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Idea: Find the tree which maximizes the
likelihood of the observed sequences under
i a particular evolutionary model.
This lecture:
= Quick Example
= Probability models
= Calculating the likelihood

April 20t:
= Algorithms




Quick Example
i Leitner's Swedish Social Network

= Index case patient 1 transmitted HIV to female
patients 8, 11,7, 5, and 2.

= Patient 5 transmitted the virus to male patient 6.
= Patient 2 transmitted the virus to child patient 3
= Patient 8 transmitted the virus to child patient 9

= T1mes for each transmission are known within a few
months.



Subset of the data:

P1 GTAGTAATTAGATCTGAAAACTTCTCGAACAATGCTAAAACCATAA
P2 e A
P3 A e e A
P5 @ —— e A - G-——————
P6 e A - G-——————
P7 A e e A
P8 A e e A——Gmmm
P9 A e e A——Gmmm
P11 ————————— Commm e - A——Gmmm

Note “-” used to indicate same nucleotide as index patient 1



The Swedish Social Network -
(Tree of highest likelihood)

g§ 911 7 5 6 2 3 1
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P(Tree) =

P(Topology)P(Split Times|Topology)P(SequenceslTopology, Times)
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B Data | Parameter
P(Tree) = " N

P(Topology)P(Split TimesITopology)P(Sequences|Topology, Times)



The Swedish Social Network -
(Tree of highest likelihood)

- |

g§ 91 7 5 6 2 3 1

Recall patient 1 infected patients 8 thenl1 then 7 then 5 and then
2. Patient 5 infected patient 6. Patient 2 infected patient 3.
Patient 8 infected patient 9.



!L Probabilistic Models of Molecular Evolution

Idea: Model the molecular events that drive
the changes seen in nucleotide and amino
acid sequences.




He watched patiently as his student battled to
try and calculate “a snowball’'s chance in hell”.



Probability Models

= Molecular evolution is reasonably well modeled by finite
state continuous time Markov chains.

= More controversial are assumptions of stationarity and
site-to-site independence which underlie many
phylogenetic methods.

= The evolution of a single “site” 1s modeled over the state
space of an n-letter alphabet.



i Probability Models

s Define X(t) = letter at time t,
= P;(t) = P(X(t+s) = jIX(s) =1) (stationarity)

A
< po)
QVY VO@ t
A C

= Matrix notation P(t) (note: rows add to 1)



* Probability Models

= Need to assume:

[ i
limPij(t):{ , I=]
0, i#]

t—0



* Markov Process Theory

= Chapman-Kolmogorov

P, (s+t) = 2P;(®)Py () fort,s>0.

J=1

In matrix notation
P(s+t) = P(t)P(s)



* Markov Process Theory

= P(t) 1s continuous and differentiable:

Q=P

zqij = (i.e. rows of Q sum to 0).



:L Markov Process Theory

= Q is called the generator matrix of the process.
The infinitesimal description of the process (h small):

P[X(h)=jlX(0)=i] = g;h + o(h) for i%]

P[X(h)=ilX(0)=i] = 1+ q;h + o(h)

Q=P (0) P ()=P1OQ

P(t) = exp(Qt) = I + 2 Q f

" (find by diagonalizing Q)
k=1 K-




i Markov Process Theory

= When the Markov chain 1s irreducible (all states
communicate) then there 1s a limiting distribution
which 1s independent of the 1nitial state:
]imPij(t) = 77:j > ()
t—>o0

= The limiting distribution 1s found by solving:
0=mQ
Ti(1-qy) = 2795 forj=0,...n

1#]



* Markov Process Theory

= For a stationary process tP(t)=mnfor all t.

= For a time-reversible process

T, Pyi(t) = 1 ;P;(0)



i Probability Models for Molecular Evolution

» Q =P’ (0) the generator matrix gives the
infinitesimal description of the process.

= The Jukes-Cantor (1969) model: 4-letter
alphabet with all substitutions equally likely




i Probability Models (Jukes-Cantor)

P,(t+h)=1-3ch)P,(t)+oh(l—- P,(t)) +o(h)
P (t)=—40P,;(t) + o
subject to P..(0)=1

= For Jukes-Cantor
025(1+3exp(—4ot) i=j
P,(t)= e
/ 0.25(1—exp(—4at) i+# ]

n,=n.=n,=mn, =025



Probability Models (Jukes-Cantor)

= [f two sequences evolved from a common ancestor
C
/\ = + /\ + +
A A A A A A A A A A

Then the chance that j=k is
[0.25(1+3exp(-4at))]? + 3[0.25(1-exp(-4at))]?
= 0.25(1+3exp(-8at))

0 = P[two sequences differ at a particular site]
= 0.75(1-exp(-8at))



Probability Models (Jukes-Cantor)

= The expected number of substitutions per site from ancestor to
descendent over time t 1s 30ct.

= The expected number of substitutions per site for two
sequences that evolved from a common ancestor over time t 1s

D= 60t =-0.75Ln(1-40/3).
Pooling the information from all of the K sites gives the estimate
D =-0.75Ln(1-46/3) where

o 1s the proportion of sites that differ between the two
sequences.



* Probability Models (Jukes-Cantor)

= D estimates the expected number of substitutions per site.

It is called the “Jukes-Cantor distance” between the two
sequences.

= Using the delta-method...

6(1-0)

Var(D) = D'(0)"Var(0) = K(1—40/3)




i Kimura’'s (1980) Model

= Two parameter model. The rate for

transitions may be more common than for

transversions (x=a/p>1):
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* Kimura’'s (1980) Model

= Solving 0 = ©Q gives the limiting values
T A= =N 5=T;=0.25

L (1+exp(-4BO+2exp(-2(0+f)Y)  i= |
P, (t)=1 7 (1+exp(-4Bt)-2exp(-2(ar+P)t)) rransimion
% (1-exp(-4 ﬁt)) TRANSVERSION




i Felsenstein’s (1981) Model

= Four parameter model. The stationary
probabilities may differ:

A __.u(l - ﬂ’-A) HTTc HTTg HTTy ]
Cl um, —ud-me)  umg U,
Q =
G| um, Hre —uld-mg)  um;
r | M7y M7 M7 —u(l- 7TT)_

(7, +(1—m )exp(—ut) i=j

m,(l—exp(-ut))  i#]

.



* Felsenstein’s (1981) Model

= Solve P(t) = exp(Qt)

_ m+(1-)exp(-ut))  1=j
Py = m(l-exp(-ut))  1#]



Hasegawa-Kishino-Yano (1985) Model

= Five parameter model. Differing stationary probabilities
and possible transition-transversion bias.

(KT + ) pre KT pr,
Q= HTT '.LL(KWT * 77:V) HTtg HKTy
HKTT 5 HTTc '-u(Kn'A * n'w) HTTy

B HTT HKT HTtg ':U(Kﬂ:c T ﬂ’-V)_

where Tw = Ttc + T and Ty = A + g



* Hasegawa-Kishino-Yano (1985) Model

m This model is “time reversible”

= The most general time reversible model GTR, for a 4-letter
alphabet has 9 parameters (8 identifiable).



Goldman & Yang's (1994) Codon Model

61 letter alphabet of the “sense” codons

60 stationary probabilities + transition rate + transversion rate
+ synonymous/non-synonymous ratio

Instantaneous rates requiring more than one base change =0

This 1s a time-reversible model



i Protein sequence evolution

= Works with 20-letter alphabet of amino acids

= Biochemical properties such as size, charge,
hydrophobicity often form classes to
generalize Kimura’'s model

= Empirical substitution models based on large
databases [e.g. PAM (1979) JTT (1994),
WAG (2001)]




i Site Heterogeneity

= Simple model: some sites are “invariable” with
probability p while others are free to change.

= Generalization: sites have a random non-negative
rate R. Often R 1s taken to follow a gamma
distribution.

= Independence of sites keeps the calculation of the
log-likelihood tractable.

= Can also have R depend on site specific
information unrelated to letter occupying site.



Influence of Spatial Location

One AA Site

metal 1on
ligand

More Conserved

(Pan, 2006 suggests Q* = f(r) Q with f monotone in distance r)



i Dealing with Other Issues

= The covarion model. Rates within a site can vary
over time. Uses theory from Markov Modulated
Markov chains

= Autocorrelation models. Rates at neighboring
sites are correlated

= Hidden Markov Models (e.g. rates determined by
random process based on previous sites)



* Model-based distances

= Define Y(t) = letter at time t for a second sequence that evolved
from a common ancestor of X over time t.

m For a time-reversible model:

P[X()=1,Y()=jl= ), 7P, (P, () = D 7P, (HP, (1)

= TCIPIJ(Zt)



Model-based distances

= Since the generator matrix gives the infinitesimal
description of the process, we can see that the rate of
change 1s given by

lim, , P[X(1+A) % X()]/ A=Y —q,T,

= Thus, the expected number of substitutions per site for two

sequences that evolved from a common ancestor over time t is

D= 2t2_%7ri



Model-based distances

For the models above:

D=6t (Jukes-Cantor)
D = 2(a+2P)t (Kimura, 1980)
D =2ut(1-y ) (Felsenstein, 1981)

D = 2ut[(k-1) (7 g +7cm)+1- ) ml]  (HKY, 1985)

To estimate D we can invert the estimate for the number
of differences as we did for the Jukes-Cantor model
above.



* Model-based distances

= In the Felsenstein 1981 model:
PIX(t)=Y(t)]= D, 7, P, (2t)
=Y mlr, + (- ;k)exp(—Z ut)]
6 :kP[X(t) 2Y()]=1-Y 7, [x, +(1—7m,)exp(-2u1)]

= B(1—exp(D/ B)) where B=(1-Y x7).

Solving ... D = -BLn(1-6/B)



i Model-based distances

= Finally, pooling across K sites

D =—-BLn(1-(6/ B)),
which has approximate variance (for fixed B)
6(1-06)

Var, (D) = D'(8)"Var(0) = K(1— 0/ B

Notice that
B = P[two unrelated sequences differ at a site]

0 = P[two related sequences differ at a site]



:L Calculating the Likelihood

= Suppose model is time-reversible, sites are
independent, and evolution has reached the
equilibrium state.

= Time reversibility implies that the likelihood of a
tree does not depend on how it is rooted.

= Independence implies the likelihood, L, can be put
in terms of the products of likelihoods for each

site: K
L= HLJ Or log(L) — Elog(l’])
j=1 J



* Calculating the likelihood for a single site

Sequence # site
1l ceeeeennns C.
2 teeeeeeaes C.
3 tiiieieann A.
4 i eeieeeaa G.
5 T C.

(5:0)

(1:C) 3:A)
Need to find L; for a \ j
f’
‘)

candidate tree: /
()
(2:C) 4:G)



i Felsenstein’s Peeling Algorithm
D

Define the conditional

tD tDF . .
likelihood of the subtree
. . descending from node D
given the nucleotide 11s at

D recursively by:

LdatD) = (Zpik (tpg )L(k at E)j (Zpim (tpr )L(m at F)j

The likelihood at site j 1s then its likelihood at the root:

L, = EP(i at root)L(1 at root) =z 7. L(1 at root)



i Calculating the Likelihood

= The log likelihood for the tree 1s found by
summing over sites.

= For n taxa, we need just one function call for each
of the n-2 internal nodes

= Calculating the likelihood for a fixed tree goes
fast. However finding the tree that optimizes this
criteria goes slow:

Remember, there are [Jak-1 possible

k=1
unrooted tree topologies to consider.



Which Model to Choose? —
i The LR Statistic

= Often a null model is a special case of an
alternative model.

s Take LR =2 (maximum log likelihood under
alternative — maximum log likelihood under null)

= If the null model 1s true then LR has an
approximate chi-square distribution with d.f. =
difference 1n number of parameters.



