binom{N_{\nu}}{2}-S_{1}(\mathbf{y})} \\
& =\frac{\exp \left\{\theta S_{1}(\mathbf{y})\right\}}{\left(1+e^{\theta}\right)^{N_{v}} \begin{array}{c}
N_{v} \\
2
\end{array}}
\end{aligned}
$$

Bernoulli Model: $\quad \mathbb{P}_{\theta}(\mathbf{Y}=\mathbf{y})=\left(\frac{1}{\kappa}\right) \exp \left\{\theta S_{1}(\mathbf{y})\right\}$

Exponential Random Graph Models

- Bernoulli Model complete independence

$$
\mathbb{P}_{\theta}(\mathbf{Y}=\mathbf{y})=\left(\frac{1}{\kappa}\right) \exp \left\{\theta S_{1}(\mathbf{y})\right\}
$$

Exponential Random Graph Models

- Bernoulli Model complete independence

$$
\mathbb{P}_{\theta}(\mathbf{Y}=\mathbf{y})=\left(\frac{1}{\kappa}\right) \exp \left\{\theta S_{1}(\mathbf{y})\right\}
$$

- Markov Model possible edges that share a vertex are dependent

$$
\mathbb{P}_{\theta}(\mathbf{Y}=\mathbf{y})=\left(\frac{1}{\kappa}\right) \exp \left\{\sum_{k=1}^{N_{v}-1} \theta_{k} S_{k}(\mathbf{y})+\theta_{\tau} T(\mathbf{y})\right\}
$$

Exponential Random Graph Models

- Bernoulli Model
complete independence

$$
\mathbb{P}_{\theta}(\mathbf{Y}=\mathbf{y})=\left(\frac{1}{\kappa}\right) \exp \left\{\theta S_{1}(\mathbf{y})\right\}
$$

- Markov Model possible edges that share a vertex are dependent

$$
\mathbb{P}_{\theta}(\mathbf{Y}=\mathbf{y})=\left(\frac{1}{\kappa}\right) \exp \left\{\sum_{k=1}^{N_{v}-1} \theta_{k} S_{k}(\mathbf{y})+\theta_{\tau} T(\mathbf{y})\right\}
$$

- General Case
?? dependence

$$
\mathbb{P}_{\theta}(\mathbf{Y}=\mathbf{y})=\left(\frac{1}{\kappa}\right) \exp \left\{\sum_{H} \theta_{H} g_{H}(\mathbf{y})\right\}
$$

Exponential Random Graph Models

- Bernoulli Model complete independence

$$
\mathbb{P}_{\theta}(\mathbf{Y}=\mathbf{y})=\left(\frac{1}{\kappa}\right) \exp \left\{\theta S_{1}(\mathbf{y})\right\}
$$

- Markov Model possible edges that share a vertex are dependent

$$
\mathbb{P}_{\theta}(\mathbf{Y}=\mathbf{y})=\left(\frac{1}{\kappa}\right) \exp \left\{\sum_{k=1}^{N_{v}-1} \theta_{k} S_{k}(\mathbf{y})+\theta_{\tau} T(\mathbf{y})\right\}
$$

- General Case
?? dependence

$$
\mathbb{P}_{\theta}(\mathbf{Y}=\mathbf{y})=\left(\frac{1}{\kappa}\right) \exp \left\{\sum_{H} \theta_{H} g_{H}(\mathbf{y})\right\}
$$

- Snijders et al. (2006)

New Specifications - Snijders et al. (2006)

make use of clique-like structures...

$$
\mathbb{P}_{\boldsymbol{\theta}}(\mathbf{Y}=\mathbf{y})=\left(\frac{1}{\kappa}\right) \exp \left\{\theta_{1} S_{1}(\mathbf{y})+\theta_{2} u_{\lambda_{1}}^{(s)}(\mathbf{y})++\theta_{3} u_{\lambda_{2}}^{(t)}(\mathbf{y})+\theta_{4} u_{\lambda_{2}}^{p}(\mathbf{y})\right\}
$$

where $S_{1}(\mathbf{y})=N_{e}$

$$
\begin{aligned}
& u_{\lambda}^{(s)}(\mathbf{y})=\sum_{k=2}^{N_{v}-1}(-1)^{k} \frac{S_{k}(\mathbf{y})}{\lambda^{k-2}} \\
& u_{\lambda}^{(t)}(\mathbf{y})=\sum_{i<j} y_{i j} \sum_{k=1}^{N_{v}-2}\left(\frac{-1}{\lambda}\right)^{k-1}\binom{L_{2 i j}}{k} \\
& u_{\lambda}^{p}(\mathbf{y})=\lambda \sum_{i<j}\left\{1-\left(1-\frac{1}{\lambda}\right)^{L_{2 i j}}\right\}
\end{aligned}
$$

alternating k -stars
alt. k-triangles
alt. independent two-paths

New Specifications - Snijders et al. (2006)

k-triangles

independent two-paths
(a)

FIGURE 5. Two-independent two-paths (a) and five-independent two-paths (b).

Some Notes on the Snijders Model

- fewer, less severe issues with model degeneracy
- model fitting and simulations done via MCMC

Some Notes on the Snijders Model

- fewer, less severe issues with model degeneracy
- model fitting and simulations done via MCMC
- interpretation of $\boldsymbol{\theta}$?
- what should λ be? what does it mean?
\rightarrow curved exponential family

Some Notes on the Snijders Model

- fewer, less severe issues with model degeneracy
- model fitting and simulations done via MCMC
- interpretation of $\boldsymbol{\theta}$?
- what should λ be? what does it mean?
\rightarrow curved exponential family
- satisfies (weaker) partial conditional dependence
$Y_{i v}$ and $Y_{u j}$ are conditionally dependent only if one of the two conditions hold:

1. $\{i, v\} \cap\{u, j\} \neq \emptyset$
2. $y_{i u}=y_{v j}=1$

Network Models - Summary

- Statistical Models

Simple Logistic Regression / Bernoulli Model
p_{1} Model
p_{2} Model
Markov Model
Snijders et al. (2006)

Network Models - Summary

- Statistical Models

Simple Logistic Regression / Bernoulli Model
p_{1} Model
p_{2} Model
Markov Model
Snijders et al. (2006)
ERGMs or \mathbf{p}^{*} Models

Network Models - Summary

- Statistical Models

Simple Logistic Regression / Bernoulli Model
p_{1} Model
p_{2} Model
too simple

Markov Model
Snijders et al. (2006)
ERGMs or \mathbf{p}^{*} Models

Network Models - Summary

- Statistical Models

Simple Logistic Regression / Bernoulli Model
p_{1} Model
p_{2} Model
too simple

Markov Model \leftarrow too hard to fit
Snijders et al. (2006)
ERGMs or \mathbf{p}^{*} Models

Network Models - Summary

- Statistical Models

Simple Logistic Regression / Bernoulli Model
p_{1} Model
p_{2} Model
too simple

Markov Model
\leftarrow too hard to fit
Snijders et al. (2006) \leftarrow too hard to interpret
ERGMs or \mathbf{p}^{*} Models

Network Models - Summary

- Statistical Models

Simple Logistic Regression / Bernoulli Model
p_{1} Model
p_{2} Model
too simple

Markov Model \leftarrow too hard to fit
Snijders et al. (2006) \leftarrow too hard to interpret
ERGMs or \mathbf{p}^{*} Models

- Mathematical Models

Random Graphs - CUG, Erdos-Renyi, Generalized
Small World
Preferential Attachment

Random Graphs

a conditional uniform graph (CUG) distribution with sufficient statistic \mathbf{t} taking on value \mathbf{x} :

$$
\mathbb{P}(G=g \mid \mathbf{t}, \mathbf{x})=\frac{1}{\left|\left\{g^{\prime} \in \mathcal{G}: \mathbf{t}\left(g^{\prime}\right)=\mathbf{x}\right\}\right|} I_{\left\{g^{\prime} \in \mathcal{G}: \mathbf{t}\left(g^{\prime}\right)=\mathbf{x}\right\}}(g)
$$

where $\mathbf{t}=\left(t_{1}, \ldots t_{n}\right)$ is an n-tuple of real-valued functions on \mathcal{G} and $\mathrm{x} \in \mathbb{R}^{n}$ is a known vector.

- pick a particular \mathcal{G} and specify uniform probability

Special Cases

an Erdos-Renyi random graph puts uniform probablity on $\mathcal{G}_{N_{v}, N_{e}}$ so that

$$
\mathbb{P}\left(G=g \mid N_{v}, N_{e}\right)=\frac{1}{\binom{N}{N_{e}}} I_{\left\{g \in \mathcal{G}_{\left.N_{v}, N_{e}\right\}}(g)\right.}
$$

where $N=\binom{N_{v}}{2}$.

Special Cases

an Erdos-Renyi random graph puts uniform probablity on $\mathcal{G}_{N_{v}, N_{e}}$ so that

$$
\mathbb{P}\left(G=g \mid N_{v}, N_{e}\right)=\frac{1}{\binom{N}{N_{e}}} I_{\left\{g \in \mathcal{G}_{\left.N_{v}, N_{e}\right\}}\right\}}(g)
$$

where $N=\binom{N_{v}}{2}$.
another variant of this model, suggested by Gilbert around the same time uses
$\mathcal{G}_{N_{v}, p}=$ collection of graphs G with N_{v} vertices that may be obtained by assigning an edge independently to each possible edge with probability $p \in(0,1)$

Special Cases

an Erdos-Renyi random graph puts uniform probablity on $\mathcal{G}_{N_{v}, N_{e}}$ so that
where $N=\binom{N_{v}}{2}$.

$$
\mathbb{P}\left(G=g \mid N_{v}, N_{e}\right)=\frac{1}{\binom{N}{N_{e}}} I_{\left\{g \in \mathcal{G}_{\left.N_{v}, N_{e}\right\}}(g)\right.}
$$

another variant of this model, suggested by Gilbert around the same time uses

$$
\begin{aligned}
\mathcal{G}_{N_{v}, p}= & \text { collection of graphs } G \text { with } N_{v} \text { vertices that may be } \\
& \text { obtained by assigning an edge independently to each } \\
& \text { possible edge with probability } p \in(0,1)
\end{aligned}
$$

\rightarrow Bernoulli Model for large N_{v}, when $p=f\left(N_{v}\right)$ and $N_{e} \sim p N_{v}$

Special Cases

an Erdos-Renyi random graph puts uniform probablity on $\mathcal{G}_{N_{v}, N_{e}}$ so that
where $N=\binom{N_{v}}{2}$.

$$
\mathbb{P}\left(G=g \mid N_{v}, N_{e}\right)=\frac{1}{\binom{N}{N_{e}}} I_{\left\{g \in \mathcal{G}_{\left.N_{v}, N_{e}\right\}}\right\}}(g)
$$

another variant of this model, suggested by Gilbert around the same time uses

$$
\begin{aligned}
\mathcal{G}_{N_{v}, p}= & \text { collection of graphs } G \text { with } N_{v} \text { vertices that may be } \\
& \text { obtained by assigning an edge independently to each } \\
& \text { possible edge with probability } p \in(0,1)
\end{aligned}
$$

\rightarrow Bernoulli Model for large N_{v}, when $p=f\left(N_{v}\right)$ and $N_{e} \sim p N_{v}$
a generalized random graph puts uniform probability on $\mathcal{G}_{N_{v}, t}$ where t is any other statistic/motif/characteristic of G.

- degree distribution $\Rightarrow N_{e}$ fixed

Some Notes about Random Graphs

- mathematical models
- Erdos-Renyi appears to be the most commonly used
- most thoroughly studied degree distribution, probability of connectedness, etc.
- easy to work with

Some Notes about Random Graphs

- mathematical models
- Erdos-Renyi appears to be the most commonly used
- most thoroughly studied degree distribution, probability of connectedness, etc.
- easy to work with

PROS

intuitive
easy simulations
short path lengths

Some Notes about Random Graphs

- mathematical models
- Erdos-Renyi appears to be the most commonly used
- most thoroughly studied degree distribution, probability of connectedness, etc.
- easy to work with

PROS

intuitive
easy simulations
short path lengths

CONS

unrealistic
degree dist. is not broad enough levels of clustering too low

Some Other Mathematical Models

Watts-Strogatz Small World Model

0 . lattice of N_{v} vertices

1. randomly "rewire" each edge independently and with probability p, such that we change one endpoint of that edge to a different vertex (chosen uniformly)

- high levels of clustering, yet small distances between most nodes

Some Other Mathematical Models

Barabasi-Albert Preferential Attachment Model

(a network growth model)
0. $G^{(0)}$ of $N_{v}^{(0)}$ vertices and $N_{e}^{(0)}$ edges
t. $G^{(t)}$ is created by adding a vertex of degree $m \geq 1$ to $G^{(t-1)}$, where the probability that this new vertex is connected to any existing vertex in $G^{(t-1)}$ is

$$
\frac{d_{v}}{\sum_{v^{\prime} \in V} d_{v}}, \quad \text { where } d_{v} \text { is the degree of vertex } v
$$

- can achieve broad degree distributions

Network Models - Summary

- Statistical Models

Simple Logistic Regression / Bernoulli Model
p_{1} Model
p_{2} Model
too simple

Markov Model \leftarrow too hard to fit
Snijders et al. (2006) \leftarrow too hard to interpret
ERGMs or \mathbf{p}^{*} Models

- Mathematical Models

Random Graphs - CUG, Erdos-Renyi, Generalized
Small World
Preferential Attachment

Thank you!!

Some References

van Duijn, Marijtje A. J., Tom A. B. Snijders and Bonne J. H. Zijlstra. 2004. "p p_{2} : A Random Effects Model with Covariates for Directed Graphs." Statistica Neerlandica 58(2): 234-254.

Frank, Ove and David Strauss. 1986. "Markov Graphs." Journal of the American Statistical Association 81: 832-42.

Snijders, Tom A. B., Philippa E. Pattison, Garry L. Robins, and Mark S. Handcock. 2006. "New Specifications for Exponential Random Graph Models." Sociological Methodology 36(1): 99-153

Butts, Carter T. 2008. "Social Network Analysis: A Methodological Introduction." Asian Journal of Social Psychology 11: 13-41.

Erdos, P and A. Renyi. 1960. "On the Evolution of Random Graphs." Publications of the Mathematical Institute of the Hungarian Academy of Sciences 5: 17-61.
van Wijk, Bernadette C. M., Cornelis J. Stam, and Andreas Daffertschofer. 2010. "Comparing Brain Networks of Different Size and Connectivity Density Using Graph Theory." PLoS ONE 5(10): e13701.

