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Model Selection

» The likelihood framework allows us to assess the “fit" of
models to a particular data set.

» The goal is to find a model that is complex enough to capture
the processes at work in the data without overfitting.

» There is a trade-off between bias and variance here — by
adding parameters to a model we obtain an improvement in
fit, but parameter estimates become "worse” because there
are more parameters to estimate using a fixed amount of data.
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Model Selection

» The following figure illustrates the issue for the simpler
problem of fitting a curve to a data set:

» The points are the data.

» Two models are fit — a straight line
e and a polynomial.
» The polynomial passes through every
-~ data point and has more parameters.
» The line has fewer parameters and
avoids modeling unlikely fluctuations
in the extremes of the data.
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Model Selection

» Several criteria are commonly used for model selection

v

Likelihood ratio tests

Aikaike information criterion (AlIC)
Bayesian information criterion (BIC)
Other possibilities

vvyy

» These all use the likelihood function in some way.
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Likelihood Ratio Test (LRT)

» The LRT can be applied to compare nested models — pairs of
models for which one is a special case of the other.

» The test statistic is A = 2(/nL; — InLy), where InLg is the
maximum log likelihood under the null model and /nL; is the
maximum log likelihood under the alternative model.

» If the null model can be viewed as a special case of the
alternative model, then statistical theory allows use of the x?
distribution to compute a p-value.

» Simulation can be used to compare non-nested models.
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AIC and BIC

» Both of these criteria use the value of the likelihood function
(larger likelihoods mean better fit of the model to the data),
but include a penalty for using more parameter-rich models.

» The AIC is
AIC = =2InL +2p

where p is the number of parameters in the model being
considered.
» The BIC is
BIC = —2InL + p x log(n)
where n is the number of sites in the sequence.

» Other Bayesian approaches are possible — see Posada and
Buckley, Syst. Biol. 53: 793-808, 2004.
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