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Gene Trees vs. Species Trees

When DNA sequence data from a single gene are used to estimate a
phylogeny, a gene tree (a tree representing the evolution of that gene) is
estimated.

Most often, the species tree (a tree representing the actual evolutionary path
of the species) is what is desired.

The gene and species trees often disagree with one another. This is called
topological incongruence.
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Some Biological Explanations for Incongruence

Horizontal gene transfer is the transfer of genetic material by processes other
than usual reproduction. For example, genetic material can be carried from
one cell to another by infectious viruses.

Hybridization: the genetic process of crossbreeding between genetically
dissimilar parents to produce a hybrid.

Deep coalescence is when two ancestral gene copies fail to coalesce (looking
backwards in time) into a common ancestral copy until deeper than previous
speciation events.
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The Coalescent Process

The coalescent models the random process by which individual gene histories
evolve under the constraints imposed by an overall species tree.

A consequence of the model is the requirement that gene divergence times
pre-date speciation events, resulting in the possibility of variation in the
phylogenetic trees for individual genes.

This possibility exists even when all of the individual genes are compatible
with a single, bifurcating species tree.
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The Coalescent Process

More specifically...

The coalescent process specifies that the time to coalescence of j gene copies
into j − 1 is exponentially distributed with mean

j(j − 1)

2

2

θ

The parameter θ is defined to be 4Nµ
I N= the effective population size
I µ= the mutation rate per site per generation.

Using this model, Rannala and Yang (2003) derived the gene tree probability
density function along a fixed species tree.
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The Coalescent Process

We consider the density of the entire gene tree under the usual assumption
that coalescent events are independent across branches

Then the densities across individual branches can be multiplied to give the
density of gene tree

In this talk we will denote the density of gene tree given species tree by

f(G ,t)|(S,τ )

I S =species tree
I G=gene tree
I t = (t1, · · · tn−1) the vector of coalescent times
I τ = (τ1, · · · τn−1) the vector of speciation times
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Gene tree - review

Let T be an n-leaf rooted tree. At the root the distribution of the states is
given by π = (π1, . . . , πk).

Edges e of T are labeled by k × k transition probability matrices Me , that
reflect probabilities of changes of the states from a node to its child.

For example, the Jukes-Cantor (JC69) model specifies a common rate of
change among the four nucleotides, leading to the following transition
probability matrix

Me =


1− ae

ae
3

ae
3

ae
3

ae
3 1− ae

ae
3

ae
3

ae
3

ae
3 1− ae

ae
3

ae
3

ae
3

ae
3 1− ae


where ae = 3

4 (1− e−
4
3 ve ) and ve is the branch length.
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Computation of site pattern probabilities on gene trees is straightforward
once the gene tree and the Markov model have been specified.

For a particular observation i1 . . . in at the leaves of a gene tree G , where im
denotes the state at leaf m, let pi1i2...in be the probability of site pattern
i1i2 . . . in.

For example, if G is a tree with three leaves and four states, then probability
of a particular observation i1i2i3 is

pi1i2i3 =
4∑
`=1

π`M1(`, i1)M2(`, i2)M3(`, i3)

 

M1 

M2 

M3 

i1 

i2 

i3 

π 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Site pattern probabilities on species trees

Gene tree site pattern probabilities can then be used together with the gene
tree density f(G ,t)|(S,τ ), to compute the site pattern probabilities along the
species trees.

Since the true gene tree is unobserved, we must consider all possible gene
trees that are consistent with the given species tree, and weight the
probability of the site pattern of interest appropriately by the probability of
each gene tree under the coalescent model.

This leads to the following expression for the probability of observation
i1 . . . in for species tree (S , τ)

Pi1...in|(S,τ ) =
∑
G

∫
t

piσG (1)...iσG (n)|(G ,t) · f(G ,t)|(S,τ )dt.

Where the sum is taken over all gene trees G with corresponding branch
lengths t appropriately integrated out and iσG (1) . . . iσG (n) is a permutation of
the observation i1 . . . in at the leaves of the species tree S .
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B C A

t

Gene tree is (A(BC))

(a)

B C A

t

Gene tree is (A(BC))

(b)

B C A

t

Gene tree is (C(AB))

(c)

B C A

t

Gene tree is (B(AC))

(d)
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Example
Let Gi denote a particular gene tree for history i , then the i th summand of
PTGG |(S,(u,v)) is:

∫ ∞
0

∫ t2

0

pGGT |(Gi ,(v+t1,v+t1,2t2−t1+v)) · f(Gi ,(v+t1,v+t1,2t2−t1+v))|(S,(u,v))dt1dt2

 

u

v 

v 

t1 

t2 

B C A 

v+t1  

v+t1 

t2 -t1 +t2 +v  

B 

A 

C 
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Example (cont.)

Under the Jukes-Cantor model:

∫ ∞
0

∫ t2

0

pGGT |(Gi ,(v+t1,v+t1,2t2−t1+v)) · f(Gi ,(v+t1,v+t1,2t2−t1+v))|(S,(u,v))dt1dt2

pGGT |(Gi ,t) = 1
64 −

1
32e
− 4t1

3 −
8t2
3 −4v − 1

64e
− 8t1

3 −
8v
3 + 1

32e
− 8t2

3 −
8v
3

f(Gi ,t)|(S,τ ) = ( 2
θ )2e−

2
θ (v−u)e−6

t1
θ e−

2
θ (t2−t1)

Integrate and get:

1

192
e

2u
θ

(
e−

2v
θ − 9(−3 + 4θ)e(− 8

3−
2
θ )v

(3 + 4θ)(9 + 4θ)
− 18e−2(2+

1
θ )v

(3 + 2θ)(3 + 4θ)

)

Apply same process to other histories and add them together to get
PTGG |(S,(u,v)).
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3-leaf species tree for a JC69 model under the coalescent

When considering a rooted species tree (as required by the coalescent
model), the symmetry among nucleotides implied by the JC69 model leads to
4 distinct site patterns out of 64 patterns.

For example, PACT = PCGA = · · · = PGCT under this model, and thus we
write this pattern as Pxyz , where x , y , z ∈ {A,C ,G ,T}.

For a simpler output let θ = 1
100

Then, site pattern probabilities along a 3-leaf species tree for a Jukes-Cantor
model under the coalescent are as follows.
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Pxxx =
1

16
+

225e−
8u
3

1216
+

16875e−
4u
3
− 8v

3

45904
+

225

608
e−

8v
3

Pxxy =
3

16
− 225e−

8u
3

1216
− 16875e−

4u
3
− 8v

3

45904
+

225

608
e−

8v
3

Pxyx =
3

16
− 225e−

8u
3

1216
− 16875e−

4u
3
− 8v

3

45904
+

225

608
e−

8v
3

Pyxx =
3

16
+

675e−
8u
3

1216
− 16875e−

4u
3
− 8v

3

45904
− 225

608
e−

8v
3

Pxyz =
3

8
− 225

608
e−

8u
3 +

16875e−
4u
3
− 8v

3

22952
− 225

304
e−

8v
3
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Phylogenetic Invariants

Notice that Pxxy − Pxyx = 0.

Also, since the probability of all possible outcomes must add to 1 we get∑
ijk Pijk − 1 = 0

These polynomial relations are called invariants.

Phylogenetic invariant is a polynomial in the site pattern probabilities that
vanishes when evaluated on any distribution arising from the model i.e., the
true phylogenetic tree and associated Markov model
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Phylogenetic Invariants

Phylogenetic invariants and their possible use for inference were first
introduced in 1987 by Cavender and Felsenstein, and by Lake

The general idea is to fix a model and for each tree find and evaluate
invariants at observed frequencies of patterns in real data sequenses.

The best estimate of the phylogenetic tree is the tree for which invariants are
“nearly zero.”
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3-leaf species tree for a JC69 model under the coalescent
We can make the following change of variables by introducing new
parameters

x = e
−8v
3 and y = e

−4u
3

Then we can express site pattern probabilities as polynomials

Pxxx =
1

16
+

225

1216
y 2 +

16875

45904
xy +

225

608
x

Pxxy =
3

16
− 225

1216
y 2 − 16875

45904
xy +

225

608
x

Pxyx =
3

16
− 225

1216
y 2 − 16875

45904
xy +

225

608
x

Pyxx =
3

16
+

675

1216
y 2 − 16875

45904
xy − 225

608
x

Pxyz =
3

8
− 225

608
y 2 +

16875

22952
xy − 225

304
x
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Notice that our new parameters x and y , and each Pijk are between 0 and 1.

For a fixed species tree S we are going to consider a polynomial map from a
parameter space to a joint distribution space

FS : [0, 1]number of parameters → [0, 1]number of site patterns

To keep algebra as simple as possible we are going to extend this map to a
complex setting, which is appropriate for studying polynomial maps.

FS : C2 → C64

(x , y) 7→ (PAAA,PAAC ,PAAG , . . . ,PTTT )

What we want is the closure of the image FS(C2) = an algebraic variety.
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Let f1, f2, . . . , fk be polynomials in C[x1, x2, . . . , xn], then variety is the set of
all solutions of the system

f1(x1, x2, . . . , xn) = · · · = fk(x1, x2, . . . , xn) = 0

With each variety we associate a set of polynomials that vanish on the given
variety. This set of polynomials forms an ideal.

In our setting we will denote this ideal by IS , where S is the species tree.

Thus, we associate to each tree S a parametrized surface VS = the image of
our map.
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Example

Let f1 = t and f2 = t2

F : R→ R2

t 7→ (f1, f2)

The image of the map is a parabola and associated ideal is I = (f2 − f 21 ).

!

!"#

!$#
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To compute this ideal IS is very hard.

For small trees and certain models we can use “Implicitization algorithm for
polynomial parametrization” (next slide)

However, under realistic assumptions for θ, our model will always result in
large degrees for trees with leaves greater than 4 and in rational functions.

Hence, we have little hope of using software packages to compute generating
set. Rather, we have to search for natural constructions and possible change
of coordinates that will simplify calculations.
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Implicitization algorithm for polynomial parametrization

In principle, given the polynomial parameterization

P1 = f1(x1, . . . , xn), . . . ,Pm = fm(x1, . . . , xn),

where f1, . . . , fm are polynomial functions in C[x1, . . . , xn]

Let I = 〈P1 − f1, . . . ,Pm − fm〉, and compute the Gröbner basis with respect
to a lexicographic order.

The elements of the basis that do not involve x1, . . . , xn define the smallest
variety containing the parameterization.
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3-leaf species tree for a JC69 model under the coalescent

Pxxx =
1

16
+

225

1216
y 2 +

16875

45904
xy +

225

608
x

Pxxy =
3

16
− 225

1216
y 2 − 16875

45904
xy +

225

608
x

Pxyx =
3

16
− 225

1216
y 2 − 16875

45904
xy +

225

608
x

Pyxx =
3

16
+

675

1216
y 2 − 16875

45904
xy − 225

608
x

Pxyz =
3

8
− 225
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y 2 +

16875
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xy − 225
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3-leaf species tree for a JC69 model under the coalescent

G1 = Pxxx − (
1

16
+

225

1216
y 2 +

16875

45904
xy +

225

608
x)

G2 = Pxxy − (
3

16
− 225

1216
y 2 − 16875

45904
xy +

225

608
x)

G3 = Pxyx − (
3

16
− 225

1216
y 2 − 16875

45904
xy +

225

608
x)

G4 = Pyxx − (
3

16
+

675

1216
y 2 − 16875

45904
xy − 225

608
x)

G5 = Pxyz − (
3

8
− 225

608
y 2 +

16875

22952
xy − 225

304
x)
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3-leaf species tree for a JC69 model under the coalescent

Using Mathematica:

input: GroebnerBasis[{G1,G2,G3,G4,G5}, {x , y ,Pxxx,Pxxy,Pxyx,Pyxx,Pxyz}, {x , y}]

output: {9− 48Pxyx− 364736Pxyx2 + 972800Pxyx3 + 547188Pxyz− 2188768PxyxPxyz

+2432000Pxyx2Pxyz− 1003196Pxyz2 + 1945600PxyxPxyz2 + 486400Pxyz3 − 24Pyxx

−729536PxyxPyxx + 1945600Pxyx2Pyxx− 1094384PxyzPyxx + 2918400PxyxPxyzPyxx

+972800Pxyz2Pyxx + 16Pyxx2 + 972800PxyxPyxx2 + 486400PxyzPyxx2,

Pxxy− Pxyx,−1 + Pxxx + 2Pxyx + Pxyz + Pyxx}
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Finch Data
W097 = Poephila acuticauda
Q097 = Poephila hecki
B097 = Poephila cincta

Site pattern counts under JC69:
Pxxx 15860
Pxxy 115
Pxyx 69
Pyxx 74
Pxyz 1

The tree: ((Q:W):B)

! "#$%&!%'()*%)'+! ,%'-)*!

%'()*%)'+./0000!

112345365! /0789:;! ;7/0/<;!

112365345! =0708/! =>78;>9!

123143655! =/708<=! =97>;:9!
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Results for simulated data: cubic invariant

Blue - true tree
Red - alternate tree
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Thank you!
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