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Motivation

Cancer is one of the most well-characterized path-biological
disease systems at different molecular levels

Multiple types of high-throughput data now available on the
multiple (matched) tumor samples

I Genomics (multiple cancers): The Cancer Genome Atlas (TCGA,
cancergenome.nih.gov); International Cancer Genome Consortium (ICGC,
icgc.org); Genomic Data Commons (gdc.cancer.gov) Cancer Moonshots!

I Imaging: The Cancer Imaging Archive (TCIA, cancerimagingarchive.net)

I Key: same set of samples (not meta-analysis)
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Multiple genomes at play
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Beyond ‘Omics

Image courtesy: Arvind Rao
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Goals

Two competing continuums:

Stability/Ease of Measurement ⇔ Biological/Phenotypic Relevance

Main scientific goals:

I Single type of alteration tells only part of the story

I Systems-level: understand basic cancer biology (regulatory mechanisms)

I Translational-level: correlation with clinical outcomes; biomarker discovery;
personalized/precision medicine

Statistically (or analytically): joint models for information rich,
complex-structured, heterogenous, multi-modal high-dimensional
data
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Practical Challenges to Data Integration

Missing data

I Sample size shrinks when “matching” samples

Experimental design/batch effects/preprocessing
I Systematic biases/noise
I Worse for complex, high-dimensional data

I Each platform has own challenges/difficulties

Data management
I Management of large data sets

I Ability to link genomic, imaging, clinical and electronic medical record data

Choice of modeling unit
I Different platforms have different observational units (probes, segments etc)
I How to match up elements across platforms (genes/proteins?)

I Data on different scales (continuous/ordinal/discrete/non-euclidean)

Statistical Contributions to Bioinformatics: Design, Modeling, Structure Learning, and Integration
Morris and Baladandayuthapani (2017+, Stat Modeling Discussion paper & Rejoinder)
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Structured Dependencies

Both biological and induced by experimental design

Biological dependencies

I Serial genomic-location correlation (copy number, methylation)
I Pathway based correlations (mRNA, protein expression)
I Mechnanistic (DNA −→RNA, RNA −→protein etc)
I Non-linear interactions
I Intra- and Inter- tumor heterogeneity

Experimental/Design-based

I Sampling based; treatment subgroups; biomarker-based randomized clinical
trials (BATTLE, I-SPY trials)

I Spatial characterizations of tumor development; imaging

many more...

profound implications in modeling and interpretations
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Examples

Pathway based correlations (mRNA, protein expression) (think graphical/network
models!)

Mechnanistic (DNA −→RNA, RNA −→protein etc) (think hierarchical models!)

Non-linear interactions (think non-parametric models!)

Serial correlation (copy number, methylation) (think functional data models!)

Spatial characterizations; imaging (think spatial process models!)

Combine diverse genomics data (integrative models...integromics!)
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Radiogenomics

“Radiomics”: Extraction of large numbers of image features from radiological
data (CT/MRI etc); radio-phenotypes

“Radiogenomics”: Radiomics + genomics

Imaging is non-invasive; virtual biopsy

Goal: find diagnostic/prognostic/predictive imaging biomarkers that are
genomically driven and by what mechanism

Lurking challenges
I Tumors differ in shapes/size/areas/organs; non-conformable objects for

population level analyses
I Tumor heterogeneity at multiple levels (genomic+imaging)
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Glioblastoma Multiforme

Need better metrics of tumor heterogeneity; capture different “architecture” of
the tumor development
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Imaging-based Metrics of (intra) Tumor Heterogeneity

Voxel	  density	  es-mate	  

“Geometric” Functional Data
(with K. Bharath, S. Kurtek, A. Rao)
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Today’s talk

Voxel&density&es-mate&

Statistical	Analyses	of	Tree	
Structured	data	(Bharath et	al;	
JASA,	2017)

Quantile	Functional	Regression	
using	Quantlets (Yang	et	al,	JASA,	
under	revision)

Non-parametric	clustering		of	
densities	(Saha et	al;	Neuroimage,	
2016)

Radiologic	Image-based	Statistical	
Shape	Analysis	of	Brain	Tumors	
(Bharath,	Kurtek et	al;	JRSSC,	2018+)

“Geometric” Functional Data
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Density-based Characterizations

Voxel&density&es-mate&

Quantile	Functional	Regression	
using	Quantlets (Yang	et	al,	JASA,	
under	revision)

Non-parametric	clustering		of	
densities	(Saha et	al;	Neuroimage,	
2016)
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Glioblastoma Multiforme (GBM)

Most common and aggressive form of brain cancer

No current prevention approaches, and poor outcomes
I Median survival 12mo, 3-5% 5yr survival

Exhibits heterogeneous physiological and morphological features as it
proliferates

Investigating these heterogeneities and relating them to clinical/genetic
outcomes can lead to the development of personalized treatment strategies.

Our Goal:
Assess how variability in tumor image intensities is associated with demographic,
clinical, and genetic factors
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Glioblastoma Images

Presurgical T1-weighted
post-contrast MRI images from
GBM patients

Radiomics: compute features
summarizing tumor image
characteristics and relate to clinical
outcomes (100s of different
features)

Histogram features: Summaries
computed from pixel intensity
distributions (e.g. mean, variance,
skewness, Q05, Q95)
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Modeling Distributions

The typical approach is to fit separate regression analyses to each radiomic
feature, which has some major drawbacks:

Multiple testing problems

May miss distributional differences not contained in pre-chosen summaries.

Alternative Approach

Instead of just modeling the extracted summaries, model the entire distribution of
pixel intensities (as functional data).
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Modeling Distributions

Various choices to represent pixel intensity distributions: density, cumulative
distribution, or quantile functions.

We choose to use the quantile function.
The quantile function of Y on p ∈ (0, 1), is defined as

Definition of the quantile function

QY (p) = F−1
Y (p) = inf (y : FY (y) ≥ p),

where p = FY (y) is the proportion less than or equal to y .
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Properties of Quantile Functions

Quantile functions have properties that make them useful here:

Defined on a fixed domain, p ∈ P = (0, 1)

Straightforward to compute empirical estimates without choice of smoothing
parameters

Straightforward formulas to calculate distributional moments
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Quantile functions have properties that make them useful here:

Defined on a fixed domain, p ∈ P = (0, 1)

Straightforward to compute empirical estimates without choice of smoothing
parameters

Straightforward formulas to calculate distributional moments

eDF
Let Y(1) ≤ · · · ≤ Y(m) be order statistics from a sample of size m. For
p ∈ [1/(m + 1),m/(m + 1)], the eQF is given by

Q̂Y (p) = (1− w)Y([(m+1)p]) + wY([(m+1)p]+1),

where w is a weight such that (m + 1)p = [(m + 1)p] + w .
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Properties of Quantile Functions

Quantile functions have properties that make them useful here:

Defined on a fixed domain, p ∈ P = (0, 1)

Straightforward to compute empirical estimates without choice of smoothing
parameters

Straightforward formulas to calculate distributional moments

Distributional Moments

µY = E(Y ) =

∫ 1

0

QY (p)dp

σ2
Y = Var(Y ) =

∫ 1

0

(QY (p)− µY )2 dp

ξY = Skew(Y ) =

∫ 1

0

(QY (p)− µY )3
/σ3

Y dp
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Quantile functional regression

Approach: Regress eQF as functional response on covariates.

1 For each subject i = 1, . . . , n, construct the eQF Qi (p) from the order
statistics of Yij , j = 1, . . . ,mi .

2 Regress Qi (p) on covariates xia, a = 1, . . . ,A, each with regression
coefficients βa(p) defined on p ∈ P = (0, 1).

Quantile Functional Regression Model

Qi (p) = β0(p) +
A∑

a=1

xiaβa(p) + Ei (p)

3 Test for significantly associated covariates: H0 : βa(p) ≡ 0.

4 Key point: can characterize the significant distributional differences
e.g. range of p, mean, variance, skewness, “Gaussianness”
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Types of Quantile and Functional Regression

Objective function Objective function
Response (·) E((·)|X ) F−1

(·)
(p|X )

scalar Y classic regression quantile regression
function Y (t) functional regression functional quantile regression

quantile function F−1(p) quantile functional regression∗ quantile functional quantile regression

Classic regression: E(Y |X )

Quantile regression: F−1
Y (p|X )

e.g. He and Liang 2000; Koenker 2005

Functional regression: E{Y (t)|X}
See review article by Morris (2015)

Functional quantile regression: F−1
Y (t)(p|X )

e.g. Brockhaus et al. (2015), Liu, Li, Morris (2017)

Quantile functional regression: E{F−1
Y (p)|X}

Expected quantile function given covariates our focus
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Quantile Functional Regression

Quantile Functional Regression Model

Qi (p) = β0(p) +
A∑

a=1

xiaβa(p) + Ei (p)

Naive approach: compute independent regressions for each p

fail to borrow strength over p → wiggly, inefficient β̂a(p).

ignore correlation over p in Ei (p)→ loss of inferential power.

Functional regression approach: Use basis functions representations to account
for correlation (across p)

βa(p) regularized via L1/L2 penalization of basis coefficients.

Basis functions induce correlation across p in Cov{Ei (p)}.
Common bases: splines, PC, Fourier bases, wavelets

Doesn’t work for quantile functions!

Here, we introduce new custom basis functions quantlets.
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Construction of Quantlet Basis Functions

Multi-step process to derive custom quantlet basis functions:

1 Construct overcomplete dictionary

2 Choose sparse set of dictionary elements for each subject.

3 Take union set, and then find subset that is near-lossless.

4 Orthogonalize this subset, regularize, and re-standardize.

Details of Step

Gaussian bases: ψ0(p) = 1 for p ∈ (0, 1), ψ1(p) = Φ−1(p).
Beta CDF bases: ψk(p) = Fθk (p) for k = 2, . . . ,K0

Overcomplete dictionary: D0 = {ψk , k = 0, . . . ,K0}
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Construction of Quantlet Basis Functions

Multi-step process to derive custom quantlet basis functions:

1 Construct overcomplete dictionary

2 Choose sparse set of dictionary elements for each subject.

3 Take union set, and then find subset that is near-lossless.

4 Orthogonalize this subset, regularize, and re-standardize.

Details of Step

For each subject, use penalized regression (e.g. lasso) to find a sparse subset of
dictionary elements.

|Qi (p)−
∑
k∈D0

ψk(p)QO
ik |22 + λi

∑
k∈D0

|QO
ik |1

Obtain Di = {ψk(p) ∈ D0 : Q0
ik 6= 0}.
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Construction of Quantlet Basis Functions

Multi-step process to derive custom quantlet basis functions:

1 Construct overcomplete dictionary

2 Choose sparse set of dictionary elements for each subject.

3 Take union set, and then find subset that is near-lossless.

4 Orthogonalize this subset, regularize, and re-standardize.

Details of Step

Union set: DU = ∪ni=1Di

Cardinality C set: DC = {ψk(p), k :
∑n

i=1 I (Q
0
ik 6= 0) ≥ C}

Lossless measure: Cross-validated concordance coefficient:

ρCi = Concordance{Qi (p), Q̂Ci (p)} ∈ (0, 1)

Plot ρC0 = mini{ρCi } vs. C and choose C : ρC0 < ε
Near-lossless set: Dε = {DC with C = min(C : ρC0 < ε)}
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Construction of Quantlet Basis Functions

Multi-step process to derive custom quantlet basis functions:

1 Construct overcomplete dictionary

2 Choose sparse set of dictionary elements for each subject.

3 Take union set, and then find subset that is near-lossless.

4 Orthogonalize this subset, regularize, and re-standardize.

Details of Step

Orthogonal set: D⊥ = {ψ⊥k , k = 0, . . . ,K} = Gram-Schmidt(Dε)
Regularize ψ⊥ via wavelet denoising and then renormalize.

Resulting bases are called quantlets: D = {ξk(p), k = 0, . . . ,K}
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Construction of Quantlets
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First 16 Quantlets for GBM Data

First two are Gaussian quantiles: mean & variance
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Properties of Quantlets

Empirically defined: adapts to characteristics of given data.

Near-lossless: rich enough to capture structure in each eQF.

Regularity: denoising removes wiggles → smooth quantlets.

Sparsity: tends to produce low dimensional basis.

Interpretability: first two bases measure Gaussianity
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Basis Transform Modeling Approach

Data Space Model

Qi (p) = XT
i B(p) + Ei (p),

where B(p) = (β1(p), . . . , βA(p))T and Ei (p) is a noise process.

1 Compute quantlet basis coefficients

2 Fit quantlet space model

3 Transform results back to data space for inference

Computing Quantlet Coefficients

Let Qi = [Qi (p1), . . . ,Qi (pmi )] with pj = j/(mi + 1)
Let Ψi be K ×mi matrix with elements ψi (k , j) = ψk(pj)

Quantlet coefficients: Q∗
i = QiΨ

−
i where Ψ−

i = ΨT
i (ΨiΨ

T
i )−1.
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Basis Transform Modeling Approach

Data Space Model

Qi (p) = XT
i B(p) + Ei (p),

where B(p) = (β1(p), . . . , βA(p))T and Ei (p) is a noise process.

1 Compute quantlet basis coefficients

2 Fit quantlet space model

3 Transform results back to data space for inference

Quantlet Space Model

Q∗ = XB∗ + E∗

where Qi (pj) =
∑K

k=1 Q
∗
ikψk(pj) and βa(p) =

∑K
k=1 B

∗
akψk(p),

Ei (p) =
∑K

k=1 E
∗
ikψk(p), and {p1, . . . , pJ} ∈ (0, 1).

E∗
i ∼ MVN(0,Σ∗) where Σ∗ is K × K covariance matrix.
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Basis Transform Modeling Approach

Data Space Model

Qi (p) = XT
i B(p) + Ei (p),

where B(p) = (β1(p), . . . , βA(p))T and Ei (p) is a noise process.

1 Compute quantlet basis coefficients

2 Fit quantlet space model

3 Transform results back to data space for inference

Transform Results to Data Space

βa(p) =
∑K

k=1 B
∗
akψk(p), and then perform desired inference.
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Bayesian Modeling

We use a Bayesian modeling approach to fit this model.

I Sparsity prior on B∗
ak to regularize βa(p). (spike Gaussian-slab)

I Vague proper prior on covariance parameters.
I EBayes or hyperpriors on sparsity hyperparameters.

MCMC used to update parameters in the quantlet space model.

I Complete conditional for B∗
ak is mixture of δ0 and Gaussian.

I Covariance parameters have conjugate complete conditionals.

Posterior samples transformed back to original data space to get posterior
samples of βa(p) on desired grid of p.
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Recommended Sequence of Bayesian Inference

1 Construct 95% joint credible bands for each predictor.

2 Calculate global Bayesian p-value for each predictor.

3 For significant predictors, flag {p : Pa,SimBaS < α}.
4 For significant predictors, assess which moments differ.

100(1− α)% Joint Credible Band (Ruppert/Wand/Carroll 2003)

Ja,α(p) = β̂a(p)± q1−α

[
ŜtDev{β̂a(p)}

]
where q1−α is (1− α) quantile of:

Z (m)
a = max

p∈P

∣∣∣∣∣β(m)
a (p)− β̂a(p)

Ŝt.Dev{β̂a(p)}

∣∣∣∣∣
.
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Recommended Sequence of Bayesian Inference

1 Construct 95% joint credible bands for each predictor.

2 Calculate global Bayesian p-value for each predictor.

3 For significant predictors, flag {p : Pa,SimBaS < α}.
4 For significant predictors, assess which moments differ.

Global Bayesian P-value (Meyer et al. 2015)

To assess H0 : βa(p) ≡ 0, we compute:

Pa,Bayes = min{α : 0 6∈ Ja,α(p) for some p ∈ P},

and conclude βa(p) differs from 0 whenever Pa,Bayes < α.
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Recommended Sequence of Bayesian Inference

1 Construct 95% joint credible bands for each predictor.

2 Calculate global Bayesian p-value for each predictor.

3 For significant predictors, flag {p : Pa,SimBaS < α}.

4 For significant predictors, assess which moments differ.

Simultaneous Band Scores (SimBaS, Meyer et al. 2015)

Pa,SimBas(p) = min{α : 0 6∈ Ja,α(p)}

= M−1
M∑

m=1

I

{∣∣∣∣∣ β̂a(p)

ŜtDev{β̂a(p)}

∣∣∣∣∣ ≤ Z (m)
a

}
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Recommended Sequence of Bayesian Inference

1 Construct 95% joint credible bands for each predictor.

2 Calculate global Bayesian p-value for each predictor.

3 For significant predictors, flag {p : Pa,SimBaS < α}.
4 For significant predictors, assess which moments differ.

Probability scores for moments

µ
(m)

X =

∫ 1

0

XTβ(m)(p)dp

Pµ1−µ2 = 2 ∗min

{
M−1

M∑
m=1

I
(
µ

(m)

X 1
− µ(m)

X 2
> 0
)
,

M−1
M∑

m=1

I
(
µ

(m)

X 1
− µ(m)

X 2
< 0
)}
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Simulation

Figure: 4 groups: mean distributions are N(1,5), N(3,5), N(1,6.5), and skewed normal
with mean 1 and variance 5.
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Figure: Simulated Data. βa(p) are location, scale, and skewness shifts.

Yij(p) = Qij(p) + εij(p) on 1, 024 grid points {p1, . . . , p1024}.
εij(p) follows AR(1) process to approximate biological variability within
groups.
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Simulation Results

Figure: Results of the simulation: estimations and 95% joint CI (A=Naive
one-p-at-a-time method; D=quantlets with regularization)
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Simulation Results

Table: Area and coverage for the joint 95% credible intervals.

Type A (naive) B (PCA) C (no reg.) D (regularized)
β1(p) 1.603 (1.000) 1.092 (0.999) 1.186 (1.000) 1.069 (1.000)
β2(p) 2.246 (1.000) 1.551 (1.000) 1.706 (1.000) 1.465 (1.000)
β3(p) 2.242 (1.000) 1.599 (1.000) 1.717 (1.000) 1.457 (1.000)
β4(p) 2.281 (1.000) 1.583 (1.000) 1.651 (1.000) 1.499 (1.000)

Table: Probability scores for differences in mean, variance, and skewness.

H0 True A B C D E (feature) F (Gauss)
µ1 = µ3 µ1 = µ3 0.001 0.193 0.211 0.217 0.205 0.212
µ2 = µ4 µ2 = µ4 0.001 0.447 0.465 0.445 0.438 0.462
σ1 = σ3 σ1 6= σ3 0.001 0.001 0.001 0.001 0.001 0.001
σ2 = σ4 σ2 = σ4 0.002 0.420 0.334 0.331 0.187 0.016
ξ1 = ξ3 ξ1 = ξ3 0.374 0.498 0.488 0.479 0.389 0.493
ξ2 = ξ4 ξ2 6= ξ4 0.001 0.001 0.001 0.001 0.001 0.505

Bottomline: much better coverage and power
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GBM Data Analysis

Response: T1 MRI images from 64 patients in glioblastoma (GBM) study,
Yij=intensity of pixel j from subject i , i = 1, . . . , n and j = 1, . . . ,mi , with mi

ranging from 371 to 3421.
Covariates:

Demographic variables: sex (21 F/43M) & age (56.5yr)

GBM subtype: mesenchymal (30 mes./34 other)

Clinical outcome: survival (> 12m/< 12m)

Genetic alterations: DDIT3(6m/58wt) & EGFR(24m/58wt)

Model

Qi (p|Xi ) =β0(p) + xsex,iβsex(p) + xage,iβage(p) + xsurv,iβsurv(p)

+ xMes,iβMes(p) + xDDIT3,iβDDIT3(p)

+ xEGFR,iβEGFR(p) + Ei (p).
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GBM Results

Psex,µ = 0.004, Psex,σ2 = 0.121, Psex,ξ = 0.51
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GBM Results

PDDIT3,µ = 0.008, PDDIT3,σ2 = 0.023, PDDIT3,ξ = 0.468
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Full Results
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Summary

General approach to regress distributions on covariates

Useful in many settings (e.g. activity data, climate data)

Introduce quantlets basis functions that are sparse, regularized, near-lossless,
empirically determined, and interpretable and lead to efficient regression.

Bayesian framework yields global and local tests that adjust for multiple
testing.

I Greater power than naive one-p-at-a-time approach
I No power loss compared with feature extraction.
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Clustering-based approaches
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MRI modalities

T1-post contrast

T2-FLAIR
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Motivation for DEMARCATE

Studies using tumor intensity values have been conducted before.

ISSUES with previous studies:
I Choice of number and location of summary features subjective.
I Fail to capture small-scale and sensitive changes in the tumor.
I Significant loss in statistical information.

Our proposed SOLUTION:
I Use full density!

DEMARCATE:DEnsity-based MAgnetic Resonance image Clustering for
Assessing Tumor hEterogeneity

Abhijoy Saha (OSU)
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The Cancer Genome Atlas (TCGA) GBM dataset

Sample size: 64 subjects

Imaging data: MRI obtained from The Cancer Imaging Archive (TCIA)
- pre-surgical T1-weighted post contrast
- T2-weighted fluid-attenuated inversion recovery (FLAIR)

Clinical and genomic covariates:
I Gender
I Survival Time (in months)
I Age (in years)
I Tumor Subtype (Classical, Mesenchymal, Neural and Proneural)
I Gene Mutation Status
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Generation of THDP

Tumor Heterogeneity Density Profile (THDP)

Captures small-scale changes in tumors; build clustering models on density-space
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Space of THDPs

Let P denote the space of THDPs:

P = {f : [0, 1]→ R≥0 |
∫ 1

0
f (t)dt = 1}.

For any point f ∈ P, the tangent space at that point is defined as

Tf (P) = {δf : [0, 1]→ R |
∫ 1

0
δf (t)f (t)dt = 0}.

This tangent space will be used to define a suitable intrinsic metric between two
THDPs on P: Fisher–Rao (FR) Riemannian metric.
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Fisher–Rao Riemannian metric

For any point f in P and two tangent vectors δf1, δf2 ∈ Tf (P), the nonparametric
version of the FR metric is

〈δf1, δf2〉 =

∫ 1

0

δf1(t)δf2(t)
1

f (t)
dt. (1)

DRAWBACKS:
I FR metric changes from point to point on the space of THDPs.
I Computation of distances on P between these THDPs is cumbersome.

SOLUTION:
I Select an equivalent representation of the space in which the calculations

become much simpler.
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Square-root representation (SRT)

Define φ : P → Ψ, where the square-root transform (SRT) of a THDP f is

φ(f ) = ψ = +
√
f .

The space of SRT representations of THDPs is

Ψ = {ψ : [0, 1]→ R≥0 |
∫ 1

0
ψ2(t)dt = 1}.

I represents the positive orthant of the unit Hilbert sphere.

Tψ(Ψ) = {δψ | 〈δψ, ψ〉 = 0} denotes the tangent space at ψ.

For any two vectors δψ1, δψ2 ∈ Tψ(Ψ), the FR metric becomes the standard
L2 Riemannian metric:

〈δψ1, δψ2〉 =

∫ 1

0

δψ1(t)δψ2(t)dt. (2)
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Analysis on Ψ

dFR(f1, f2) = dL2 (ψ1, ψ2) = cos−1(〈ψ1, ψ2〉) = θ.
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Distance-based metrics for densities

Fisher–Rao (FR) Riemannian metric

FR metric reduces to the standard L2 metric – allows explicit computation of
geodesic paths and distances between densities; analytically and
computationally efficient manner.

FR metric used cluster the images
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GBM Data example

(a) (b)

2 “significant” clusters with marked differences in tumor morphology; existence of “ring-like” structure; also

different in genomic characteristics and prognostic clinical outcomes.
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Genomic characteristics

Enrichment plots for tumor subtype and genomic covariates for the T1-weighted post contrast MRI (left) and

the T2-weighted FLAIR MRI (right)

Veera Baladandayuthapani, MD Anderson Cancer Center Bayesian Models for Richly Structured Data



Radiogenomic and clinical associations

Study notable associations between cluster partitions and external covariates
(tumor subtype, driver gene mutation and age of subject):

T1-post contrast
I Proneural subtype and PDGFRA are enriched in the same cluster.
I Mesenchymal subtype and PTEN are enriched in the same cluster.
I Younger patients in the proneural enriched cluster (52.5 years as opposed to

59 years).

T2-FLAIR
I Classical subtype and EGFR are enriched in the same cluster.
I Neural subtype and many of the driver genes including DDIT3, EGFR, KIT,

PDGFRA, PIK3CA, PTEN are enriched in the same cluster.
I Younger patients in the proneural enriched cluster (51.3 years as opposed to

61.1 years).
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Tree-based Characterizations

Voxel&density&es-mate&

Statistical	Analyses	of	Tree	
Structured	data	(Bharath et	al;	
JASA,	2017)
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Tree-based representations

Figure 5. Left: Image of patient with long survival time time of 57.8 months and the
corresponding dendrogram (below). Right: Image of patient with short survival time time
of 0.723 months and the corresponding dendrogram (below).

5.1. Data and pre-processing. For this study, we used presurgical, post-contrast T1-

weighted post-contrast and T2-weighted/ FLAIR images of 82 patients (26 women and 56

men) with histologically confirmed GBM and molecular data from The Cancer Genome Atlas

(TCGA) database. The images were downloaded from The Cancer Imaging Archive avail-

able for free downloading: https://www.cancerimagingarchive.net/. The subtype labels

were obtained from the database, available freely at Memorial Sloan-Kettering Cancer Cen-

ter cBioPortal: http://www.cbioportal.org. Of the 82 cases, 21 were classical, 29 were

mesenchymal, 12 were proneural, and 20 were neural. Level 3 expression data for mRNA

(A↵ymetrix U133Av2 BI Platform: A↵ymetrix HT HG U133A) was downloaded from the

TCGA data portal http://cancergenome.nih.gov. Under TCGA data-use agreements, this

study is exempt from Institutional Review Board approval. We pre-processed the MR images

and obtained 3D tumour volumes. Specifically, the T1-post and T2-FLAIR images were regis-

tered spatially followed by intensity bias correction using Medical Image Processing Analysis

and Visualization software (v 6.0).13 The tumor region was segmented semi-automatically

in 3D using the Medical Image Interaction Toolkit (MITK.org). The in-plane resolution of
26

T1 MRI images. Top row left: Long survivor (∼ 60 months); Right: Short survivor
(∼ 1 month)

Bottom row: Hierarchical clustering of voxel-wise image intensities.

Tumor Heterogeneity manifested as topology of tree (e.g. height, path length,
branching structure)
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Statistical analyses of tree-structured data

Analyses of non-Euclidean objects; statistical atoms are now observed “trees”

Trees have unique topological features: height, branching structure, number
of nodes etc.

Build probability models on trees; explicit likelihoods for generating
tree-structured data; based on conditional Galton-Watson trees (David
Aldous, 90’s seminal work)

Bharath et al, Statistical Tests For Large Tree-structured Data, JASA T&M (2017)

Veera Baladandayuthapani, MD Anderson Cancer Center Bayesian Models for Richly Structured Data



Statistical analyses of tree-structured data

Analyses of non-Euclidean objects; statistical atoms are now observed “trees”

Trees have unique topological features: height, branching structure, number
of nodes etc.

Build probability models on trees; explicit likelihoods for generating
tree-structured data; based on conditional Galton-Watson trees (David
Aldous, 90’s seminal work)

Bharath et al, Statistical Tests For Large Tree-structured Data, JASA T&M (2017)

Veera Baladandayuthapani, MD Anderson Cancer Center Bayesian Models for Richly Structured Data



Representation

Consider a representation of a tree τn with n vertices and n − 1 edges:

τn = (V(τn), E(τn)),

where V(τn) = (root, v1, . . . , vn−1) is the topological tree without edge
lengths and E(τn) = (e1, . . . , en−1) is the edge-set.

In other words, τn is a point in Tn × Rn−1
+ where Tn is the set of all

combinatorial trees with n vertices.
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Simple model for binary trees

Consider a non-homogeneous Poisson process with rate λ(t) = σ2t.

Let t1, t2, . . . , be inter-event times.

root	  

t1
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Model for binary trees

root	  

t1

t2
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Model for binary trees

root	  

t1

t2

t3
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Model for binary trees

root	  

t1

t2

t3

root	  

t1 + t2 + t3 =	  	  	  total	  path	  length	  of	  binary	  tree	  
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Model for binary trees

With n inter-event times ti , a binary tree τ(n) with n leaves or terminal nodes, 2n
vertices and 2n − 1 edges is constructed.

Proposition

From the properties of the Poisson process with rate t, τ(n) can be given the
density

f (τ(n)) =

[
n−1∏
i=1

1

2i − 1

]−1

1

2n−1
se−

s2

2 , s =
2n−1∑
i=1

ti

with respect to the product measure µn ⊗ dx on T2n × R2n−1
+ , where µn is the

uniform measure on all rooted binary trees on n leaves and dx is the Lebesgue
measure on R2n−1

+ .
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Density for binary trees

f (τ(n)) =

[
n−1∏
i=1

1

2i − 1

]−1

1

2n−1
se−

s2

2 , s =
2n−1∑
i=1

ti

f (·) is impervious to labelling mechanism.

Removal of a leaf from τ(n) results in a tree a with density f (τ(n − 1)).

If the rate is θt for some θ > 0, then f (·) retains interpretability of θ under
marginalization.
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Test for binary trees: one-sample

Suppose τ (n) = (τ(n1), . . . , τ(np)) is an independent sample of binary trees from
πτ .

Theorem
Consider the critical function

φ(n, α) =

 1 if

p∑
i=1

si > χ1−α,2
∑p

i=1 ni
;

0 otherwise.

For the hypotheses H0 : πτ = f against H1 : πτ 6= f , where f is the density from
the non-homogeneous Poisson model, EH0φ(n, α) = α, and is invariant to the
action of permutation group on leaf labels.
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Test for binary trees: two-sample

Suppose τ (n) = (τ(n1), . . . , τ(np)) and η(m) = (η(m1), . . . , η(mq)) are
independent samples of binary trees from πτ and πη respectively.

Theorem

Let rj denote the sum of the branch lengths of η(mj), and without loss of
generality assume that

∑p
i=1 si >

∑q
j=1 rj . Then, the critical function

ψ(n,m, α) =

{
1 if

∑p
i=1 si∑q
j=1 rj

>
(∑p

i=1 ni∑q
j=1 mj

)
F1−α,2

∑p
i=1 ni ,2

∑q
j=1 mj

;

0 otherwise.

For testing H0 : πτ = πη = f , EH0ψ(n,m, α) = α, and is invariant to the action of
the permutation group on leaf labels.
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Back to GBM data

Long surviving Short surviving
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Two-sample test to detect heterogeneity

Using the survival times, we created two groups of patients: those with
survival times of utmost 12 months and those exceeding 12 months.

The 12-month cut-off corresponded to a certain genetic classification— this
was based on recommendations by neuroscientists.

Differences in groups was detected by LCA-based test at 1% significance level.

Naive Bayes classifier with the likelihood from LCA trees, provided 69%
classification accuracy.

Implications
I Key finding: topology of trees changes “significantly” with survival and

genomic variables; prospective prediction using MRI images
I Allows embedding in more complex clustering and regression models
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Shape-based Characterizations

Voxel&density&es-mate&

Radiologic	Image-based	Statistical	
Shape	Analysis	of	Brain	Tumors	
(Bharath,	Kurtek et	al;	JRSSC,	2018+)
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Main Goals

Shape Differences for functional estimation and regression when spatial
correlation is present among curves.

Shape Statistics: Given a collection of tumor shapes we want to generate
summary statistics – mean, covariance, etc. – and study variability in tumor
shape classes using principal component analysis.

Stochastic Modeling: We want to develop statistical models that capture
observed variability in tumor shapes. We also want to validate our models
using random sampling.

Statistical Inferences: We want to study classification, clustering, hypothesis
testing, regression, etc. in the context of GBM.

(S. Kurtek)
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Requirements

Require a representation of the tumor outlines and a proper metric on the space of
their shapes.

Key idea: represent tumors via their boundaries: parameterized curves.

Desired properties of the shape metric:

Interpretation: The metric should have an intuitive interpretation, and
“measure” the types of changes in shape that are “important” for tumor
development

Invariance: The metric should be “preserved” by certain transformations:
translation, scale, rotation and re- parameterization – “preserved” → same
transformation acts on two objects, the distance between them remains
unchanged: the transformations act by isometries.

Efficiency: Calculations involving the metric should be computationally
feasible

(S. Kurtek)
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• Let an absolutely continuous, parameterized curve be given by:

• Define the group of re-parameterizations, Γ, to be the set of all diffeomorphisms 
of       . 

• For a                         denotes the re-parameterized curve.

• If we change the parameterization of two curves in the same way, the      
distance between them changes although their shapes remain the same.

Desiderata:   Interpretation - ?; Efficiency - þ; Invariance - ý

Need a different framework.Þ

BASIC SETUP



• For a                         let                         and                                 .   
• Define two tangent vectors                                 in the tangent space at          . 

• Elastic Riemannian metric (a,b>0):

• Properties:

1. First term measures stretching while second term measures bending.
2. Difficult to work with computationally.
3. Invariant to re-parameterizations.

Desiderata:   Interpretation - þ; Efficiency - ý; Invariance - þ

Interesting note: This metric is closely related to the nonparametric Fisher-Rao 
statistical metric.

ELASTIC RIEMANNIAN METRIC



• For a                         define the square-root velocity function (SRVF) as:

• Properties:  

1. The elastic metric with a=1/4 and b=1 becomes the standard       metric and 
retains all of the invariance properties:

2. Translation variability is automatically removed.

3. Curves are scaled to a fixed length – removes scaling:

Desiderata:   Interpretation - þ; Efficiency - þ; Invariance - þ

sphere.

SRVF REPRESENTATION OF CURVES



COMPARISON OF TUMOR SHAPES

• Comparison of T1 tumor shapes.
• Left panel: patients with survival times of 14.3 (left) and 29.2 (right) months.
• Right panel: patients with survival times of 8.8 (left) and 48.6 (right) months.



• Comparison of T2 tumor shapes.
• Left panel: patients with survival times of 2.69 (left) and 13.3 (right) months.
• Right panel: patients with survival times of 6.14 (left) and 0.72 (right) months.

COMPARISON OF TUMOR SHAPES



SAMPLE STATISTICS OF SHAPES

Shape variations are studied in the tangent space (using Karcher covariance) 
via principal component analysis (PCA).

Karcher Mean:



ELASTIC VS. NONELASTIC SUMMARIES

• Comparison of elastic (blue) vs. nonelastic (red) sample average tumor shape.

• Principal direction of variability based on elastic vs. nonelastic PCA (sample 
average is highlighted in red).



• Simulated tumor shapes via elastic PCA basis.

• Leave-one-out PCA-based reconstruction errors (measured via squared shape 
distance).

ELASTIC VS. NONELASTIC SUMMARIES

Elastic
Min

Elastic
Median

Elastic
Max



• Hierarchical clustering with complete linkage based on elastic shape distance.

CLUSTERING OF GBM TUMOR SHAPES



• Survival differences between clusters.

• Enrichment of tumor subtypes and genomic covariates in clusters.

1. Proneural subtype and PDGFRA mutation (in T2): PDGFRA plays an 
important role in cell proliferation and migration, and angiogenesis; this 
gene was found to be mutated in high amounts in the proneural subtype.

2. Classical and mesenchymal subtypes and EGFR mutation (in T2): EGFR 
mutation is a common molecular signature of GBM; it promotes proliferation 
of the tumor, which is associated with classical and mesenchymal subtypes.

CLUSTERING OF GBM TUMOR SHAPES



• We represent tumor shapes via their PCA shape coefficients (separately for T1 
and T2 tumors), and use them as tumor shape covariates in a survival model.

• We fit three proportional hazards (Cox) models: 
1. M1 with clinical covariates only,
2. M2 with clinical and genomic covariates, and
3. M3 with clinical, genomic and tumor shape covariates.

• For M3, due to a large number of tumor shape covariates, we fit the model with a 
lasso penalty and determine the value of the penalty parameter via leave-one-out 
cross-validation.

• Use concordance index to compare predictive ability of the three models.

SURVIVAL MODEL WITH SHAPE



Summary

Statistical Models for Structured Object/Functional data

Take structure into account for building probability models

Computationally scalable to large (big) datasets

Theoretical justifications for some of these approaches

Generally applicability Multi-dimensional functions (images); multi-variate
functional responses (integromics); Other settings (e.g. mobile activity data,
climate data, EHR data) – in the works!
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