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What is phylogenetics?

I Phylogenetics = the study of the evolutionary relationships
among a collection of organisms – species, individuals, etc. –
called taxa (singular taxon)

I We represent these relationships using a phylogenetic tree – a
structure composed of nodes and branches

I nodes = common ancestral organism
I branches = ancestry-descent relationships

Taxon 2
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Taxon 3

Taxon 4

Taxon 5
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Intro to phylogenetics

I External nodes = nodes at the tips of the tree. These
generally represent present-day organisms.

I Internal nodes = represent ancestral organisms

I Often, branch lengths are taken as a measure of evolutionary
time.

Taxon 2

Taxon 1

Taxon 3

Taxon 4

Taxon 5
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Intro to phylogenetics

I Trees are called rooted if the
common ancestor to all taxa
is identified.

I For example, we can add a
root to our current tree to
obtain a rooted tree.

Taxon 2
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Taxon 3

Taxon 4

Taxon 5

Taxon 1 Taxon 2 Taxon 3 Taxon 4 Taxon 5
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Intro to phylogenetics

I Rooted trees may or may not satisfy the molecular clock. The
molecular clock assumption specifies that the time from each
external node to the root is identical.

I Examples:

Taxon 1 Taxon 2 Taxon 3 Taxon 4 Taxon 5

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Taxon 5

No molecular clock
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Intro to phylogenetics

I Generally consider only bifurcating trees (those with only
three branches attached to each internal node)

I The number of trees grows rapidly in the number of tips –
consider a tree with T taxa. There are

I T − 2 internal nodes
I 2T − 3 branches
I Number of possible trees is

∏T−2
i=1 (2i − 1)

Taxon 2

Taxon 1

Taxon 3

T=3, 1 internal node, 3branches, 1 possible tree

Taxon 2

Taxon 1

Taxon 3

Taxon 4

Taxon 5

T=5, 3 internal nodes, 7 branches, 15 possible trees
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Intro to phylogenetics

I For rooted trees, note that the addition of a root adds one
more internal node and one more branch.

I The root can be placed along any of the previous 2T − 3
branches, so

I the number of internal nodes increases by 1 to T − 1
I the number of branches increases by 1 to 2T − 2
I the number of trees increases by a factor of 2T − 3 to∏T−1

i=1 (2i − 1)

Taxon 2

Taxon 1

Taxon 3

Taxon 4

Taxon 5

Taxon 1 Taxon 2 Taxon 3 Taxon 4 Taxon 5

Stat 882: Statistical Phylogenetics – Lecture 1



Outline
Introduction

Parsimony
Summary

Phylogenetic Trees
Data

Intro to phylogenetics

I Important point: The number of trees grows rapidly in the
number of taxa:

Number of Number of Number of
Taxa Rooted Trees Unrooted Trees

5 105 15
10 34,459,425 2,027,025
20 8.2× 1021 2.21× 1020

50 2.75× 1076 2.83× 1074

And recall our goal ..... to find an estimate of the phylogeny!
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Data used in phylogenetic analysis

I Two main types of data are used to construct phylogenies

I Discrete character data

I Distance (or similarity) data

I Discrete character data is probably most common.
Sometimes, this type of data is transformed into distance data
in order to estimate the phylogeny.

I Of course, continuous data are also used in evolutionary
analyses involving closely related taxa. Here, however, the
goal is often not to obtain a phylogenetic estimate but to
carry out an analysis after adjusting for phylogenetic
relationships. We’ll discuss this at the end of the course.
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Data used in phylogenetic analysis

I Character data: assume that we have a data matrix X of the
form

character 1 character 2 character 3 · · · character N
Taxon 1 x11 x12 x13 · · · x1N

Taxon 2 x21 x22 x23 · · · x2N

· · · · · · · · · · · · · · · · · ·
Taxon T xT1 xT2 xT3 · · · xTN

where xij = character state for character j in taxon i
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Data used in phylogenetic analysis

I General assumptions about discrete character data are:

I Characters evolve independently

I Characters are homologous: all states observed over taxa for
that character are assumed to have derived from a
corresponding state in the common ancestor of those taxa

–May require alignment of characters (we’ll talk about this
process later)

I For now, we will assume these conditions are met, though
we’ll occasionally discuss relaxing the first condition

Stat 882: Statistical Phylogenetics – Lecture 1
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Data used in phylogenetic analysis

I Examples of data commonly used in phylogenetic analyses:

I DNA sequence data

I Morphological data

I Allelic data

I Gene order data
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Example 1: DNA sequence data

I Biology background: DNA

I DNA = deoxyribonucleic acid

I molecule that contains the genetic instructions for the
development and functioning of all living things

I consists of strings of four possible nucleotides:

I Adenine – A
I Guanine – G
I Cytosine – C
I Thymine – T

I A and G are called purines; C and T are called pyrimidines

I backbone of sugar and phosphates holds the string of
nucleotides together

Stat 882: Statistical Phylogenetics – Lecture 1
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Data used in phylogenetic analysis

I Characters are positions in a set of aligned DNA sequences

I Character states are one of 4 possible nucleotides: A, C, G, or T

I Example data matrix (Rokas et al., 2003):

Taxon DNA Sequence

S. cerevisiae TC T TTA TTG AC GTGT
S. paradoxus TC T TTG TTA AC GTGC
S. mikatae TC C TTG CT AAC ATG C
S. kudriavzevii TC T TTG CT AAC GTG C
S. bayanus TC T TTA CT AAC GTG C
S. castellii T C A C TATT AAC ATG T
S. kluyveri TC T C TTC TAA CGT GC
C. albicans TC T C TTTTG AC ATG T

Stat 882: Statistical Phylogenetics – Lecture 1
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Data used in phylogenetic analysis

I Examine assumptions in this case:

I Assumption 1: Independence

I Likely to be violated in coding regions of the DNA sequence.

Sets of three nucleotides together make a codon, which codes
for a particular amino acid (of 20 possibilities).

These amino acids are strung together to produce proteins.

So there are lots of constraints within coding regions.

I Non-coding regions are less well-understood. Evolution of
nucloetides is probably closer to independent across sites here
than in coding regions.

Stat 882: Statistical Phylogenetics – Lecture 1



Outline
Introduction

Parsimony
Summary

Phylogenetic Trees
Data

Data used in phylogenetic analysis

I The genetic code
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Data used in phylogenetic analysis

I Examine assumptions in this case:

I Assumption 2: Sites are homologous

I A crucial first step is alignment of the DNA sequences so as to
attempt to meet this assumption

I More on this later in the course

I Note that it is also reasonable to use amino acid sequences as
the data in a phylogenetic analysis

Stat 882: Statistical Phylogenetics – Lecture 1



Outline
Introduction

Parsimony
Summary

Phylogenetic Trees
Data

Data used in phylogenetic analysis

I Examine assumptions in this case:

I Assumption 2: Sites are homologous

I A crucial first step is alignment of the DNA sequences so as to
attempt to meet this assumption

I More on this later in the course

I Note that it is also reasonable to use amino acid sequences as
the data in a phylogenetic analysis

Stat 882: Statistical Phylogenetics – Lecture 1



Outline
Introduction

Parsimony
Summary

Phylogenetic Trees
Data

Example 2: Morphological data

I Physical features of the organisms under consideration

I Often presence/absence of some feature of interest

I Could also classify features into categories

I Challenges:

I How to choose characters?

I Assumption of independence?

I Assumption of homology across taxa?

Stat 882: Statistical Phylogenetics – Lecture 1
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Other Examples

I Allelic data:

I Presence/absence of a particular version of a gene

I Allele frequency data

I Gene order data: Arrangements of genes within genomes of
individual taxa

I Potentially very informative

I Computationally very difficult

We will focus primarily on DNA sequence data in this course.

Stat 882: Statistical Phylogenetics – Lecture 1
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Phylogenetic Inference

I Goal: Given a data matrix X, obtain an estimate of the phylogenetic
tree.

How?

I Algorithmic methods: define a sequence of steps that result in a
bifurcating tree
Example: Cluster pairwise distances until a tree has been built.

I Criterion-based methods: define an optimality criterion for
comparing trees, and search for the tree that is optimal under the
criterion.

I Parsimony
I Maximum likelihood
I Some distance-based methods

I Bayesian methods

Stat 882: Statistical Phylogenetics – Lecture 1
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Intro to Parsimony

I Parsimony is one of the oldest and most common methods for
inferring phylogenies

I Introduced by Edwards and Cavalli-Sforza in 1964 (see Ch. 10
in text for a nice account of the history of the field)

I Main idea of parsimony - simpler hypotheses should be
preferred over more complex ones

I Thus, the tree required the fewest changes in character state
should be preferred over other trees

I This tree is called the MP tree (most parsimonious or
maximum parsimony)

Stat 882: Statistical Phylogenetics – Lecture 1
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Intro to Parsimony

I Advantages
I Very general; can be applied to any data set for which we can

quantify evolutionary change
I Easy and intuitive to understand
I In many situations, provides a good fit to the evolutionary

scenario

I Disadvantages
I Appropriateness of the assumption of fewest changes being

most plausible?
I Need a mechanism to handle ties between trees
I Some others we’ll see soon ....
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The Parsimony Score

I Recall our previous notation: xij = character state for
character j at node i

I Define C (xij , xkj) to be the cost of changing from the state for
character j at node i to the state for character j at node k
over the branch connecting nodes i and k

I Note that we do not require C (xij , xkj) = C (xkj , xij), but this
is most common

I Let nodes 1, 2, · · · ,T be the external nodes

I Let the internal nodes be denoted by T +1,T +2, · · · , 2T − 2

I Let N be the number of characters in the data set

Stat 882: Statistical Phylogenetics – Lecture 1
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The Parsimony Score

I With this notation, we define the parsimony score of tree τ to
be

S(τ) =
N∑

h=1

B∑
b=1

C (xb1,h, xb2,h) (1)

where B is the number of branches in the tree, and b1 and b2

are the nodes at the ends of branch b.

Stat 882: Statistical Phylogenetics – Lecture 1
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The Parsimony Score

I With this notation, we define the parsimony score of tree τ to
be

S(τ) =
N∑

h=1

B∑
b=1

C (xb1,h, xb2,h)

where B is the number of branches in the tree, and b1 and b2

are the nodes at the ends of branch b.

Sum across branches: assumes independent evolution across
branches, given states at the tips
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The Parsimony Score

I With this notation, we define the parsimony score of tree τ to
be

S(τ) =
N∑

h=1

B∑
b=1

C (xb1,h, xb2,h)

where B is the number of branches in the tree, and b1 and b2

are the nodes at the ends of branch b.

Sum across sites: assumes independent evolution across sites
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The Parsimony Score

S(τ) =
N∑

h=1

B∑
b=1

C (xb1,h, xb2,h)

I Can add a weight wh in front of the cost to allow differential
weighting of sites.

I Need to select cost function – a common choice is

C (xb1,h, xb2,h) =

{
1, xb1,h 6= xb2,h

0, otherwise

I This is called Fitch parsimony, and it can be applied to
unordered multistate data (DNA sequences, amino acid
sequences, morphological data).

Stat 882: Statistical Phylogenetics – Lecture 1
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The Parsimony Score

I Some other choices for the cost function:

I DNA sequence data: assign lower cost to transitions than
transversions

I Codon data: assign lower cost to synonymous vs.
nonsynonymous changes

I multistate ordered character data: Wagner parsimony
A change from any state to any other state incurs a cost that
is equal to the sum of the intervening states.
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The Parsimony Score: Example Data

I Data from Lindgren et al. (2004)

I Cephalopods – squids, cuttlefishes, octopi, etc.

I Class is divided into two groups: Nautiloidea and Coleoidea
I Coleoidea contains three subgroups:

I Decabrachia – squids and cuttlefishes
I Octobrachia – octopi
I Vampyromorpha – vampire squid

I Placement of Vampyromorpha is controversial

I Lindgren et al. (2004) construct phylogenies from both
morphological and sequence data

Stat 882: Statistical Phylogenetics – Lecture 1
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Computing the parsimony score – The Fitch Algorithm

1 Inference of Phylogenetic Trees 9

N. pompilius

Decabrachia

V. infernalis

S. syrtensis

T. guntheri

{1}

{1}

{0,1}

{0}

1

1

1

0

0

(a)

N. pompilius

Decabrachia

V. infernalis

S. syrtensis

T. guntheri

{0,1}

{0}

{0,1}

{1}

(b)

Fig. 1.1. Trees representing distinct hypothesized relationships among cephalopods,
taken from Lindgren et al. (2004). The tree in (a) is the consensus of the nine MP
topologies for the morphological data (each MP tree has length 107; the consensus
tree has length 109). The tree in (b) is supported by the molecular data. Sets at the
internal nodes of the tree are used to compute the score of the tree under the Fitch
algorithm (see text for details)

This algorithm for computing the length of a tree, called the Fitch algo-
rithm [26], can be expressed in more mathematical terms as follows. For each
node in the tree, a set of character states will be assigned. The set at the tips
of the tree contains a single state, the observed state at that tip. Then, for
any node for which a character state set has been assigned for its two immedi-
ate descendants, the state set assigned to that node is the intersection of the
state sets of its two immediate descendants if that intersection is nonempty;
otherwise, it is the union of the state sets of the two immediate descendants.
Whenever a union of state sets is required, the length of the tree is increased
by one. The Fitch algorithm was developed specifically for unordered mul-
tistate characters, such as nucleotide and protein data, for which any state
can change directly to any other state. Since changes in either direction are
weighted equally under this method, a tree can be arbitrarily rooted with no
change to its length, which allows one to root the tree at the most convenient
location.

Comparing the trees in Fig. 1.1a,b, we see that for this character, the tree
in Fig. 1.1a has length 1 and the tree in Fig. 1.1b has length 2, and so the
tree in Fig. 1.1a is preferred for this character. Of the 45 parsimony infor-
mative characters in this data set, nine are informative for selecting between
these two trees. Of these nine, eight favor tree (a) (characters 10, 38, 40, 45,
49, 57, 59, and 60) and one (character 6) favors tree (b). The result is that
analysis of the morphological data favors placement of Vampyromorpha with

Stat 882: Statistical Phylogenetics – Lecture 1
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Computing the parsimony score – The Fitch Algorithm

I Formalize the Fitch Algorithm
I Initialize the external nodes of the tree by assigning a set

containing the observed state
I Visit nodes in the tree in a post-order traversal. At each node,

consider the intersection of the sets at the two descendant
nodes:

If the intersection is non-empty, assign the intersection to the
node under consideration.

If the intersection is empty, assign the union of the two sets at
the descendant nodes to the current node. Add one to the
length of the tree.

Stat 882: Statistical Phylogenetics – Lecture 1
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Computing the parsimony score – The Fitch Algorithm

I Since the algorithm is designed for unordered multistate data,
it doesn’t matter which direction we move through the tree,
which means that the tree can be arbitrarily rooted without
affecting the length.

I For the example data, of 9 informative characters (characters
whose length differs between the trees in (a) and (b)), 8 favor
the tree in (a) and one favors the tree in (b).

I Under this criterion, the tree in (a) is favored.
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Computing the parsimony score – The Sankoff Algorithm

I A second algorithm for computing the score of a tree under
parsimony is the Sankoff algorithm.

I This algorithm works by assigning a function to each node of
the tree which records, for each possible state, the minimum
score for the subtree rooted by that node.

I Denote this function by Sh
i (x), and define it to be the

minimum score for the subtree rooted by node i assuming
that node i has state x for character h.

Stat 882: Statistical Phylogenetics – Lecture 1
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Computing the parsimony score – The Sankoff Algorithm

I This value can be computed for any node for which this
function has already been computed for its two immediate
descendants, using the following relationship

Sh
i (x) = min

xj,h

{C (xi ,h, xj ,h)+Sh
j (xj ,h)}+min

xk,h

{C (xi ,h, xk,h)+Sh
k (xk,h)}

where j and k are the two nodes directly descending from
node i .

The computational complexity is O(n2), where n is the number of possible character states (because finding the

min is O(n) and this is carried out n times at each node). The algorithm can be made more efficient – see

Clemente et al., BMC Bioinformatics 2009, 10:51, for example.
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Computing the parsimony score – The Sankoff Algorithm

Sh
i (x) = min

xj,h

{C (xi ,h, xj ,h)+Sh
j (xj ,h)}+min

xk,h

{C (xi ,h, xk,h)+Sh
k (xk,h)}

I Intuition:
First term corresponds to the branch descending from node i
to node j . This branch contributes to the length of the
subtree descending from node i in two ways: first, it
contributes a length along the branch connecting nodes i and
j ; second, it contributes a length due to the subtree
descending from j , as recorded by the S function for node j .
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Computing the parsimony score – The Sankoff Algorithm

Sh
i (x) = min

xj,h

{C (xi ,h, xj ,h)+Sh
j (xj ,h)}+min

xk,h

{C (xi ,h, xk,h)+Sh
k (xk,h)}

I Intuition:
There is then a similar contribution from the other branch
descending from node i , denoted by k here.

Stat 882: Statistical Phylogenetics – Lecture 1



Outline
Introduction

Parsimony
Summary

Parsimony: General Ideas
The Fitch Algorithm
The Sankoff Algorithm
Parsimony and Consistency

Computing the parsimony score – The Sankoff Algorithm

Sh
i (x) = min

xj,h

{C (xi ,h, xj ,h)+Sh
j (xj ,h)}+min

xk,h

{C (xi ,h, xk,h)+Sh
k (xk,h)}

I Intuition:
Taking the minimum over all possible assignments of states to
the nodes j and k will give the minimum at node i , given that
it has state x .
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Computing the parsimony score – The Sankoff Algorithm

I Set the S function at the external nodes:

Sh
m(x) =

{
0 xmh = x

∞ otherwise

I Visit the nodes in a post-order traversal and compute S for
each

I The minimum score is given by

S(τ) =
N∑

h=1

min
x

Sh
r (x)

where r denotes the root node.
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Computing the parsimony score – The Sankoff Algorithm
1 Inference of Phylogenetic Trees 11

N. pompilius

Decabrachia

V. infernalis

S. syrtensis

T. guntheri

0,2

1,1

2,1

3,1
3,2

2,2

1,2

0,4

0,∞

0,∞

∞,0

∞,0

∞,0

(a) For the first cost function, S =
1, while for the second cost function,
S = 2.

N. pompilius

Decabrachia

V. infernalis

S. syrtensis

T. guntheri

2,0

2,2

2,3

1,2

1,3

2,0

1,2

1,4

(b) For both cost functions,
S = 2.

Fig. 1.2. Trees representing distinct hypothesized relationships among cephalopods,
taken from Lindgren et al. (2004). The tree in (a) is the consensus of the nine
MP topologies for the morphological data. The tree in (b) is supported by the
molecular data. The colored boxes at the nodes of the tree represent the S() function
used to compute the length of tree under the Sankoff algorithm for two different
cost functions. The upper (blue) boxes at each node correspond to the same cost
function as was used to illustrate the Fitch algorithm: C(0, 0) = C(1, 1) = 0; and
C(0, 1) = C(1, 0) = 1. The lower boxes (yellow) correspond to a cost function that
penalizes more for one particular change: C(0, 0) = C(1, 1) = 0; C(0, 1) = 1; and
C(1, 0) = 2. For the first cost function, the tree in (a) is preferred, while for the
second cost function, the scores of the two trees are equivalent

more general, in that it allows the use of any cost function, while the Fitch
algorithm is confined to the setting where all changes are weighted equally.
We also note that while both algorithms specify a sum over characters to
compute the total score for the tree, the computation can be simplified for
both algorithms by computing the scores for only unique sites. For example,
any character for which all taxa have the same state will require no changes
on every tree. Additionally, under Fitch parsimony, any character for which
all taxa except one have the same state will require exactly one change on
any tree. Characters of this nature are generally said to not be phylogenet-
ically informative, since they do not prefer any tree over any other in the
parsimony setting. Therefore, no computations need be performed on these
character patterns. However, these character patterns do contribute to esti-
mation in other settings, as will be seen for likelihood in the following section.
For a particular cost function, there may also be other classes of characters
for which the score will be identical, and therefore needs to be computed only
once and then multiplied by the number of characters observed in that class.
An example will be given below.

Two sets of cost functions:
Blue (upper boxes): C(0,0) = C(1,1) = 0; C(0,1) = C(1,0) = 1

Yellow (lower boxes): C(0,0) = C(1,1) = 0; C(0,1)=1; C(1,0)=2
Stat 882: Statistical Phylogenetics – Lecture 1



Outline
Introduction

Parsimony
Summary

Parsimony: General Ideas
The Fitch Algorithm
The Sankoff Algorithm
Parsimony and Consistency

Other important ideas in the parsimony framework

I It is sometimes desirable to obtain a most parsimonious
reconstruction – an assignment of states to the internal nodes
of the tree that achieves the minimum length possible on that
tree

I This gives us a method to compare any set of trees. We
haven’t yet discussed how to find the tree (or set of trees)
with minimum length for a given data matrix X.

I Our examples so far considered only binary data.
Straightforward to extend to sequence data.
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Parsimony and statistical consistency

I One desirable property of an estimator is that it be consistent
– as more data are added, the estimator becomes increasingly
likely to obtain the true value of the quantity being estimated.

I What does consistency mean here? As sequence length
increases, we become more likely to estimate the true
underlying tree that generated the sequence data.

I A criticism of parsimony is that it has been shown that the
criterion is not consistent under certain conditions.
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Parsimony and statistical consistency

I Example data

A

B

C

D

p p

q q
q

A

C

B

D

A

D

B

C

0000, 1111 0 0 0

0001, 1110

0010, 1101

0100, 1011 1 1 1

1000, 0111

0011, 1100 1 2 2

0101, 1010 2 1 2

0110, 1001 2 2 1

1
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Parsimony and statistical consistency

I Let p and q be the probabilities of changes along a branch

I Note that we can use these probabilities to find the
probabilities of the site patterns

Pxxyy = (1− p)(1− q)[q(1− q)(1− p) + q(1− q)p] + pq[(1− q)2(1− p) + q2p]

Pxyxy = (1− p)q[q(1− q)p + q(1− q)(1− p)] + p(1− q)[p(1− q)2 + (1− p)q2]

Pxyyx = (1− p)q[(1− p)q2 + p(1− q)2] + p(1− q)[q(1− q)p + q(1− q)(1− p)]

where x , y ∈ {0, 1} and x 6= y .
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Parsimony and statistical consistency

A

B

C

D

p p

q q
q

A

C

B

D

A

D

B

C

0000, 1111 0 0 0

0001, 1110

0010, 1101

0100, 1011 1 1 1

1000, 0111

0011, 1100 1 2 2

0101, 1010 2 1 2

0110, 1001 2 2 1

1

I Note that site patterns in category 1 and 2 are not informative
for selecting the tree (not phylogenetically informative)

I Site patterns 3, 4, and 5 each favor a different tree
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Parsimony and statistical consistency

A

B

C

D

p p

q q
q

A

C

B

D

A

D

B

C

0000, 1111 0 0 0

0001, 1110

0010, 1101

0100, 1011 1 1 1

1000, 0111

0011, 1100 1 2 2

0101, 1010 2 1 2

0110, 1001 2 2 1

1

I Suppose that the first tree listed is the true tree. Then parsimony
will be statistically consistent whenever the pattern xxyy occurs
with higher probability than the other two.

I Using the site pattern probabilities, we can show that this occurs
whenever q(1− p) > p2.
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Parsimony and statistical consistency

I The Felsenstein zone

1 Inference of Phylogenetic Trees 13

their lengths on the three trees. For example, the patterns 1001 and 0110 will
have the same length as one another on all of the trees. Table 1.5 lists the
patterns in each class, and the length on each of the three trees.

Let us suppose that the tree in column 2 of Table 1.5 is the true tree, and
that the labels on the branches of that tree correspond to the probability of
observing different states at the nodes on either end of the branches. Note
that p and q must both be less than 0.5, since even for an infinitely long
branch, there should be a 50% chance of having the same or a different state
at the ends of the branch. We can use the Fitch algorithm to compute the
probability of observing any of the character patterns as a function of p and
q. Note that when searching for the MP tree, it is not necessary to compute
the probability of the set of character patterns in first two rows in Table 1.5,
since the score is the same for all three trees in these cases (these sites are not
phylogenetically informative). The probabilities for the last three rows in the
table are

Pxxyy =(1 − p)(1 − q)[q(1 − q)(1 − p)+q(1 − q)p] + pq[(1 − q)2(1 − p)+q2p],
Pxyxy =(1 − p)q[q(1 − q)p + q(1 − q)(1 − p)]+p(1 − q)[p(1 − q)2+(1 − p)q2],
Pxyyx =(1 − p)q[(1 − p)q2+p(1 − q)2]+p(1 − q)[q(1 − q)p + q(1 − q)(1 − p)].

where x, y ∈ {0, 1} and x #= y.
The MP tree will be the true tree for an infinitely long character matrix

(and thus be statistically consistent) whenever the character pattern xxyy has
the highest probability. The probabilities above can be compared to examine
situations in which this will occur as a function of p and q. After some algebra,
it can shown that the condition for this to occur is q(1−q) > p2 [20]. Figure 1.3
shows the region in which the parsimony method is inconsistent. Because this
tends to occur when one pair of branches is long relative to the others, this
phenomenon has been termed long branch attraction. Several studies have
debated whether long branch attraction is likely to be a problem in studies
involving real data [28, 32, 62], but it is generally accepted that long branches

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

q

p

Fig. 1.3. Figure showing the division of the branch length space into zones of
consistency and inconsistency. The shaded portion represents the part of the space
where parsimony will be inconsistent (i.e., where q(1 − q) < p2)

I The parsimony method will be inconsistent for branch lengths
in the shaded zone.

I This has also been called long branch attraction.
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Parsimony and statistical consistency

I Can extent this to a four-state (DNA sequence) model, and
find the following condition for consistency

p <
−18q + 24q2 +

√
243q − 567q2 + 648q3 − 288q4

9− 24q + 32q2
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Parsimony and statistical consistency

I This leads to the region below (note that the region of
consistency is greater than for the two-state model)

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

q

p

Inconsistent

Consistent
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Summary

I Introduction to concepts of phylogenetics: trees, data,
objectives

I Introduction to our first criterion for estimation of a
phylogeny

I Discussion of advantages and disadvantages
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