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This lecture: 
   Quick Example 
   Probability models 
   Calculating the likelihood 
April 20th:  
   Algorithms 

Idea:  Find the tree which maximizes the 
likelihood of the observed sequences under 
a particular evolutionary model.



Quick Example 
Leitner’s Swedish Social Network 

  Index  case  patient  1  transmitted  HIV  to  female 
patients 8, 11, 7, 5, and 2.

  Patient 5 transmitted the virus to male patient 6.

  Patient 2 transmitted the virus to child patient 3

  Patient 8 transmitted the virus to child patient 9

  Times for each transmission are known within a few 
months. 



Subset of the data:
P1 GTAGTAATTAGATCTGAAAACTTCTCGAACAATGCTAAAACCATAA
P2 ------------------------A---------------------
P3 A-----------------------A---------------------
P5 ------------------------A-------------G-------
P6 ------------------------A-------------G-------
P7 A-----------------------A---------------------
P8 A-----------------------A--G------------------
P9 A-----------------------A--G------------------
P11 ---------C--------------A--G------------------

Note “-” used to indicate same nucleotide as index patient 1 



The Swedish Social Network ‐  
(Tree of highest likelihood) 

8      9  11       7     5       6     2    3     1
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P(Tree) = 

P(Topology)P(Split Times|Topology)P(Sequences|Topology, Times)
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The Swedish Social Network ‐  
(Tree of highest likelihood) 
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Recall patient 1 infected patients 8 then11 then 7 then 5 and then 
2.  Patient 5 infected patient 6.  Patient 2 infected patient 3. 
Patient 8 infected patient 9.



Probabilistic Models of Molecular Evolution 

Idea:  Model the molecular events that drive 
the changes seen in nucleotide and amino 
acid sequences.





Probability Models 
  Molecular evolution is reasonably well modeled by finite 

state continuous time Markov chains.

  More controversial are assumptions of stationarity and 
site-to-site independence which underlie many 
phylogenetic methods.

  The evolution of a single “site” is modeled over the state 
space of an n-letter alphabet.�



Probability Models 
  Define  X(t) = letter at time t, 
  Pij(t) = P(X(t+s) = j|X(s) = i)    (stationarity)

  Matrix notation  P(t) (note: rows add to 1)

A

CA

tPAA
(t) PAC (t)



Probability Models 
  Need to assume: 

� 

t→0
limPij (t)=

1, i = j
0, i ≠ j
⎧ 
⎨ 
⎩ 



Markov Process Theory 
  Chapman-Kolmogorov

Pik(s+t) =                           for t, s ≥ 0.

In matrix notation
P(s+t) = P(t)P(s)� 

Pij (s)Pjk (t)
j=1

n
∑



Markov Process Theory 
  P(t) is continuous and differentiable:

Q = P’(0)

  Since ,

 
 
 (i.e. rows of Q sum to 0).qij = 0

j=1

n

∑� 

Pij(t) = 1
j=1

n
∑



Markov Process Theory 
  Q is called the generator matrix of the process.
The infinitesimal description of the process (h small):

P[X(h)=j|X(0)=i] = qijh + o(h)  for i≠j

P[X(h)=i|X(0)=i] = 1+ qiih + o(h)

Q = P’(0)         P’(t) = P(t) Q 

P(t) = exp(Qt) = I +                   (find by diagonalizing Q) 

� 

Qkt k

k!k=1

∞

∑



Markov Process Theory 
  When the Markov chain is irreducible (all states 

communicate) then there is a limiting distribution 
which is independent of the initial state:

  The limiting distribution is found by solving:
0 = πQ

 for j = 0,...,n
� 

t→∞
limPij(t) = π j > 0

� 

π j(1− qjj) =  π jqij
i≠j
∑



Markov Process Theory 

  For a stationary process πP(t)=π for all t. 

  For a time-reversible process

πi Pij(t) = π jPji(t)



Probability Models for Molecular Evolution 
  Q = P’(0)  the generator matrix gives the 

infinitesimal description of the process.
  The Jukes-Cantor (1969) model:  4-letter 

alphabet with all substitutions equally likely 

Q =

A
C
G
T

−3α α α α
α −3α α α
α α −3α α
α α α −3α

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥



Probability Models (Jukes-Cantor) 

     
subject to Pii(0)=1 

  For Jukes-Cantor 

π A = πC = πG = πT = 0.25

Pij (t) =
0.25(1+ 3exp(−4αt) i = j
0.25(1− exp(−4αt) i ≠ j

⎧
⎨
⎩

� 

Pii(t + h) = (1− 3αh)Pii (t) + αh(1− Pii(t)) + o(h)

� 

′ P ii(t) = −4αPii (t) + α



Probability Models (Jukes-Cantor) 
  If two sequences evolved from a common ancestor

Then the chance that j=k is
[0.25(1+3exp(-4αt))]2 + 3[0.25(1-exp(-4αt))]2
= 0.25(1+3exp(-8αt))

θ = P[two sequences differ at a particular site]
= 0.75(1-exp(-8αt))

A               A A               A A               A A               A A               A

 A  C  G T
+++=



  The expected number of substitutions per site from ancestor to 
descendent over time t is 3αt.

  The expected number of substitutions per site for two 
sequences that evolved from a common ancestor over time t is 
D= 6αt = -0.75Ln(1-4θ/3).

Pooling the information from all of the K sites gives the estimate
 where

    is the proportion of sites that differ between the two 
sequences. 

Probability Models (Jukes-Cantor) 

D̂ = −0.75Ln(1− 4θ̂ / 3)

θ̂



     estimates the expected number of substitutions per site. 
It is called the “Jukes-Cantor distance” between the two 
sequences.

  Using the delta-method…

Probability Models (Jukes-Cantor) 

D̂

Var(D̂) ≈ D '(θ)2Var(θ̂) = θ(1−θ)
K(1− 4θ / 3)2



Kimura’s (1980) Model 
  Two parameter model.  The rate for 

transitions may be more common than for 
transversions (κ=α/β>1):

Q =

A
C
G
T

−α − 2β β α β
β −α − 2β β α
α β −α − 2β β
β α β −α − 2β

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥



  Solving 0 = πQ gives the limiting values
 π A =π C =π G =π T = 0.25

Kimura’s (1980) Model 

Pij(t)=

1
4 (1+exp(-4βt)+2exp(-2(α+β)t))
1
4 (1+exp(-4βt)-2exp(-2(α+β)t))

1
4 (1-exp(-4βt))

⎧

⎨
⎪

⎩
⎪
⎪

i = j
TRANSITION

TRANSVERSION



Felsenstein’s (1981) Model 
  Four parameter model. The stationary 

probabilities may differ:

Q =

A
C
G
T

−µ(1−π A ) µπC µπG µπT

µπ A −µ(1−πC ) µπG µπT

µπ A µπC −µ(1−πG ) µπT

µπ A µπC µπG −µ(1−πT )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Pij (t) =
π j + (1−π j )exp(−µt) i = j

π j (1− exp(−µt)) i ≠ j
⎧
⎨
⎩



  Solve P(t) = exp(Qt) 

Felsenstein’s (1981) Model 

Pij(t) = 
π j+(1-π j )exp(-µt)) i=j
π j(1-exp(-µt)) i ≠ j

⎧
⎨
⎩



Hasegawa-Kishino-Yano (1985) Model 
  Five parameter model. Differing stationary probabilities 

and possible transition-transversion bias.

Q =

-µ(κπG + πW) µπC µκπG µπ T

µπA -µ(κπ T + πV) µπG µκπ T

µκπA µπC -µ(κπA + πW) µπ T

µπA µκπC µπG -µ(κπC + πV)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

where W = C + T   and V = A + G 



Hasegawa-Kishino-Yano (1985) Model 
  This model is “time reversible”

  The most general time reversible model GTR4 for a 4-letter 
alphabet has 9 parameters (8 identifiable).

π iPij (t) = π jPji (t)



Goldman & Yang’s (1994) Codon Model 
  61 letter alphabet of the “sense” codons
  60 stationary probabilities + transition rate + transversion rate 

+ synonymous/non-synonymous ratio
  Instantaneous rates requiring more than one base change = 0
  This is a time-reversible model



Protein sequence evolution 
  Works with 20-letter alphabet of amino acids 
  Biochemical properties such as size, charge, 

hydrophobicity often form classes to 
generalize Kimura’s model 

  Empirical substitution models based on large 
databases [e.g. PAM (1979) JTT (1994), 
WAG (2001)] 



Site Heterogeneity 
  Simple model:  some sites are “invariable” with 

probability p while others are free to change.
  Generalization: sites have a random non-negative 

rate R.  Often R is taken to follow a gamma 
distribution.

  Independence of sites keeps the calculation of the 
log-likelihood tractable.

  Can also have R depend on site specific 
information unrelated to letter occupying site.



Influence of Spa<al Loca<on  

metal ion 
ligand

More Conserved

(Pan, 2006 suggests Q* = f(r) Q with f monotone in distance r) 

One AA Site 



Dealing with Other Issues 
  The covarion model.  Rates within a site can vary 

over time.  Uses theory from Markov Modulated 
Markov chains

  Autocorrelation models.  Rates at neighboring 
sites are correlated

  Hidden Markov Models (e.g. rates determined by 
random process based on previous sites)



Model-based distances 
  Define Y(t) = letter at time t for a second sequence that evolved 

from a common ancestor of X over time t.

  For a time-reversible model:
P[X(t)=i,Y(t)=j]= π kPki (t)

k
∑ Pkj(t) = π iPik (t)

k
∑ Pkj(t)

= iPij(2t) 



  Since the generator matrix gives the infinitesimal 
    description of the process, we can see that the rate of 
    change is given by

  Thus, the expected number of substitutions per site for two 
sequences that evolved from a common ancestor over time t is 

Model-based distances 

limΔ→0 P[X(t + Δ) ≠ X(t)] / Δ = −qii
i
∑ π i

D = 2t −qiiπ i
i
∑



For the models above:

Model-based distances 

D = 6α t                                         (Jukes-Cantor)
D = 2(α+2β)t                                       (Kimura, 1980)

D = 2µt(1- π i
2

i
∑ )                     (Felsenstein, 1981)

D = 2µt[(κ -1)(πAπG +πCπ T )+1- π i
2

i
∑ ]     (HKY, 1985)

To estimate D we can invert the estimate for the number 
of differences as we did for the Jukes-Cantor model 
above.



  In the Felsenstein 1981 model: 

Model-based distances 

P[X(t) = Y (t)] = π k
k
∑ Pkk (2t)

= π k[
k
∑ π k + (1− π k )exp(−2µt)]

θ = P[X(t) ≠ Y (t)] = 1− π k[
k
∑ π k + (1− π k )exp(−2µt)]

= B(1− exp(D / B))  where B = (1− π i
2

i
∑ ).

Solving … D = -BLn(1-θ/B)



  Finally, pooling across K sites 

Model-based distances 

D̂ = −BLn(1− (θ̂ / B)),
which has approximate variance (for fixed B)

VarB(D̂) ≈ D'(θ)2Var(θ̂) = θ(1−θ)
K(1− (θ / B))2 .

Notice that

B = P[two unrelated sequences differ at a site]

θ = P[two related sequences differ at a site]



Calculating the Likelihood 
  Suppose model is time-reversible, sites are 

independent, and evolution has reached the 
equilibrium state.

  Time reversibility implies that the likelihood of a 
tree does not depend on how it is rooted.

  Independence implies the likelihood, L, can be put 
in terms of the products of likelihoods for each 
site:

Or        L = Lj
j=1

K

∏ log(L) = log(Lj )
j
∑



Calculating the likelihood for a single site 
Sequence # site j
1..........C....
2..........C....
3..........A....
4..........G....
5..........C....

Need to find Lj for a 
candidate tree:

                                   (5:C)
      (1:C)                                            (3 :A)

                                  ?
                   ?                      ?
(2:C)                                              (4 :G)



Felsenstein’s Peeling Algorithm 

Pik (tDE )L(k at E)
k
∑⎛⎝⎜

⎞
⎠⎟

Pim (tDF )L(m at F)
m
∑⎛⎝⎜

⎞
⎠⎟

                    D
             tDE         tDF

       E                        F

Define the conditional 
likelihood of the subtree 
descending from node D 
given the nucleotide i is at 
D recursively by:

L(i at D) =

The likelihood at site j is then its likelihood at the root:

Lj = P(i at root)L(i at root) =
i
∑ π iL(i at root)

i
∑



Calculating the Likelihood 
  The log likelihood for the tree is found by 

summing over sites.
  For n taxa, we need just one function call for each 

of the n-2 internal nodes
  Calculating the likelihood for a fixed tree goes 

fast.  However finding the tree that optimizes this 
criteria goes slow:

Remember, there are                        possible
 unrooted tree topologies to consider.

(2k −1)
k=1

n−2

∏



Which Model to Choose? –  
The LR Statistic 
  Often a null model is a special case of an 

alternative model.
  Take LR = 2 (maximum log likelihood under 

alternative – maximum log likelihood under null)
  If the null model is true then LR has an 

approximate chi-square distribution with d.f. = 
difference in number of parameters.


