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This lecture: 
   Quick Example 
   Probability models 
   Calculating the likelihood 
April 20th:  
   Algorithms 

Idea:  Find the tree which maximizes the 
likelihood of the observed sequences under 
a particular evolutionary model.




Quick Example 
Leitner’s Swedish Social Network 

  Index  case  patient  1  transmitted  HIV  to  female 
patients 8, 11, 7, 5, and 2.


  Patient 5 transmitted the virus to male patient 6.


  Patient 2 transmitted the virus to child patient 3


  Patient 8 transmitted the virus to child patient 9


  Times for each transmission are known within a few 
months. 



Subset of the data:

P1 
GTAGTAATTAGATCTGAAAACTTCTCGAACAATGCTAAAACCATAA

P2 
------------------------A---------------------

P3 
A-----------------------A---------------------

P5 
------------------------A-------------G-------

P6 
------------------------A-------------G-------

P7 
A-----------------------A---------------------

P8 
A-----------------------A--G------------------

P9 
A-----------------------A--G------------------

P11 
---------C--------------A--G------------------


Note “-” used to indicate same nucleotide as index patient 1 



The Swedish Social Network ‐  
(Tree of highest likelihood) 

8      9  11       7     5       6     2    3     1
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P(Tree) = 


P(Topology)P(Split Times|Topology)P(Sequences|Topology, Times)




The Swedish Social Network ‐  
(Tree of highest likelihood) 
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P(Tree) = 


P(Topology)P(Split Times|Topology)P(Sequences|Topology, Times)


Data | Parameter

         




The Swedish Social Network ‐  
(Tree of highest likelihood) 

8      9  11       7     5       6     2    3     1


Recall patient 1 infected patients 8 then11 then 7 then 5 and then 
2.  Patient 5 infected patient 6.  Patient 2 infected patient 3. 
Patient 8 infected patient 9.




Probabilistic Models of Molecular Evolution 

Idea:  Model the molecular events that drive 
the changes seen in nucleotide and amino 
acid sequences.






Probability Models 
  Molecular evolution is reasonably well modeled by finite 

state continuous time Markov chains.


  More controversial are assumptions of stationarity and 
site-to-site independence which underlie many 
phylogenetic methods.


  The evolution of a single “site” is modeled over the state 
space of an n-letter alphabet.�



Probability Models 
  Define  X(t) = letter at time t, 

  Pij(t) = P(X(t+s) = j|X(s) = i)    (stationarity)


  Matrix notation  P(t) (note: rows add to 1)


A

CA

tPAA
(t) PAC (t)



Probability Models 
  Need to assume: 


� 

t→0
limPij (t)=

1, i = j
0, i ≠ j
⎧ 
⎨ 
⎩ 



Markov Process Theory 
  Chapman-Kolmogorov


Pik(s+t) =                           for t, s ≥ 0.


In matrix notation


P(s+t) = P(t)P(s)
� 

Pij (s)Pjk (t)
j=1

n
∑



Markov Process Theory 
  P(t) is continuous and differentiable:


Q = P’(0)


  Since ,



 



 



 
(i.e. rows of Q sum to 0).
qij = 0

j=1

n

∑� 

Pij(t) = 1
j=1

n
∑



Markov Process Theory 
  Q is called the generator matrix of the process.

The infinitesimal description of the process (h small):



P[X(h)=j|X(0)=i] = qijh + o(h)  for i≠j



P[X(h)=i|X(0)=i] = 1+ qiih + o(h)


Q = P’(0)         P’(t) = P(t) Q 


P(t) = exp(Qt) = I +                   (find by diagonalizing Q) 


� 

Qkt k

k!k=1

∞

∑



Markov Process Theory 
  When the Markov chain is irreducible (all states 

communicate) then there is a limiting distribution 
which is independent of the initial state:


  The limiting distribution is found by solving:

0 = πQ



 
for j = 0,...,n

� 

t→∞
limPij(t) = π j > 0

� 

π j(1− qjj) =  π jqij
i≠j
∑



Markov Process Theory 

  For a stationary process πP(t)=π for all t. 


  For a time-reversible process


πi Pij(t) = π jPji(t)




Probability Models for Molecular Evolution 
  Q = P’(0)  the generator matrix gives the 

infinitesimal description of the process.

  The Jukes-Cantor (1969) model:  4-letter 

alphabet with all substitutions equally likely 


Q =

A
C
G
T

−3α α α α
α −3α α α
α α −3α α
α α α −3α

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥



Probability Models (Jukes-Cantor) 


 
    

subject to Pii(0)=1 


  For Jukes-Cantor 


π A = πC = πG = πT = 0.25

Pij (t) =
0.25(1+ 3exp(−4αt) i = j
0.25(1− exp(−4αt) i ≠ j

⎧
⎨
⎩

� 

Pii(t + h) = (1− 3αh)Pii (t) + αh(1− Pii(t)) + o(h)

� 

′ P ii(t) = −4αPii (t) + α



Probability Models (Jukes-Cantor) 
  If two sequences evolved from a common ancestor


Then the chance that j=k is

[0.25(1+3exp(-4αt))]2 + 3[0.25(1-exp(-4αt))]2


= 0.25(1+3exp(-8αt))


θ = P[two sequences differ at a particular site]


= 0.75(1-exp(-8αt))


A               A
 A               A
 A               A
 A               A
 A               A


 A
  C
  G
 T

+
+
+
=




  The expected number of substitutions per site from ancestor to 
descendent over time t is 3αt.


  The expected number of substitutions per site for two 
sequences that evolved from a common ancestor over time t is 


D= 6αt = -0.75Ln(1-4θ/3).


Pooling the information from all of the K sites gives the estimate


 
where


    is the proportion of sites that differ between the two 
sequences. 


Probability Models (Jukes-Cantor) 

D̂ = −0.75Ln(1− 4θ̂ / 3)

θ̂



     estimates the expected number of substitutions per site. 
It is called the “Jukes-Cantor distance” between the two 
sequences.


  Using the delta-method…


Probability Models (Jukes-Cantor) 

D̂

Var(D̂) ≈ D '(θ)2Var(θ̂) = θ(1−θ)
K(1− 4θ / 3)2



Kimura’s (1980) Model 
  Two parameter model.  The rate for 

transitions may be more common than for 
transversions (κ=α/β>1):


Q =

A
C
G
T

−α − 2β β α β
β −α − 2β β α
α β −α − 2β β
β α β −α − 2β

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥



  Solving 0 = πQ gives the limiting values


 
π A =π C =π G =π T = 0.25


Kimura’s (1980) Model 

Pij(t)=

1
4 (1+exp(-4βt)+2exp(-2(α+β)t))
1
4 (1+exp(-4βt)-2exp(-2(α+β)t))

1
4 (1-exp(-4βt))

⎧

⎨
⎪

⎩
⎪
⎪

i = j
TRANSITION

TRANSVERSION



Felsenstein’s (1981) Model 
  Four parameter model. The stationary 

probabilities may differ:


Q =

A
C
G
T

−µ(1−π A ) µπC µπG µπT

µπ A −µ(1−πC ) µπG µπT

µπ A µπC −µ(1−πG ) µπT

µπ A µπC µπG −µ(1−πT )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Pij (t) =
π j + (1−π j )exp(−µt) i = j

π j (1− exp(−µt)) i ≠ j
⎧
⎨
⎩



  Solve P(t) = exp(Qt) 


Felsenstein’s (1981) Model 

Pij(t) = 
π j+(1-π j )exp(-µt)) i=j
π j(1-exp(-µt)) i ≠ j

⎧
⎨
⎩



Hasegawa-Kishino-Yano (1985) Model 
  Five parameter model. Differing stationary probabilities 

and possible transition-transversion bias.


Q =

-µ(κπG + πW) µπC µκπG µπ T

µπA -µ(κπ T + πV) µπG µκπ T

µκπA µπC -µ(κπA + πW) µπ T

µπA µκπC µπG -µ(κπC + πV)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

where W = C + T   and V = A + G 



Hasegawa-Kishino-Yano (1985) Model 
  This model is “time reversible”


  The most general time reversible model GTR4 for a 4-letter 
alphabet has 9 parameters (8 identifiable).


π iPij (t) = π jPji (t)



Goldman & Yang’s (1994) Codon Model 
  61 letter alphabet of the “sense” codons

  60 stationary probabilities + transition rate + transversion rate 

+ synonymous/non-synonymous ratio

  Instantaneous rates requiring more than one base change = 0

  This is a time-reversible model




Protein sequence evolution 
  Works with 20-letter alphabet of amino acids 
  Biochemical properties such as size, charge, 

hydrophobicity often form classes to 
generalize Kimura’s model 

  Empirical substitution models based on large 
databases [e.g. PAM (1979) JTT (1994), 
WAG (2001)] 



Site Heterogeneity 
  Simple model:  some sites are “invariable” with 

probability p while others are free to change.

  Generalization: sites have a random non-negative 

rate R.  Often R is taken to follow a gamma 
distribution.


  Independence of sites keeps the calculation of the 
log-likelihood tractable.


  Can also have R depend on site specific 
information unrelated to letter occupying site.




Influence of Spa<al Loca<on  

metal ion 
ligand


More Conserved


(Pan, 2006 suggests Q* = f(r) Q with f monotone in distance r) 

One AA Site 



Dealing with Other Issues 
  The covarion model.  Rates within a site can vary 

over time.  Uses theory from Markov Modulated 
Markov chains


  Autocorrelation models.  Rates at neighboring 
sites are correlated


  Hidden Markov Models (e.g. rates determined by 
random process based on previous sites)




Model-based distances 
  Define Y(t) = letter at time t for a second sequence that evolved 

from a common ancestor of X over time t.


  For a time-reversible model:

P[X(t)=i,Y(t)=j]= π kPki (t)

k
∑ Pkj(t) = π iPik (t)

k
∑ Pkj(t)

= iPij(2t) 



  Since the generator matrix gives the infinitesimal 

    description of the process, we can see that the rate of 

    change is given by


  Thus, the expected number of substitutions per site for two 


sequences that evolved from a common ancestor over time t is 


Model-based distances 

limΔ→0 P[X(t + Δ) ≠ X(t)] / Δ = −qii
i
∑ π i

D = 2t −qiiπ i
i
∑



For the models above:


Model-based distances 

D = 6α t                                         (Jukes-Cantor)
D = 2(α+2β)t                                       (Kimura, 1980)

D = 2µt(1- π i
2

i
∑ )                     (Felsenstein, 1981)

D = 2µt[(κ -1)(πAπG +πCπ T )+1- π i
2

i
∑ ]     (HKY, 1985)

To estimate D we can invert the estimate for the number 
of differences as we did for the Jukes-Cantor model 
above.




  In the Felsenstein 1981 model: 

Model-based distances 

P[X(t) = Y (t)] = π k
k
∑ Pkk (2t)

= π k[
k
∑ π k + (1− π k )exp(−2µt)]

θ = P[X(t) ≠ Y (t)] = 1− π k[
k
∑ π k + (1− π k )exp(−2µt)]

= B(1− exp(D / B))  where B = (1− π i
2

i
∑ ).

Solving … D = -BLn(1-θ/B)




  Finally, pooling across K sites 

Model-based distances 

D̂ = −BLn(1− (θ̂ / B)),
which has approximate variance (for fixed B)

VarB(D̂) ≈ D'(θ)2Var(θ̂) = θ(1−θ)
K(1− (θ / B))2 .

Notice that


B = P[two unrelated sequences differ at a site]


θ = P[two related sequences differ at a site]




Calculating the Likelihood 
  Suppose model is time-reversible, sites are 

independent, and evolution has reached the 
equilibrium state.


  Time reversibility implies that the likelihood of a 
tree does not depend on how it is rooted.


  Independence implies the likelihood, L, can be put 
in terms of the products of likelihoods for each 
site:


Or        
L = Lj
j=1

K

∏ log(L) = log(Lj )
j
∑



Calculating the likelihood for a single site 
Sequence # 
site j

1
..........C....

2
..........C....

3
..........A....

4
..........G....

5
..........C....


Need to find Lj for a 
candidate tree:


                                   (5:C)
      (1:C)                                            (3 :A)

                                  ?
                   ?                      ?
(2:C)                                              (4 :G)



Felsenstein’s Peeling Algorithm 

Pik (tDE )L(k at E)
k
∑⎛⎝⎜

⎞
⎠⎟

Pim (tDF )L(m at F)
m
∑⎛⎝⎜

⎞
⎠⎟

                    D
             tDE         tDF

       E                        F

Define the conditional 
likelihood of the subtree 
descending from node D 
given the nucleotide i is at 
D recursively by:


L(i at D) =


The likelihood at site j is then its likelihood at the root:


Lj = P(i at root)L(i at root) =
i
∑ π iL(i at root)

i
∑



Calculating the Likelihood 
  The log likelihood for the tree is found by 

summing over sites.

  For n taxa, we need just one function call for each 

of the n-2 internal nodes

  Calculating the likelihood for a fixed tree goes 

fast.  However finding the tree that optimizes this 
criteria goes slow:



Remember, there are                        possible


 unrooted tree topologies to consider.


(2k −1)
k=1

n−2

∏



Which Model to Choose? –  
The LR Statistic 
  Often a null model is a special case of an 

alternative model.

  Take LR = 2 (maximum log likelihood under 

alternative – maximum log likelihood under null)

  If the null model is true then LR has an 

approximate chi-square distribution with d.f. = 
difference in number of parameters.



