
Multiple sequence alignment with POY and ClustalW

The sample dataset mammals.fas is a small dataset of 16S ribosomal rDNA from the
mitochondrial genome of 16 mammals and an alligator as an outgroup. This type of DNA
is not bound by the triplet code of protein coding genes, and has both highly variable
and highly conserved regions.

Scientific name Common name Order Family

Alligator mississippiensis American Alligator Crocodilia Alligatoridae

Bos taurus Domestic cattle Artiodactyla Bovidae

Balaenoptera musculus Blue whale Cetacea Balaenopteridae

Didelphis virginiana Virginia Opossum Didelphimorphia Didelphidae

Macropus robustus Eastern Wallaroo Diprotodontia Macropodidae

Ornithorhynchus anatinus Duck-billed Platypus Monotremata Ornitorhynchidae

Tachyglossus aculeatus Short-beaked Echidna Monotremata Tachyglossidae

Equus caballus Horse Perissodactyla Equidae

Equus asinus Donkey Perissodactyla Equidae

Rhinoceros unicornis Indian Rhiniceros Perissodactyla Rhinocerotidae

Papio hamadryas Hamadryas Baboon Primates Cercopithidae

Homo sapiens Human Primates Hominidae

Gorilla gorilla Western Gorilla Primates Hominidae

Pan paniscus Bonobo Primates Hominidae

Pan troglodytes troglodytes Central Chimpanzee Primates Hominidae

Pongo pygmaeus Bornean Orangutan Primates Hominidae

Hylobates agilis Agile Gibbon Primates Hylobatidae

This is roughly similar to the data used by Kjer et al. (2007), but with the addition of the
Bonobo and the alligator outgroup.

About ClustalW

Clustal is the most popular multiple sequence alignment software, and has been actively
developed since 1988. It is fast for small datasets and can produce output in several
common formats. The Clustal algorithm works by creating a Neighbor-Joining tree from
pairwise distances calculated from the Needleman-Wunsch algorithm, then using the NJ
tree as a guide for the multiple alignment.

Point your favorite web browser at http://www.ebi.ac.uk/Tools/clustalw2/index.html

There are multiple options available, but for now just make sure to set the following:

OUTPUT FORMAT: set this to aln w/numbers
OUTPUT ORDER: set this to input

Either upload the file mammals.fas as a file, or open it in a text editor and paste it into
the sequence input field.

Push Run. Wait.

When the page refreshes you will be taken to the results page. If you push the Start
Jalview button, you can watch your alignment in a Java viewer. Try different color
settings. Find out what different things they will tell you about the alignment.

Go back in the browser until you are back at the input page. Change the setting of
OUTPUT FORMAT to phylip, and run the program again. When it finishes, select View
Alignment File. Don't close the browser!

Maximum likelihood analysis with RAxML

Open a new browser tab an go to RAxML Blackbox at

http://phylobench.vital-it.ch/raxml-bb/

Copy and paste your aligned sequences from Clustal. Enter Alligator_ as outgroup. Push
run. Wait. This can take a few minutes.

Refresh the link once in a while until you reach the results page. You can view your tree
with branch lengths and bootstrap support values. Don't close the browser yet!

If you have time, go back to Clustal and try different settings for the multiple alignment,
the most important being GAP OPEN and GAP EXTENSION.

Optimization alignment with POY4

POY4 is a software package for phylogenetic analysis of all types of biological data. For
this exercise we are going to focus on its optimization alignment features where
treespace is explored without ever creating a static alignment.

There is a rudimentary GUI for Windows and OSX, but since it's focused on running
prewritten scripts, we are going to use the Linux version in a terminal.

Start PuTTY and log on to your account on mordor.stat.osu.edu or any of the other stat
department servers (gondor/rohan/rivendell/shire.stat.osu.edu)

Place the poy binary and mammals.fas in the same directory.

Start poy by entering ./poy at the command prompt.

You will be presented with several 'windows'. The text in the output window can be
scrolled up and down with the arrow keys. Push 'Tab' to get back to the interactive
console.

Load your data into POY by entering

read("mammals.fas")

POY will tell you some stats about the data: number of taxa and number of gene
fragments for each one.

Set the outgroup

set(root:1)

At this point the cost parameters can be set. They can be changed at any time, and the
trees in memory re-evaluated under the new costs.

transform(tcm:(substitution,gap))

 transform(tcm:(1,1))will be most similar to a static alignment analysis in PAUP*
if gaps are treated like a 5th state instead of missing data. Default setting in POY is
transform(tcm:(1,2)), which makes gaps twice as expensive as substitutions.

Next step is to build starting trees with the command build . Default number is 10
trees, but can be specified like this build(number,method)

build(random) will build 10 completely random trees

build(nj) will create a single Neighbor-Joining tree. This is most similar to Clustal.
build() will create 10 Wagner trees. These are better than random, and will speed up
the search compared to starting from completely random trees for large datasets.

Compare the tree lengths of random trees compared to Wagner and NJ trees.

Search treespace by performing branch swapping on the stored trees

swap() will perform TBR branch swapping on all stored trees

Keep the best trees, throw out suboptimal trees

select()

Repeat the search under different weights and starting trees. Do the optimal trees have
different tree lengths under different weights? Why?

Compare the POY trees to the tree you created using Clustal and RAxML. Are they
different?

If you at any point want to see some information about the analysis, use the command
report.

report(treestats) - stored trees, their lengths under the current weights
report(terminals) - the names and numbers of the taxa in the dataset
report(asciitrees) - all trees in memory in ascii graphics

If you want to delete all stored trees from memory, there is no specific command for
that, but select(best:0)will do the trick.

If you want to redo a command you typed in earlier Ctrl-p will give you the last
command in the history.

