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Problem Description

Interested in curves of the type α : [0,1]→ M, where M is a nonlinear
Riemannian manifold. Longitudinal data on manifolds.

Spherical Trajectories: M = Sd a unit sphere
Directional data, geographical data.
Covariance Trajectories: M = P, the set of symmetric, positive
definite matrices.
Brain connectivity data
Shape Trajectories: M = S a shape space
Video data, action recognition.
Graph Trajectories: M = G a space of graphs
social networks, recommender systems.



Some of the Applications

Activity recognition using video and depth sensing.
Hurricane trajectories.
Bird migration data.
Dynamical functional connectivity analysis
Biological growth data



Metrics for Comparing Trajectories
Consider an arbitrary Riemannian manifold M.

Let dm be the geodesic distance on M. In order to compare any
two trajectories α1, α2 : [0,1]→ M, one use the metric:

dx (α1, α2) =

∫ 1

0
dm(α1(t), α2(t))dt .

However, the given data may lack temporal registration. We need
to register the trajectories.
Illustrations of mis-registrations:



Penalized Least Square Framework
A natural solution to register trajectories is: Γ is the group of
diffeomorphisms of [0,1] –

γ̂ = arginf
γ∈Γ

∫ 1

0
dm(α1(t), α2(γ(t)))2dt

Analogous to minimizing L2 norm for Euclidean curves.
Prone to the pinching effect.
Penalized Least Squares:

γ̂ = arginf
γ∈Γ

(∫ 1

0
dm(α1(t), α2(γ(t)))2dt + λR(γ)

)
.

Asymmetric solutions; difficulty in choosing λ; the quality of
registration is bad.
The main problem:∫ 1

0
dm(α1(t), α2(t)) dt 6=

∫ 1

0
dm(α1(γ(t)), α2(γ(t))) dt

Need a metric on the space of trajectories that is invariant to the
action of the time warping group.



Elastic Registration Between Trajectories

Problem Statement: Given any two trajectories, say α1 and α2,
we are interested in finding function γ such that the points
α2(γi (t)) is matched optimally to α1(t), for all t .
What about SRVF? The standard SRVF is well defined for this
situation also: for any α : [0,1]→ M, define

q(t) =
α̇(t)√
|α̇(t)|

∈ Tα(t)(M) .

However, this is a tangent vector field along α.
We can’t easily compare two SRVFs as they are two vector fields
along two different curves. They lie in different tangent spaces.
We need to bring them to the same coordinate system.



Parallel Transport of Tangent Vectors

Parallel Transport: Take tangent vectors along given paths.
Notation: (v)p1→p2 – vector v is transported from p1 to p2 along a
geodesic.

Definition: Given a path α and a tangent vector v0 ∈ Tα(0(M),
construct a vector field v(t) ∈ Tα(t)(M) such that: (1) v(0) = v0,
and (2) the covariant derivative of v(t) is zero everywhere. Then,
v(1) is the parallel transport of v0 along α to α(1).
Parallel transport preserves inner product between any two
vectors. Thus, it preserves the norm of a vector. That is,

‖v‖ = ‖(v)p1→p2‖ .



Approach: Transported SRVF

Different Choices:

Global Transport: Transport all the SRVFs as tangent vectors to
the same tangent space Tc(M), using geodesic paths.
The transported vectors form a curve in the space Tc(M). Now,
we are studying curves in a Hilbert space and standard
techniques apply.
The simplifies the problem but approximates the geometry.
Local Transport: Transport all the SRVFs to the tangent space of
the starting point of the curve Tα(0)(M), using geodesic paths.
Each trajectory is represented by a curve in the tangent space
Tα(0)(M). The set of such curves is called a vector bundle on M.
This simplifies the geometry a little bit but mostly preserves the
geometry.
No Transport: Study them as curves in the tangent bundle of M –
TM. No simplification. Full use of geometry.
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Transported SRVF

Definition 1: Transported Square-Root Vector Fields (TSRVF):

hα(t) =
α̇(t)α(t)→c√
|α̇(t)|

∈ Tc(M), hα ∈ L2([0,1],Tc(M))

The TSRVF of a re-parameterized trajectory α ◦ γ is
hα◦γ = (hα ◦ γ)

√
γ̇ = (hα, γ). Commutative Diagram

α hα

(α ◦ γ) (hα, γ)

TSRVF

Group action by Γ

TSRVF

Group action by Γ



Transported SRVF: Properties

If M = Rn, then TSRVF is exactly the SRVF discussed earlier.
Given α(0) (starting point) and a TSRVF hα, we can reconstruct
the trajectory α completely:

α(t) =

∮ t

0
hα(s)|hα(s)| ds

The set of all TSRVF is L2([0,1],Tc(M)), a vector space.
Distance between two trajectories is defined to be the L2

distance between their TSRVFs:

dh(hα1 ,hα2 ) ≡

(∫ 1

0
|hα1 (t)− hα2 (t)|2dt

) 1
2

.

Lemma: For any α1, α2 ∈M and γ ∈ Γ, the distance dh satisfies

dh(hα1◦γ ,hα2◦γ) = dh(hα1 ,hα2 ).

In geometric terms, this implies that the action of Γ on the set of
trajectories dh is by isometries.



Pairwise Temporal Registration

This sets up the pairwise temporal registration solution:

γ∗ = arginf
γ∈Γ

dh(hα1 ,hα2◦γ) .

Example 1: Spherical Trajectories
M = S2.

c =[-1, 0, 0]

c=[-1, 0, 0]

c =[0, 0, -1]

c =[0, 0,1]=[0, 0,1],

c =[0, 1, 0]
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Pairwise Temporal Registration

Example 2: Shape trajectories
M = Kendall’s shape space of planar shapes.
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Registration of Multiple Trajectories

Karcher Mean of Multiple Trajectories:
Compute the Karcher Mean of {αi(0)}s and set it to be µ(0).

1 Initialization step: Select µ to be one of the original trajectories and
compute its TSRVF hµ.

2 Align each hαi , i = 1, ..., n, to hµ according to pairwise registration. That
is, solve for γ∗i using the DP algorithm and set α̃i = αi ◦ γ∗i .

3 Compute TSRVFs of the warped trajectories, hα̃i , i = 1, 2, . . . , n, and
update hµ as a curve in Tc(M) according to: hµ(t) = 1

n

∑n
i=1 hα̃i (t) .

4 Define µ to be the integral curve associated with a time-varying vector
field on M generated using hµ, i.e. dµ(t)

dt = (hµ)(t)c→µ(t), and the initial
condition µ(0).

5 Compute E =
∑n

i=1 ds([hµ], [hαi ])
2 =

∑n
i=1 dh(hµ, hα̃i )

2 and check it for
convergence. If not converged, return to step 2.



Registration: Examples

Bird Migration Data:
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Registration: Examples

Hurricane Trajectory Data:

Subset 1

Subset 2

Data Without registration With registration



Shape Trajectories

Application: Activity recognition using depth sensing (Kinect)



Shape Trajectories
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Action Classification
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Figure: Impact of the temporal alignment and the changes in δ on
SVM-based classification accuracy.



Summaries of Trajectories

Sample Mean: Shape Trajectories

Sample trajectories Registered trajectories

Average without registration Average with registration

Energy E ρ̂
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Limitations of this TSRVF
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Figure shows the variability in distance between trajectories as the
reference point changes over S2. The color at each point denotes the
distance with that point as reference.

One needs to choose a reference point c, and the results may
depend on this choice.
The parallel transport to c can distort tangents, especially if the
data is distributed over the whole manifold.
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New TSRVF

Definition 2: TSRVF
For each trajectory choose its starting point as the reference.
Transport scaled velocity vectors along the trajectories to their
starting points:

hα(t) =
α̇(t)α(t)→α(0)√

|α̇(t)|
∈ Tc(M), hα ∈ L2([0, 1],Tα(0)(M))

Each trajectory is represented by a starting point α(0) and a
TSRVF hα at α(0).
The set of all such representations is a vector bundle over M. At
each point, we have an L2 space.
Vector bundle: B =

∐
p∈M Bp =

∐
p∈M L2([0,1],Tp(M)).

For an element (p,q(·)) in B, where p ∈ M, q ∈ Bp, we naturally
identify the tangent space at (p,q) to be: T(p,q)(B) ∼= Tp(M)⊕ Bp.
Invariant Riemannian Metric:

〈(u1,w1(·)), (u2,w2(·))〉 = (u1 · u2) +

∫ 1

0
(w1(τ) · w2(τ)) dτ, (1)



Geodesics Under this Metric

Theorem

A parameterized path [0,1]→ B given by s 7→ (p(s),q(s, τ)) on B
(where the variable τ corresponds to the parametrization in Bp), is a
geodesic in B if and only if:

∇ps ps +
∫ 1

0 R(q,∇ps q)(ps)dτ = 0 for every s,
∇ps (∇ps q)(s, τ) = 0 for every s, τ.

(2)

Here R(·, ·)(·) denotes the Riemannian curvature tensor, ps denotes
dp/ds, and ∇ps denotes the covariant differentiation of tangent
vectors on tangent space Tp(s)(M).



Exponential Map

Let the initial point be (p(0), q(0)) ∈ B and the tangent vector be
(u,w) ∈ T(p(0),q(0))(B). We have ps(0) = u, ∇ps q(s)|s=0 = w . We will
approximate this map using n steps and let ε = 1

n . Then, for i = 1, · · · , n the
exponential map (p(iε), q(iε)) = exp(p(0),q(0)) (iε(u,w)) is given as:

1 Set p(ε) = expp(0)(εps(0)), where ps(0) = u, and q(ε) = (q‖ + εw‖),
where q‖ and w‖ are parallel transports of q(0) and w along path p from
p(0) to p(ε), respectively.

2 For each i = 1,2,...,n-1, calculate

ps(iε) = [ps((i − 1)ε) + ε∇ps ps((i − 1)ε)]p((i−1)ε)→p(iε) ,

where ∇ps ps((i − 1)ε) = −R (q((i − 1)ε),∇ps q((i − 1)ε)) (ps((i − 1)ε))
is given by the first equation in Theorem 1. It is easy to show that
R (q((i − 1)ε),∇ps q((i − 1)ε)) = R

(
q‖ + ε(i − 1)w‖,w‖

)
=

R
(

q‖,w‖
)

, where q‖ = q(0)p(0)→p((i−1)ε), and w‖ = wp(0)→p((i−1)ε).

3 Obtain p((i + 1)ε) = expp(iε) (εps(iε)), and q((i + 1)ε) = q‖ + (i + 1)εw‖,
where q‖ = q(0)p(0)→p((i+1)ε), and w‖ = wp(0)→p((i+1)ε).



Shooting Algorithm for Computing Geodesics

Given (p1, q2), (p2, q2) ∈ B, select one point, say (p1, q1), as the starting point
and the other, (p2, q2), as the target point. The shooting algorithm for
calculating the geodesic from (p1, q1) to (p2, q2) is:

1 Initialize the shooting direction: find the tangent vector u at p1 such that
the exponential map expp1

(u) = p2 on the manifold M. Parallel transport
q2 to the tangent space of p1 along the shortest geodesic between p1

and p2, denoted as q‖2 . Initialize w = q‖2 − q1. Now we have a pair
(u,w) ∈ T(p1,q1)(B).

2 Construct a geodesic starting from (p1, q1) in the direction (u,w) using
the numerical exponential map in previous page. Let us denote this
geodesic path as (x(s), v(s)), where s is the time parameter for the
geodesic path.

3 If (x(1), v(1)) = (p2, q2), we are done. If not, measure the discrepancy
between (x(1), v(1)) and (p2, q2) using a simple measure, e.g. the L2

distance.
4 Iteratively, update the shooting direction (u,w) to reduce the

discrepancy to zero. This update can be done using a two-stage
approach: (1) fix u and update w until converge; (2) fix w and update u
until converge.



Temporal Registration ofTrajectories

The length of a geodesic path is given by:

d((p1,q1), (p2,q2)) =

√
l2x +

∫ 1

0
|q‖1,x (t)− q2(t)|2dt .

For any two trajectories α1, α2 ∈ F , and the corresponding
representation (p1,qα1 ), (p2,qα2 ) ∈ B, the metric d satisfies

d((p1,qα1◦γ), (p2,qα2◦γ)) = d((p1,qα1 ), (p2,qα2 )) ,

for any γ ∈ Γ.
Registration problem:

γ̂ = inf
γ∈Γ

d((p1,q1), (p2, (q2 ◦ γ)
√
γ̇))



Examples: Spherical Trajectories

If M = Sk , then the computations can be simplified. We know that the base
path x is a circle (not necessarily a great circle) and therefor one can search
for that directly. Given a base path, the evolution of TSRVF along that path is
straightforward.

Examples of geodesic paths:

Example of registration:
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Registration Example: Covariance Trajectories

M = SPDM(3). Each SPDM can be visualized as an ellipse.

Before: α1 and α2 After: α1 and α2 ◦ γ∗
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Comparison of Old and New TSRVF
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Figure: Metric comparisons: (a) shows eight simulated spherical trajectories,
(b) shows the pairwise distance matrix calculated using older TSRVF and (c)
shows the distance matrix calculated using new TSRVF. The trajectories are
labeled (1-8), with corresponding columns and rows in distance matrices.



Real Data Examples

Hurricane example

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Bird migration example

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure: Comparison of the cross-sectional mean (column 2) and the
amplitude mean (column 3) for hurricane and bird migration data (left panel).
Yellow ellipsoids in column 2 and 3 represent the cross-sectional variance
along the mean trajectory. The last column shows the estimated phases
{γ∗i }.



FPCA on Manifolds

First two PCs for bird data (41.90%) First two PCs for hurricane data (69.43%)

Figure: PCA results for bird migration (left panel) and hurricane data (right
panel). The number in the parenthesis shows the percentage of variation
explained by the first two PCs.



Dynamical Functional Connectivity in Human Brain

Functional Connectivity: Statistical dependencies in signals
generated by distant regions of brain under certain
neurophysiological events, as measured by fMRI data.

Generating covariance trajectories:



Registration Example: Covariance Trajectories

Brain functional connectivity using covariance trajectories
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Summaries of Trajectories

Sample Mean: Covariance Trajectories

Simulated trajectories:

Mean before registration Mean after registration



Summary

The shape analysis of trajectories on manifold can be handled
using SRVFs but requires parallel transport.
The Transported SRVFs can be used for registering, averaging,
and analyzing (PCA) trajectories.
Temporal alignment is important in applications to result in
rate-invariant classification.
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